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In this paper we focus on the use of Kriging models for predicting at untried points from the response values at the
tried locations. The underlying Gaussian model requires the modelistration of the covariance structure. In a
previous paper we have discussed to this aim generalities about the use of variograms to parameterize Gaussian
models. In fact, Geostatisticians, pioneers and practitioners of Kriging, strongly support the variogram considering
it more informative of the correlation structure. In particular computations for the case of jointly Gaussian
Y1, . . . , Yn with constant variance σ2 = Var (Yi ), i = 1, . . . , n are performed. In such a case, the model can be

parameterized by the common variance σ2 and the variogram matrix Γ that carries n(n − 1)/2 degrees of freedom
and is conditionally negative definite. The set of variogram matrices is related with a convex set called elliptope
(ellipsoid+polytope). The discussion of the domain for the variogram matrices is instrumental when viewing the
problem in Bayesian terms. Opposite to the conventional geostatistical Kriging approach that commonly ignores
the effect of the uncertainty in the covariance structure on subsequent predictions, a Bayesian approach will provide
a general methodology for taking into account the uncertainty about parameters on subsequent predictions. Hence
a-priori on the variogram matrices is demanded. We plan to discuss a number of simple typical problems with
parameterized subset of variogram matrices and small dimension.
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Variogram of a normal vector with constant variance

• We consider a Gaussian n-vector, n ≥ 2, with mean µ = µ1 and
variance matrix Σ = [σij ]

n
ij=1 with constant diagonal σii = σ2,

i = 1, . . . , n.

• The assumption on the mean and the diagonal terms is intended to
be a weak stationarity assumption.

• Hence, Y ∼ Nn(µ1, σ2R), where µ is a general mean value and
R = [ρij ]

n
i,j=1 is a correlation matrix.

• The variogram of Y is the n × n matrix Γ = [γij ]
n
i,j=1

2γij = Var (Yi − Yj) = (ei − ej)′σ2R(ei − ej) =

σ2 (ρii + ρjj − 2ρij) = 2σ2(1− ρij).

• In matrix form

Γ = σ2(11′ − R).
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Kriging model and variogram

• In Geostatistics applications each component Yi is associated to a
location xi , i = 1, . . . , n in a given region X and the covariances are
assumed to be a function of the distance between locations:
Σi,j = C (d(xi , xj)).

• In this case the diagonal is constant,

Σi,i = C (d(xi , xi )) = C (0) = σ2

Moreover it is commonly assumed that the mean is constant, µ1.

• First Krige’s modeling idea is to assume positive correlation and
assume the variogram to be an increasing function γ of the
distance, so that to model a variability that increases with the
distance and is bounded by the general variance:

0 <
1

2
Var (Yi − Yj) = Γij = γ(d(x1, xj)) = σ2(1−R(d(x1, xj)) < 2σ2
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Semi-variogram function
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Krige’s prediction

• The parameters in the Krige’s model are µ, σ2,R and are usually
estimated over a suitable parametric model. We do not discuss here
the modelling aspect, but we adopt a general non-parametric
attitude, where µ is real number, σ2 is a positive real number, R is
a positive definite matrix with unit diagonal.

• Second Krige’s idea is to predict the value Yx0 an untried location
x0 with the conditional expectation based on some estimate of the
parameters: if I = {1, . . . , n},

Ŷ0 − µ = Σ0,IΣ
−1
I ,I (YI − µ1I ), with Σ =

[
ΣI ,I ΣI ,0

Σn,I σ2

]
• Note that the set of data that give the same prediction is an affine

plane in Rn.

• We are going to discuss how to express the prediction formula

for Ŷ0 − µ as a function of the variogram Γ.
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First properties of variogram matrix Γ

Γ = σ2(11′ − R) = σ211′ − Σ

• 1
n11

′ is the orthogonal projector on the space of constant vectors
Span (1).

• Γ = 0 if, and only if, R = 11′.

• x = w + α1 with w ′1 = 0

x ′Γx = w ′Γw + 2αw ′Γ1 + α21′Γ1

= −σ2w ′Rw − 2ασ2w ′R1 + σ2(n2 − α21′R1).

• Γ is conditionally negative definite (i.e. when α = 0)

• 1′Γ1 = σ2(n2 − 1′R1).
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Characterisation

Is a matrix Γ a variogram?

A nonzero matrix Γ is a variogram of some covariance matrix of the form
Σ = σ2R, with σ2 > 0 and R a correlation matrix, if, and only if, the
three following condition hold:

1. Γ is symmetric, and has zero diagonal;

2. Γ is conditionally negative definite;

3. sup {x ′Γx |x ′1 = 1} ≤ σ2.

• Note the lower bound for σ2.

• Γ carries n(n − 1)/2 degrees of freedom.
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Inverse Variogram matrix Γ−1

1. If Σ = σ2R ∈ S= is invertible, then σ−2 − 1′Σ−11 6= 0 and
Γ = σ2(11′ − R) is invertible, with

Γ−1 = −Σ−1 − (σ−2 − 1′Σ−11)−1Σ−111′Σ−1 . (1)

2. If Σ = σ2R ∈ S+ is invertible, then Γ = σ2(11′ − R) is invertible.
Moreover 1 6= σ21′Γ−11, and

Σ−1 = −Γ−1 − (σ−2 − 1′Γ−11)−1Γ−111′Γ−1 (2)

• The proof uses the Sherman-Morrison formula and properties of the
matrix R.
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Elliptope

• In a non parametric approach we want to know the shape of the
bounded set of correlation matrices. This convex set is called
elliptope.

• All principal minors of R are nonnegative, in particular with 3
locations

det (R) = det

1 x y
x 1 z
y z 1

 = 1− x2 − y2 − z2 + 2xyz ≥ 0

• all horizontal section z = const are ellipses

1− x2 − y2 + 2cxy ≥ c2

Same for other sections.

• The volume is computable: uniform apriori. Simulation is feasible.

• R = A′A where the columns of A are unit vectors: an other possible
apriori. Simulation is feasible.
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The 3-elliptope
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Cholesky decomposition of a correlation matrix

• For a correlation matrix R = T ′T with

T =

t ′1
t ′2
t ′3

 =


√

1− t2
12 − t2

13 t12 t13

0
√

1− t2
23 t23

0 0 1

 , ti ∈ 0i−1×S+
n−1+1

•

R =

 1
√

1− t2
12 − t2

13t12

√
1− t2

12 − t2
13t13√

1− t2
12 − t2

13t12 1 t12t13 +
√

1− t2
23t23√

1− t2
12 − t2

13t13 t12t13 +
√

1− t2
23t23 1


det (R) = (1− t2

12 − t2
13)(1− t2

23)
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Projecting on Span (1)⊥

• The approach with parameters σ2, Γ does not appear promising in
term of ease of computation.

• We now change our point of view to consider the same problem
from a different angle. In fact, we can associate the variogram with
the state space description of the Gaussian vector.

1. The matrix Γ is a variogram matrix if, and only if, the matrix

Σ0 = −
(
I − 1

n
11′
)′

Γ

(
I − 1

n
11′
)

(3)

is symmetric, positive definite and with constant diagonal. In such a
case, the variogram of Σ0 is Γ.

2. If Y0 ∼ Nn(0,Σ0), then its variogram is Γ and it is supported by

Span (1)⊥.
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Decomposition of the state vector

- Let Y ∼ Nn(µ,Σ), σ = σ2R ∈ S+ with variogram Γ = σ2(11′ − R).

- Let Y0 =
(
I − 1

n11
′)Y be the projection of Y onto Span (1)⊥ so that

we can write Y = Y0 + Y , where each component of Y is the empirical
mean 1

n1
′Y .

1. The distribution of Y0 is Gaussian and depends on the mean and
the variogram only.

2. The distribution of 1
n1
′Y , conditionally to Y0 is Gaussian.
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Example: Wafer diffusion
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Giovanni Pistone and Grazia Vicario. Kriging prediction from a circular grid: application to wafer diffusion.
Appl. Stochastic Models Bus. Ind., 29(4):350–361, July 2013
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Example: CMM measurements
Analysis of the Covariance Structure 4543

Figure 1. The three considered surfaces: (a) milled, (b) grinded, and (c) lapped, and the corresponding
sampled points on uniform rectangular grids. In (c), some points are missing because they were
detected by default as outliers by the CMM software.

In Matheron’s theory, the variogram is assumed to be null and continuous at 0. However,
it is generally true that a variogram function γ is the sum of a continuous variogram γc and
a pure jump variogram γ0, the nugget, see Sec. 2.4 of the monograph Gneiting et al. (2001).
The nugget comes from stationary independent measurement errors or from a scaling effect
(see Chiles and Delner, 1999).

The variogram is bounded by the general process variance σ 2
Z and this value is the

limit at +∞ of the variogram itself if the correlation goes to 0 at +∞ . This limit is called
sill which in the common practice is estimated with the sample variance. The range, the
distance at which the variogram becomes constant or equivalently the correlation vanishes,
is used to infer maximum distances of spatial autocorrelation.

If value of variogram depends on the length of vector h only, then the stochastic process
underlying the variogram is isotropic; if not, the process is anisotropic. Isotropic processes
form an inadequate ground in modeling many spatially distributed data, especially when
the monitored manufactured part shows technological signatures. In Sec. 4, the influence
of the signature on the anisotropy of the stochastic process will be highlighted.

3. Variogram and Nugget Estimation

There are various proposals for the variogram estimator in the literature; correctness,
consistency, robustness, and other desirable properties of the estimators are not satisfied by
all the considered estimators. Matheron (1962) proposed the estimator γ̂M (h):

γ̂M (h) = 1
#N (h)

∑

N(h)

(Z(xi) − (Z(xj ))2 (5)

where N (h) = {(xi , xj ) : xi − xj = h; i, j = 1, . . . , n} and #N (h) is the number of pairs
N (h). It is unbiased, conditionally the stochastic process is mean-stationary; however, it has
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Suela Ruffa, Grazia Vicario, and Giovanni Pistone. Analysis of the covariance structure in manufactured parts.
Communications in Statistics - Theory and Methods, 44(21):4540–4551
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(σ2, Γ)↔ (σ2,R)↔ Σ

1. The mapping from Σ ∈ S= to the couple (σ2, Γ) ∈ R> × V factors
as

S= 3 Σ 7→ (
1

n
Tr (Σ) ,

(
1

n
Tr (Σ)

)−2

Σ) = (σ2,R) ∈]0,∞[×R

and

]0,∞[×R 3 (σ2,R) 7→ (σ2, σ2(11′ − R)) =

(σ2, Γ) ∈
{

(σ2, Γ)
∣∣Γ ∈ V, sup {x ′Γx |x ′1 = 1} ≤ σ2

}
.

- Inverse is{
(σ2, Γ)

∣∣Γ ∈ V, sup {x ′Γx |x ′1 = 1} ≤ σ2
}
3 (σ2, Γ) 7→
σ211′ − Γ = Σ ∈ S=
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Sherman-Morrison formula

If the matrix A is invertible, then 11′ − A is invertible if, and only if,
1′A−11 6= 1. In such a case,

det(11′ − A) = (−1)n detA(1− 1′A−11) ,

(11′ − A)−1 = −A−1 − (1− 1′A−11)−1A−111′A−1.
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Proof of SM formula

det(11′ − A) = det (−A) +
n∑

j=1

n∑
i=1

(−A)ij

= (−1)n detA− (−1)n−1
n∑

i,j=1

Aij

= (−1)n detA− (−1)n−11(adjA)1′ .

If detA 6= 0,

det(11′ − A) = (−1)n(detA)(1− 1′A−11) 6= 0

if, and only if,

1− 1′A−11 6= 0 .

We conclude by checking that

(11′ − A)(−A−1 − αA−111′A−1) = I

if, and only if, α = (1− 1′A−11)−1.
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Properties of the correlation matrixR

Let R be a correlation matrix and assume det (R) 6= 0. Let λj > 0,
j = 1, . . . , n, be the eigenvalues of R and uj a set of unit eigenvectors.

1. TrR =
∑n

j=1 λj = n and det (R) =
∏n

j=1 λj ≤ 1, with equality if,
and only if, R = I .

2. TrR−1 =
∑n

j=1 λ
−1
j ≥ n and det (R)−1 ≥ 1 with equality if, and

only if, R = I .

3. 1′R−11 6= 1.
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Proof
1. n = Tr R =

∑n
j=1 λj . From det R =

∏n
j=1 λj , as the arithmetic mean is larger than the the geometric

mean,

1 =

∑n
j=1 λj

n
≥

 n∏
j=1

λj

 1
n

= (det R)
1
n ,

with equality if, and only if λj = 1 for all j = 1, . . . , n, that is, R = I .

2. The geometric mean is larger or equal than the harmonic mean,

(det R)
1
n =

 n∏
j=1

λj

 1
n

≥ n

 n∑
j=1

λ
−1
j

−1

,

with equality if, and only if, λj = 1, j = 1, . . . , n. It follows 1
n

∑n
j=1 λ

−1
j ≥ 1.

3. As R−1 =
∑n

j=1 λ
−1
j uju

′
j and

∑n
j=1(1′uj )

2 = ‖1‖2 = n2,

1 = 1′R−11 =
n∑

j=1

λ
−1
j (1′uj )

2 = n2
n∑

j=1

(λj )
−1
θj ,

where θj = (1′u)2/n2 ≥ 0 and
∑n

j=1 θj = 1. From the convexity of λ 7→ λ−1 we obtain

1 = n2
n∑

j=1

(λj )
−1
θj ≥ n2

 n∑
j=1

λjθj

−1

,

hence the contradiction

1 ≤
1

n2

n∑
j=1

λjθj ≤
1

n2
max

{
λj

∣∣j = 1, . . . , n
}
≤

1

n
.
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Likelihood
•

det (Σ) =

det
(
σ

211′ − Γ
)

= σ
2n det

(
11′ − σ−2Γ

)
= σ

2n
[

det
(
−σ−2Γ

)
+ 1′ adj

(
−σ−2Γ

)
1
]

=

det (−Γ)− σ21′ adj (−Γ) 1

•
y ′Σ−1y =

y ′
(
−Γ−1 − (σ−2 − 1′Γ−11)−1Γ−111′Γ−1

)
y = −y ′Γ−1y − (σ−2 − 1′Γ−11)−1(y ′Γ−11)2

.

•
log p

(
y
∣∣∣σ2

, Γ
)

=

−
n

2
log (2π)−

1

2
log
(

det
(
11′ − σ−2Γ

))
−

1

2σ2
y ′(11′ − σ−2Γ)−1y =

−
n

2
log (2π)−

1

2
log
(

det (−Γ)− σ21′ adj (−Γ) 1
)

+
1

2
y ′Γ−1y +

1

2
(σ2−1′Γ−11)−1(y ′Γ−11)2

.

•
dH (Γ 7→ log

(
det
(
11′ − σ−2Γ

))
) = Tr

(
(σ211′ − Γ)−1H

)
;

dH (Γ 7→ y ′(11′ − σ−2Γ)−1y) = σ
2 Tr

(
(σ211′ − Γ)−1yy ′(σ211′ − Γ)−1H

)
;

•
−(σ211′ − Γ)−1 + (σ211′ − Γ)−1yy ′(σ211′ − Γ)−1 is diagonal .
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Cholesky decomposition

• A symmetric matrix A is positive definite if there exists an upper
triangular matrix

T =

t ′1
t ′2
t ′3

 =

t11 t12 t13

0 t22 t23

0 0 t33

 , tii ≥ 0

•

A = T ′T = [ti · tj ]ij =

 t2
11 t11t12 t11t13

t11t12 t2
12 + t2

22 t12t13 + t22t23

t11t13 t12t13 + t22t23 t2
13 + t2

23 + t2
33


• t11t22t33 6= 0 ⇔ T is unique and invertible ⇔ A is invertible

• A identifiable parametrization for non singular matrices.
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Proof
1. If Γ = σ2(11′ − R) is a variogram matrix, then from Eq. (3) we have

Σ0 = σ
2
(
I −

1

n
11′
)′

R

(
I −

1

n
11′
)
,

which is indeed positive definite. Let us compute the diagonal elements of Σ0.

(Σ0)ii = σ
2e′i

(
I −

1

n
11′
)′

R

(
I −

1

n
11′
)

ei

= σ
2
(

ei −
1

n
1

)′
R

(
ei −

1

n
1

)
= σ

2
(

e′i Rei −
2

n
eiR1 +

1

n2
1′R1

)
= σ

2
(

1

n2
1′R1− 1

)

Viceversa, assume Σ0 is a covariance matrix. As ei − ej ∈ Span (1)⊥, the variogram of Σ0 has elements

(ei − ej )
′Σ0(ei − ej ) =

(ei − ej )
′
(
I −

1

n
11′
)′

(−Γ)

(
I −

1

n
11′
)

(ei − ej ) =

− (ei − ej )
′Γ(ei − ej ) = −γii − γjj + 2γij = 2γij .

2. As 1′(ei − ej ) = 0, then 1′
(
I − 1

n
11′
)′

(−Γ)
(
I − 1

n
11′
)
1 = 0, hence the distribution of Y0 is

supported by the space Span (1)⊥.
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