4th Carlo Alberto Stochastics Workshop
FUNCTIONAL METHODS IN INFORMATION GEOMETRY

Geometries of the Probability Simplex

Giovanni Pistone
www.glannidiorestino.it

4 e Collegio Carlo Albert

N—_—-

April 18, 2019


www.giannidiorestino.it

PROGRAM

TIME TABLE

18/04 14:30 Giovanni Pistone (de Castro Statistics and Collegio Carlo
Alberto) Information geometry of the probability simplex

18/04 16:00 Break

18/04 16:00 Giuseppe Savaré (University of Pavia) Entropic optimal
transport and Hellinger-Kantorovich distance

19/04 10:00 Jan Naudts (University of Antwerp) An alternative
approach to Quantum Information Geometry

19/04 11:30 Contributed papers and discussion

keywords

Information Geometry, Exponential Manifold, Entropy, Optimal
Transport, Hellinger distance, Kantorovich distance, Deformed
exponential, Non-parametric, Quantum Information geometry.



Books on Information geometry

M. K. Murray and J. W. Rice. Differential Geometry and Statistics.
Number 48 in Monographs on Statistics and Applied Probability.
Chapman & Hall, 1993

R. E. Kass and P. W. Vos. Geometrical foundations of asymptotic
inference. Wiley Series in Probability and Statistics: Probability and
Statistics. John Wiley & Sons, Inc., New York, 1997. A
Wiley-Interscience Publication

S. Amari and H. Nagaoka. Methods of information geometry.
American Mathematical Society, 2000. Translated from the 1993
Japanese original by Daishi Harada

S. Amari. Information geometry and its applications, volume 194 of
Applied Mathematical Sciences. Springer, [Tokyo], 2016

N. Ay, J. Jost, H. V. L&, and L. Schwachhofer. Information
geometry, volume 64 of Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics
[Results in Mathematics and Related Areas. 3rd Series. A Series of
Modern Surveys in Mathematics]. Springer, Cham, 2017



Plan

PART | Information Geometry: Statistical bundle, exponential
manifold, deformed exponential manifold, second order
geometry

PART Il Kantorovich distance: distance defined by a graph

JW Gibbs

R Fisher
CR Rao

NN Centsov
B Efron

S Amari



PART I: Information Geometry

Q is a finite set (sample space, configuration space, state space). The set
of probability functions is the probability simplex A(2). The set of
strictly positive probability functions is the interior A°(Q2) of the
probability simplex.
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Probabilities and random variables
A(Q) = {p € R¥|¥,cq p(x) = 1, p(x) > 0}
A°(Q) = {p € R, cq p(x) = 1,p(x) > 0}
Al(Q) = {9 eRY, qa(x) =1}
12(p) = {U € R}, |UI[2=3cq U(x)?p(x) . p€AQ)
Ep [U] =Y eq UX)p(x), U € L?(p),peAQ)
={U e R2[E,[U] =0} L2(p) =R & L3(p)
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Statistical bundle
The statistical bundle with base A(Q) is

SAQ) = {(p. U)|p € A(Q), U € L3(p)}
The fiber at p is S,A(Q) = L3(p)
The base of the bundle is A(Q2) but could be smaller i.e. SA°(Q)

A curve in the statistical bundle is a mapping

15t (p(t), U(t)) p(t) € AQ) U € SpA(Q) = L(p(t))

2 (\D(Ju))
Vée) U(t) pe)
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Fisher's score |

Given an R%-smooth curve t — p(t) € A(R), the support of p(t) is
contained in the support of p(t) for all t. The Fisher's score Dp(t) is

such that p(t) = Dp(t) - p(t),
0 if p(x;t) =0,

Dp(x;t) =< p(x; -
o gEx;g_i'OgP(X;t) if p(x;t) > 0.

t — (p(t), Sp(t)) € SA(Q) is a curve in the statistical bundle.

Proof: For each t and x € Q

the condition p(x;t) = 0 im- AYERTY
plies t is a point of minimum,

hence p(x;t) = 0. It follows [PU4i€)=o
that Dp(t) is well defined, and puytr=?
( ) = Dp(t) - p(t). Moreover,

Op(t) [Dp(t)] = > cqplyit) =

/)




Fisher's score Il

® From now on, we restrict the discussion to the open simplex
SA%(Q) = {(p. U)|p € A°(Q), U € L3(p)}
with fiber S,A(Q) = L2(p). In this case,

Dp(x;t) = Zg 3 = % log p(x; t)

® Later on, the statistical bundle will be identified with the tangent
bundle of the mapping p — log p.

® Example: Gibbs probability function

o exp(—3V() 1 1
p(x,t) = S, e (CIV(y) exp (t V(x) — |og;e><p <t V(y)>>




Fisher's score is a derivation in the statistical bundle

Let X be real random variable on Q.

I By [X] = ;’tz X()ply ) = 3 X()plyi ) =

y

5 X0V 2L oty £) = By XDR(0)] = Byt [(X — By XL

where we have used the fact that E ) [Dp(t)] = 0.

Each fiber S,A°(Q) is an Hilbert space for the inner product
(U,V), =E,[UV], and X — E, [X] € S,A°(Q), so

d
GeBp(0 X = (X =By [X], Dp(2))

The random variable Dp(t) € S,:)A°(S2) represents the velocity of
variation of the point information log p(x; t).



“Deformed” statistical bundle

If loga(t) = J; A‘Z‘l’l) then
d .
50 X1 = X0 6= X )t s Ay ) =

0) [XDap(1)] = Ea(p(e)) [(X — Bap(y XD Dap(t)] =
(X = Eage(e)) [X]: Dap(t)) sy
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Exponential expression |

° If pe A°(Q), then V = log p gives

p= eV = e(V*EP[V])‘HEP[V] — eU*H(p)
with U = log p — E, [log p] € S,A°(R2) and H (p) = —E, [log p] is
the entropy of p.

® For each given p, define for all g € A°(Q) the chart
sp(q) = Iog% -E, [mg Z} € S,A°(Q) .

e Conversely, given any U € S,A°(Q2) the equation g = eU=KW)p,

with K(U) = logE,, [eV], defines a probability function such that

Sp(q) = Sp(eU_K(U)P) =

QU—K(U)

log e P E, {Iog
p

eU—K(U)p:|

U—K(U)—E,[U]+K(U)=U



Exponential expression |l
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Natural gradient |

Definition

Given a function f: A°(Q) — R, its natural gradient is a section

A°(Q) > p— (p,grad f(p)) € SA°(Q) such that for each smooth curve
I' >t~ p(t) it holds

d

2 F(p(1)) = {grad F(p(1)), Dp(t)) 0, T €]

Computing grad

Let f be a C! real function on the open simplex A°(£),
f:p f(p(x): x € Q). For each p € A°(Q), define the random variable
Vf(p) that takes value %(X)f(p) at x € Q. The natural gradient is

grad f(p) = VF(p) — E, [VF(p)] -



Natural gradient Il

S flp(£)) 5 Tog plx; E)p(x: 1) = By [V (p(£)) Dol )] =

xeQ

Ep) [(VF(p(t)) — Epy [VF(p(t))]) Dp(x; t)] -

Natural gradient of the entropy functional:
H(p) = — > ycqP(x)log p(x). The partial derivatives are
f(p) = —log p(x) — 1, so that Vf(p) = —logp — 1 and

gradH (p) = —logp—1—E,[~logp—1] = —logp —H(p) .

Here grad f(p) is the projection of Vf(p) onto S,A°(2) with

respect to the inner product (., .>p.



Flows

Given a section F: A°(Q), F(p) € SpA°(2), the trajectories along the
section are the solutions of the differential equation Dp(t) = F(p(t)).

® The differential equation is equivalent to the system of ordinary
differential equations

&b t) = p(x OF(p(t)  x€ O

® A flow of the section F is the collection of all trajectories along the
section.

® The gradient flow is the flow of the section +gradf.

® Let f: Q — R a real function to maximize. Relax to f(p) = E, [f],
p € A°(). We have grad F(p) = f — E, [f] and consider the
gradient flow Dp(t) = grad F(p(t)) = f — Ey) [f]. The solution is
the exponential family p(t) = e’ ~¥()p(0). As t — oo, the solution
goes to the probability function uniform on
{x € Q|f(x) = max, f(y)} and zero elsewhere.



Gradient flow of the entropy |

The model example of gradient flow is the gradient flow of the entropy
Dp(t) = —grad H (p(t)). The equation is

% log p(t) = grad M (p(t)) = log p(t) + H (p(t)) ,

which is a system of ordinary differential equation,

%p(X: t) = p(x; t)log p(x; t) = > _ ply:t)logp(y: t) -
yeQ



Gradient flow of the entropy Il

Let us show that the solution starting at p = p(0) is p(t) x p°. At each
x € Q,

L P(x)
PGt = = o)

log p(x; t) = e’ log p(x) — log Z p(y)°
yeQ

H (p(t)) = —Epe) [log p(t)] = —€Ey(e) [log p] + log > p(y)*
yeQ
log p(x; t) + H (p(t)) = e (p(x) — Epr) [P])
et o
Do(t) = & log p(x; ) = e'p(x) ~ Zye‘g(yi o P) _

e’ (p(x) = Ep(z) [P1)

Exponential families are the orthogonal trajectories to the level sets of

the entropy. Here, orthogonality at p is with respect to the inner product
of S,A°(Q).



Transports between fibers |
e If Ue S,A°(Q) and g € A°(Q),
Eq[U—Eq[U]] = Eq[U] —Eq[U] =0

o |20] = 3 a2 uty) =B, U] =0
yeQ

® The exponential parallel transport, or e-transport, is the family of
linear mappings

“UY: S,A°(Q) 3 U U —Eq[U] € S,0°(9) .

® The mixture parallel transport, or m-transport, is the family of linear
mappings

mU9: S,A°(Q) 3 U gu € S,0°(Q) .



Transports between fibers |l

The following properties hold for the e-transport and the m-transport
® semi-group property: ‘Uz ‘Ug = °Uy,
H . m m . m
® semi-group property: "Ug "UJ = "Uj,

e duality: (*U3U, V), = (U,"UBV) , U € S;A°(Q) and
V € S,A°(Q)

® transport of the inner product: <6UqU mud V> (U, V),
U,V e 5,A°(Q)

(URU. V), = Eq[(U ~ Eg[U)V] = Eq [U] V — Eq [U] Ey [V]

q m
E,[UV] = E, {puv} = (U,"UpV)



Transports between fibers 11|
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e Given U € 5,A°(Q), each transport defines a section of the
statistical bundle:

q— UU, q~"UJU,

and we can compute their respective flows.



Transports between fibers 1V

® The flow of the vector field p — e[U’C;U, U € B, i.e., the solution of

Dp(t) = eUg(t) U, p(0)=p,

A°(Q) x R 5 (p, t) s VU000 . p

® The flow of the vector field p — ’"UQU, U € B i.e., the solution of

Dp(t) = '"U’C’,(t)U, p(0) =p
A°(Q) x I3 (p, t) = (L+t"ULU)p

There are two types of “straight lines”, the exponential families and the
mixture families



Accelerations |

Second order differential geometry is usually based on a notion of
covariant derivative or affine connection. To each covariant
derivative there is associated a parallel transport. Here we procede
the other way round because we have a simple definition of parallel
transport from which to derive a definition of acceleration.

A typical application is in optimization where the Hessian provides
an estimate of convergence of first order methods and can be used
to develop second order methods.

Let us compute the acceleration of a curve / — p(t). The velocity
is is replaced by Fisher's score

t = (p(t), Dp(t)) = (p(t), & log (p(t))) € SA(Q).
Each random variable Dp(t) has to be checked against an element
of SpA°(Q), say "UBIV, V € 5,A°(Q).



Accelerations |l

® We can compute an acceleration as

%<Dp(t),’"Ug(t)V>p(t) = <eU,’;(t (),v>p

<dteUp Pt )’V>p

_ <6Up(t eUp ( ),ng(t)\/>

p(t)

* In the computation of *U5" 2 4 “Up .y Dp(t) we first move back
Dp(t) to the fixed space S AO( ), then take the derivative. Finally,
move back the derivative to the original space S,;)A°(Q).



Accelerations |l

The exponential acceleration is

d
en2 _
D2p(t) = U3 — Uy,

d d
= eUg(t)% eUﬁ(t)a log p(t)

_egpo 9 (B(t) o [R(E)
= U (p(t) B {p(t)D
oo (BOP(E) = () [B(e)p(t) — p(t)®
Ve ( p(eP E[ D
_ BOp) - P [b(t)p(r) = p(r)j
p(t)? PO p(t)?

=2 - (Dp(t))? + Epey [(Dp(2))?]

Dp(t)



Accelerations |V

Exponential families have null exponential acceleration. In fact for

p(t) = exp (tU — ¢(t)) p, we have e[U’;(t)Dp(t) = U—-E,[U], so that

4 4 ‘U Dp(t) = 0. Moreover, note that
(Dp(t))? = (u—4(t))?

B(t) = S 1p(6)(u — 9(e)] = p(E)(u — (D) — p(2)i(2)

® A second option is to compute the acceleration as

% <Dp(t), eI[Jg<f)v> - % <”’U£(t) Dp(t), v>

p(t) p

d m
= <dt [Uz(t)Dp(t), V>
P

= <mUp(t) mU/I;(t p( )76Ug(f)\/>
p(t)



Accelerations V

The mixture acceleration is
mD2p(t) —
m d m
= Uﬁ(t)% UZ(t)DP(t)
p d (P(t) b(f)>

p(t)dt \"p p(t)
_ B(t)

~ p(t)

e In follows that mixture models t + (1 + tU)p have null mixture
acceleration.



Taylor formula, Hessian |

® Given g, p € A°(Q), the exponential model

B pl—tqt B ﬂ t
p(t) = >yeaP¥)taly)t o [<p> ]

were

-1

<q> T otU—(t)
p ’
U= Iog% —E, [log] % € S,A°(9Q) |

(t) = tB, log] ¢ - log B, [(2)] |

connects p(0) = p and p(1) = gq.
e We know that Dp(t) = U — 4(t) and °D?p(t) = 0.
® Define the mixture Hessian (m-Hessian) of f to be

d
"Hessyf(p) = '"Ug '"UP grad f(p(t))

= € S,A°(Q) .

t=0




Taylor formula, Hessian [l

® In such a case the first and the second derivative of t — f(p(t))
reduce to

S(BL0) = (grad F(p(e). U= (1))

jt2 f(p(t)) = ("Hesspp(e) fF(p(t)), Dp(t)>p(f) B

("Hessy g f(p(1). U—1(1))

® We can write the Taylor formula as

d 1d?
fla) = flp) = f(p(t)) 7 5 g ! (P(1) 7 R(p,q)
= (grad f(p), U>p + % ("Hessyf(p), U), + R(p, U) .

® The evaluation of the remainder can be done in the L2 norm, or,
better, in stronger norm.



My case

The basic structure of Information Geometry is a
exponential-mixture affine manifold. The Riemannian structure is
intermediate.

A systematic parametric presentation could possibly fit the needs of
Statistics and Machine Learning, but it is not natural in other
applications e.g., Statistical Physics, Evolution Equation.

It is useful, even in studying statistical models on a finite state
space to avoid a premature parametrization.

The affine structure is feasible with a continuous state space. There
are many options in implementing that generalization, the
exponential representation of positive densities being one. The use
of smooth densities is another possible choice.



PART Il: Kantorovich-Rubinstein distance

Kantorovich distance is a special case of a distance defined on
A(Q). A more general case is called p-Wassestein distance.

The formalism of Information geometry does not depend on the
specific characteristics of the sample space. In contrast to that
“feature” (or “bug”) of IG, K-distance is based on the assumption
that the sample space is endowed with a distance d: 2 x Q — R
and the K-distance is an extension of the base distance i.e.,
d(6x,6,) = d(x,y).

In turn, this is a part of a larger topic called Optimal Transport.

The use of distances and divergences between probability
distributions is quite common in Statistics. However, it should be
observed that a distance does not define a proper geometry, unless
the distance admits geodesics i.e. curves of minimal length such
that the length of a curve between two distribution equals the
distance between the extreme distributions.
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Couplings |

Let X be a finite set and A(X) be the simplex of probability
functions on X. We assume that the sample space X is provided
with a distance d.

Given probability functions p, v € A(X), the joint probability
function v € A(X x X) is a coupling of  and v if p and v are the
two margins of -, respectively. For instance, u ® v is a coupling of
wand v.

The set of all couplings of 1 and v is the subset of A(X x X)
defined by

Pi,v) = v € AX x X)) v(xy) = u(x), Y v(xy) = v(y)

yeX xeX

This set is a nonempty bounded polyhedron in RX*X  hence it is a
polytope i.e., the convex combination of its vertexes.



Couplings |l

The Kantorovich distance (the K-distance) is defined by

d(p,v) =inf$ > d(xy)v(x, )|y € P, v)

x,y€X

® The minimum value is actually a distance on the probability simplex.

® The compactness of P(u,r) implies that the minimum is reached at
some coupling 7 namely, d(u,v) =3, d(x,y)y(x,y). More
precisely, as we have a minimum of a linear function on a polytope,
the set of optimal couplings is a face of the polytope P(u, v).

® Couplings, when they are seen as transport plans, are conveniently
represented as special transitions,
v(x,¥) = w(x)P(x,y) = v(y)Q(y, x), where P and Q are Markov
matrices. The Markov matrix P provides a way to map the initial
probability function  to a final probability function v.



Optimal coupling

e If ¥ is an optimal coupling i.e. d(p,v)=>", vex d(x,y)y(x,y), the
support of 7 is “small”. Let us define the graph on X whose edges
are defined by ¥(x, y) > 0.

The graph of the support of an optimal coupling does not contain any
cycle.

Given two probability functions p and v, the mixture curve
w(t) = (1—t)p+tr, 0 <t <1, is a metric geodesic for the d-distance
i.e.,

d(u(t), i(s)) = (t — $)d(u,v) , 0<s<t<1.
Moreover, is 7 is optimal for d(u,v), then the coupling defined by
Y(xyis,t) = (1= t)ulx)(x = y) + sv(y) + (t — s)v(x,y)

is optimal for d(u(0), u(t)).



Duality |

® The problem is clearly a linear programming problem: optimum of a
linear function, plus affine and inequality constrains. As such, we
expect it to a have a dual linear programming problem.

® A real function u on X is called 1-Lipschitz for the distance d, if
lu(x) — u(y)] < d(x,y), for all x,y € X. Equivalently,
u(y) < d(x,y) + u(x). The set of 1-Lipschitz functions will denoted
by Lipy(d).



Duality Il

Let 1 and v be given probability functions on the finite metric space
(X, d) and let P(u,v) be the set of couplings. Then

min{ > dixy)r(xy)

x,yeX

v € P(AW)} =

max {Z SO)u(x) = Y D(y)r(y)

xeX yeX

¢@w§d}=

max {Z u() () — (x))

xeX

ue Lipl(d)} .



