
4th Carlo Alberto Stochastics Workshop
FUNCTIONAL METHODS IN INFORMATION GEOMETRY

Geometries of the Probability Simplex

Giovanni Pistone
www.giannidiorestino.it

April 18, 2019

www.giannidiorestino.it


PROGRAM

TIME TABLE

18/04 14:30 Giovanni Pistone (de Castro Statistics and Collegio Carlo
Alberto) Information geometry of the probability simplex

18/04 16:00 Break

18/04 16:00 Giuseppe Savaré (University of Pavia) Entropic optimal
transport and Hellinger-Kantorovich distance

19/04 10:00 Jan Naudts (University of Antwerp) An alternative
approach to Quantum Information Geometry

19/04 11:30 Contributed papers and discussion

keywords

Information Geometry, Exponential Manifold, Entropy, Optimal
Transport, Hellinger distance, Kantorovich distance, Deformed
exponential, Non-parametric, Quantum Information geometry.



Books on Information geometry

• M. K. Murray and J. W. Rice. Differential Geometry and Statistics.
Number 48 in Monographs on Statistics and Applied Probability.
Chapman & Hall, 1993

• R. E. Kass and P. W. Vos. Geometrical foundations of asymptotic
inference. Wiley Series in Probability and Statistics: Probability and
Statistics. John Wiley & Sons, Inc., New York, 1997. A
Wiley-Interscience Publication

• S. Amari and H. Nagaoka. Methods of information geometry.
American Mathematical Society, 2000. Translated from the 1993
Japanese original by Daishi Harada

• S. Amari. Information geometry and its applications, volume 194 of
Applied Mathematical Sciences. Springer, [Tokyo], 2016
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PART I: Information Geometry

Ω is a finite set (sample space, configuration space, state space). The set
of probability functions is the probability simplex ∆(Ω). The set of
strictly positive probability functions is the interior ∆◦(Ω) of the
probability simplex.



Probabilities and random variables
• ∆(Ω) =

{
p ∈ RΩ

∣∣∑
x∈Ω p(x) = 1, p(x) ≥ 0

}
• ∆◦(Ω) =

{
p ∈ RΩ

∣∣∑
x∈Ω p(x) = 1, p(x) > 0

}
• A1(Ω) =

{
q ∈ RΩ

∣∣∑
x∈Ω q(x) = 1

}
• L2(p) =

{
U ∈ RΩ

}
, ‖U‖2

p =
∑

x∈Ω U(x)2p(x) , p ∈ ∆(Ω)

• Ep [U] =
∑

x∈Ω U(x)p(x), U ∈ L2(p), p ∈ ∆(Ω)

• L2
0(p) =

{
U ∈ RΩ

∣∣Ep [U] = 0
}

L2(p) = R⊕ L2
0(p)



Statistical bundle
• The statistical bundle with base ∆(Ω) is

S∆(Ω) =
{

(p,U)
∣∣p ∈ ∆(Ω),U ∈ L2

0(p)
}

• The fiber at p is Sp∆(Ω) = L2
0(p)

• The base of the bundle is ∆(Ω) but could be smaller i.e. S∆◦(Ω)

• A curve in the statistical bundle is a mapping

I 3 t 7→ (p(t),U(t)) p(t) ∈ ∆(Ω) U ∈ Sp(t)∆(Ω) = L2
0(p(t))



Fisher’s score I

Given an RΩ-smooth curve t 7→ p(t) ∈ ∆(Ω), the support of ṗ(t) is
contained in the support of p(t) for all t. The Fisher’s score Dp(t) is
such that ṗ(t) = Dp(t) · p(t),

Dp(x ; t) =

0 if p(x ; t) = 0,
ṗ(x ; t)

p(x ; t)
= d

dt log p(x ; t) if p(x ; t) > 0.

t 7→ (p(t),Sp(t)) ∈ S∆(Ω) is a curve in the statistical bundle.

Proof: For each t and x ∈ Ω
the condition p(x ; t) = 0 im-
plies t is a point of minimum,
hence ṗ(x ; t) = 0. It follows
that Dp(t) is well defined, and
ṗ(t) = Dp(t) · p(t). Moreover,
Ep(t) [Dp(t)] =

∑
y∈Ω ṗ(y ; t) =

0.



Fisher’s score II
• From now on, we restrict the discussion to the open simplex

S∆◦(Ω) =
{

(p,U)
∣∣p ∈ ∆◦(Ω),U ∈ L2

0(p)
}
,

with fiber Sp∆(Ω) = L2
0(p). In this case,

Dp(x ; t) =
ṗ(x ; t)

p(x ; t)
=

d

dt
log p(x ; t)

• Later on, the statistical bundle will be identified with the tangent
bundle of the mapping p 7→ log p.

• Example: Gibbs probability function

p(x , t) =
exp

(
− 1

tV (x)
)∑

y exp
(
− 1

tV (y)
) = exp

(
−1

t
V (x)− log

∑
y

exp

(
−1

t
V (y)

))

Dp(t) =
d

dt

(
−1

t
V (x)− log

∑
y

exp

(
−1

t
V (y)

))
=

1

t2

(
V −

∑
y V (y) exp

(
− 1

tV (y)
)∑

y exp
(
− 1

tV (y)
) )

=
1

t2

(
V − Ep(t) [V ]

)



Fisher’s score is a derivation in the statistical bundle

Let X be real random variable on Ω.

d

dt
Ep(t) [X ] =

d

dt

∑
y

X (y)p(y ; t) =
∑
y

X (y)ṗ(y ; t) =

∑
y

X (y)
ṗ(y ; t)

p(y ; t)
p(y ; t) = Ep(t) [XDp(t)] = Ep(t)

[
(X − Ep(t) [X ])Dp(t)

]
,

where we have used the fact that Ep(t) [Dp(t)] = 0.

Each fiber Sp∆◦(Ω) is an Hilbert space for the inner product
〈U,V 〉p = Ep [UV ], and X − Ep [X ] ∈ Sp∆◦(Ω), so

d

dt
Ep(t) [X ] =

〈
X − Ep(t) [X ] ,Dp(t)

〉
p(t)

The random variable Dp(t) ∈ Sp(t)∆
◦(Ω) represents the velocity of

variation of the point information log p(x ; t).



“Deformed” statistical bundle
If logA(t) =

∫ t

1
du
A(u) , then

d

dt
Ep(t) [X ] =

∑
y

X (y)ṗ(y ; t) =
∑
y

X (y)
ṗ(y ; t)

A(p(y ; t))
A(p(y ; t)) =

EA(p(t)) [XDAp(t)] = EA(p(t))

[
(X − EA(p(t)) [X ])DAp(t)

]
=〈

X − EA(p(t)) [X ] ,DAp(t)
〉
A(p(t))



Exponential expression I

• If p ∈ ∆◦(Ω), then V = log p gives

p = eV = e(V−Ep [V ])+Ep [V ] = eU−H(p)

with U = log p − Ep [log p] ∈ Sp∆◦(Ω) and H (p) = −Ep [log p] is
the entropy of p.

• For each given p, define for all q ∈ ∆◦(Ω) the chart

sp(q) = log
q

p
− Ep

[
log

q

p

]
∈ Sp∆◦(Ω) .

• Conversely, given any U ∈ Sp∆◦(Ω) the equation q = eU−K(U)p,
with K (U) = logEp

[
eU
]
, defines a probability function such that

sp(q) = sp(eU−K(U)p) =

log
eU−K(U)p

p
− Ep

[
log

eU−K(U)p

p

]
=

U − K (U)− Ep [U] + K (U) = U



Exponential expression II



Natural gradient I

Definition
Given a function f : ∆◦(Ω)→ R, its natural gradient is a section
∆◦(Ω) 3 p 7→ (p, grad f (p)) ∈ S∆◦(Ω) such that for each smooth curve
I 3 t 7→ p(t) it holds

d

dt
f (p(t)) = 〈grad f (p(t)),Dp(t)〉p(t) , t ∈ I

Computing grad

Let f be a C 1 real function on the open simplex ∆◦(Ω),
f : p 7→ f (p(x) : x ∈ Ω). For each p ∈ ∆◦(Ω), define the random variable
∇f (p) that takes value ∂

∂p(x) f (p) at x ∈ Ω. The natural gradient is

grad f (p) = ∇f (p)− Ep [∇f (p)] .



Natural gradient II

• Proof:

d

dt
f (p(t)) =

∑
x∈Ω

fx(p(t))
d

dt
p(x ; t) =

∑
x∈Ω

fx(p(t))
d

dt
log p(x ; t)p(x ; t) = Ep(t) [∇f (p(t))Dp(x ; t)] =

Ep(t)

[(
∇f (p(t))− Ep(t) [∇f (p(t))]

)
Dp(x ; t)

]
.

• Natural gradient of the entropy functional:
H (p) = −

∑
x∈Ω p(x) log p(x). The partial derivatives are

fx(p) = − log p(x)− 1, so that ∇f (p) = − log p − 1 and

gradH (p) = − log p − 1− Ep [− log p − 1] = − log p −H (p) .

• Here grad f (p) is the projection of ∇f (p) onto Sp∆◦(Ω) with
respect to the inner product 〈., .〉p.



Flows

Given a section F : ∆◦(Ω), F (p) ∈ Sp∆◦(Ω), the trajectories along the
section are the solutions of the differential equation Dp(t) = F (p(t)).

• The differential equation is equivalent to the system of ordinary
differential equations

d

dt
p(x ; t) = p(x ; t)F (p(t)) x ∈ Ω

• A flow of the section F is the collection of all trajectories along the
section.

• The gradient flow is the flow of the section ± grad f .

• Let f : Ω→ R a real function to maximize. Relax to f (p) = Ep [f ],
p ∈ ∆◦(Ω). We have gradF (p) = f − Ep [f ] and consider the
gradient flow Dp(t) = gradF (p(t)) = f − Ep(t) [f ]. The solution is

the exponential family p(t) = etf−ψ(t)p(0). As t →∞, the solution
goes to the probability function uniform on
{x ∈ Ω|f (x) = maxy f (y)} and zero elsewhere.



Gradient flow of the entropy I

The model example of gradient flow is the gradient flow of the entropy
Dp(t) = − gradH (p(t)). The equation is

d

dt
log p(t) = gradH (p(t)) = log p(t) +H (p(t)) ,

which is a system of ordinary differential equation,

d

dt
p(x ; t) = p(x ; t) log p(x ; t)−

∑
y∈Ω

p(y ; t) log p(y ; t) .



Gradient flow of the entropy II
Let us show that the solution starting at p = p(0) is p(t) ∝ pe

t

. At each
x ∈ Ω,

p(x ; t) =
p(x)e

t∑
y∈Ω p(y)et

log p(x ; t) = et log p(x)− log
∑
y∈Ω

p(y)e
t

H (p(t)) = −Ep(t) [log p(t)] = −etEp(t) [log p] + log
∑
y∈Ω

p(y)e
t

log p(x ; t) +H (p(t)) = et
(
p(x)− Ep(t) [p]

)
Dp(t) =

d

dt
log p(x ; t) = etp(x)−

∑
y∈Ω p(y)e

t

et log p(y)∑
y∈Ω p(y)et

=

et
(
p(x)− Ep(t) [p]

)
Exponential families are the orthogonal trajectories to the level sets of

the entropy. Here, orthogonality at p is with respect to the inner product

of Sp∆◦(Ω).



Transports between fibers I

• If U ∈ Sp∆◦(Ω) and q ∈ ∆◦(Ω),

Eq [U − Eq [U]] = Eq [U]− Eq [U] = 0

Eq

[
p

q
U

]
=
∑
y∈Ω

q(y)
p(y)

q(y)
U(y) = Ep [U] = 0

• The exponential parallel transport, or e-transport, is the family of
linear mappings

eUq
p : Sp∆◦(Ω) 3 U 7→ U − Eq [U] ∈ Sq∆◦(Ω) .

• The mixture parallel transport, or m-transport, is the family of linear
mappings

mUq
p : Sp∆◦(Ω) 3 U 7→ p

q
U ∈ Sq∆◦(Ω) .



Transports between fibers II

The following properties hold for the e-transport and the m-transport

• semi-group property: eUr
q
eUq

p = eUr
p

• semi-group property: mUr
q
mUq

p = mUr
p

• duality:
〈
eUq

pU,V
〉
q

=
〈
U,mUp

qV
〉
p
, U ∈ Sq∆◦(Ω) and

V ∈ Sp∆◦(Ω)

• transport of the inner product:
〈
eUq

pU,
mUq

pV
〉
q

= 〈U,V 〉p,

U,V ∈ Sp∆◦(Ω)

〈
eUq

pU,V
〉
q

= Eq [(U − Eq [U])V ] = Eq [U]V − Eq [U]Eq [V ]

Eq [UV ] = Ep

[
q

p
UV

]
=
〈
U,mUp

qV
〉
p



Transports between fibers III

• Given U ∈ Sp∆◦(Ω), each transport defines a section of the
statistical bundle:

q 7→ eUq
pU, q 7→ mUq

pU ,

and we can compute their respective flows.



Transports between fibers IV

• The flow of the vector field p 7→ eUp
qU, U ∈ Bq i.e., the solution of

Dp(t) = eUp(t)
q U, p(0) = p,

is
∆◦(Ω)× R 3 (p, t) 7→ et(eUp

qU)−ψ(t) · p

• The flow of the vector field p 7→ mUp
qU, U ∈ Bq i.e., the solution of

Dp(t) = mUp(t)
q U, p(0) = p

is
∆◦(Ω)× I 3 (p, t) 7→ (1 + t mUp

qU)p

There are two types of “straight lines”, the exponential families and the

mixture families



Accelerations I

• Second order differential geometry is usually based on a notion of
covariant derivative or affine connection. To each covariant
derivative there is associated a parallel transport. Here we procede
the other way round because we have a simple definition of parallel
transport from which to derive a definition of acceleration.

• A typical application is in optimization where the Hessian provides
an estimate of convergence of first order methods and can be used
to develop second order methods.

• Let us compute the acceleration of a curve I 7→ p(t). The velocity
is is replaced by Fisher’s score
t 7→ (p(t),Dp(t)) =

(
p(t), d

dt log (p(t))
)
∈ S∆◦(Ω).

• Each random variable Dp(t) has to be checked against an element

of Sp(t)∆
◦(Ω), say mUp(t)

p V , V ∈ Sp∆◦(Ω).



Accelerations II

• We can compute an acceleration as

d

dt

〈
Dp(t),mUp(t)

p V
〉
p(t)

=
d

dt

〈
eUp

p(t)Dp(t),V
〉
p

=

〈
d

dt
eUp

p(t)Dp(t),V

〉
p

=

〈
eUp(t)

p

d

dt
eUp

p(t)Dp(t),mUp(t)
p V

〉
p(t)

• In the computation of eUp(t)
p

d
dt

eUp
p(t)Dp(t) we first move back

Dp(t) to the fixed space Sp∆◦(Ω), then take the derivative. Finally,
move back the derivative to the original space Sp(t)∆

◦(Ω).



Accelerations III

The exponential acceleration is

eD2p(t) = eUp(t)
p

d

dt
eUp

p(t)Dp(t)

= eUp(t)
p

d

dt
eUp

p(t)

d

dt
log p(t)

= eUp(t)
p

d

dt

(
ṗ(t)

p(t)
− Ep

[
ṗ(t)

p(t)

])
= eUp(t)

p

(
p̈(t)p(t)− ṗ(t)2

p(t)2
− Ep

[
p̈(t)p(t)− ṗ(t)2

p(t)2

])
=

p̈(t)p(t)− ṗ(t)2

p(t)2
− Ep(t)

[
p̈(t)p(t)− ṗ(t)2

p(t)2

]
=

p̈(t)

p(t)
− (Dp(t))2 + Ep(t)

[
(Dp(t))2

]



Accelerations IV

Exponential families have null exponential acceleration. In fact for
p(t) = exp (tU − ψ(t)) p, we have eUp

p(t)Dp(t) = U − Ep [U], so that
d
dt

eUp
p(t)Dp(t) = 0. Moreover, note that

(Dp(t))2 = (u − ψ̇(t))2 ,

p̈(t) =
d

dt
[p(t)(u − ψ̇(t))] = p(t)(u − ψ̇(t))2 − p(t)ψ̈(t) .

• A second option is to compute the acceleration as

d

dt

〈
Dp(t), eUp(t)

p V
〉
p(t)

=
d

dt

〈
mUp

p(t)Dp(t),V
〉
p

=

〈
d

dt
mUp

p(t)Dp(t),V

〉
p

=

〈
mUp(t)

p

d

dt
mUp

p(t)Dp(t), eUp(t)
p V

〉
p(t)



Accelerations V

The mixture acceleration is

mD2p(t) =

= mUp(t)
p

d

dt
mUp

p(t)Dp(t)

=
p

p(t)

d

dt

(
p(t)

p

ṗ(t)

p(t)

)
=

p̈(t)

p(t)

• In follows that mixture models t 7→ (1 + tU)p have null mixture
acceleration.



Taylor formula, Hessian I

• Given q, p ∈ ∆◦(Ω), the exponential model

p(t) =
p1−tqt∑

y∈Ω p(y)1−tq(y)t
= Ep

[(
q

p

)t
]−1(

q

p

)t

= etU−ψ(t) ,

were

U = log
q

p
− Ep [log]

q

p
∈ Sp∆◦(Ω) ,

ψ(t) = tEp [log]
q

p
− logEp

[(
q

p

)t
]
,

connects p(0) = p and p(1) = q.

• We know that Dp(t) = U − ψ̇(t) and eD2p(t) = 0.

• Define the mixture Hessian (m-Hessian) of f to be

mHessU f (p) = mUp(t)
p

d

dt
mUp

p(t) grad f (p(t))

∣∣∣∣
t=0

∈ Sp∆◦(Ω) .



Taylor formula, Hessian II
• In such a case the first and the second derivative of t 7→ f (p(t))

reduce to

d

dt
f (p(t)) =

〈
grad f (p(t)),U − ψ̇(t)

〉
p(t)

,

d2

dt2
f (p(t)) =

〈
mHessDp(t)f (p(t)),Dp(t)

〉
p(t)

=〈
mHessU−ψ̇(t)f (p(t)),U − ψ̇(t)

〉
p(t)

.

• We can write the Taylor formula as

f (q)− f (p) =
d

dt
f (p(t))

∣∣∣∣
t=0

+
1

2

d2

dt2
f (p(t))

∣∣∣∣
t=0

+ R(p, q)

= 〈grad f (p),U〉p +
1

2
〈mHessU f (p),U〉p + R(p,U) .

• The evaluation of the remainder can be done in the L2 norm, or,
better, in stronger norm.



My case

• The basic structure of Information Geometry is a
exponential-mixture affine manifold. The Riemannian structure is
intermediate.

• A systematic parametric presentation could possibly fit the needs of
Statistics and Machine Learning, but it is not natural in other
applications e.g., Statistical Physics, Evolution Equation.

• It is useful, even in studying statistical models on a finite state
space to avoid a premature parametrization.

• The affine structure is feasible with a continuous state space. There
are many options in implementing that generalization, the
exponential representation of positive densities being one. The use
of smooth densities is another possible choice.



PART II: Kantorovich-Rubinstein distance

• Kantorovich distance is a special case of a distance defined on
∆(Ω). A more general case is called p-Wassestein distance.

• The formalism of Information geometry does not depend on the
specific characteristics of the sample space. In contrast to that
“feature” (or “bug”) of IG, K-distance is based on the assumption
that the sample space is endowed with a distance d : Ω× Ω→ R
and the K-distance is an extension of the base distance i.e.,
d(δx , δy ) = d(x , y).

• In turn, this is a part of a larger topic called Optimal Transport.

• The use of distances and divergences between probability
distributions is quite common in Statistics. However, it should be
observed that a distance does not define a proper geometry, unless
the distance admits geodesics i.e. curves of minimal length such
that the length of a curve between two distribution equals the
distance between the extreme distributions.
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Couplings I

• Let X be a finite set and ∆(X ) be the simplex of probability
functions on X . We assume that the sample space X is provided
with a distance d .

• Given probability functions µ, ν ∈ ∆(X ), the joint probability
function γ ∈ ∆(X × X ) is a coupling of µ and ν if µ and ν are the
two margins of γ, respectively. For instance, µ⊗ ν is a coupling of
µ and ν.

• The set of all couplings of µ and ν is the subset of ∆(X × X )
defined by

P(µ, ν) =

γ ∈ ∆(X × X )

∣∣∣∣∣∣
∑
y∈X

γ(x , y) = µ(x),
∑
x∈X

γ(x , y) = ν(y)

 .

• This set is a nonempty bounded polyhedron in RX×X , hence it is a
polytope i.e., the convex combination of its vertexes.



Couplings II

The Kantorovich distance (the K-distance) is defined by

d(µ, ν) = inf

 ∑
x,y∈X

d(x , y)γ(x , y)

∣∣∣∣∣∣γ ∈ P(µ, ν)

 .

• The minimum value is actually a distance on the probability simplex.

• The compactness of P(µ, ν) implies that the minimum is reached at
some coupling γ̃ namely, d(µ, ν) =

∑
x,y d(x , y)γ̃(x , y). More

precisely, as we have a minimum of a linear function on a polytope,
the set of optimal couplings is a face of the polytope P(µ, ν).

• Couplings, when they are seen as transport plans, are conveniently
represented as special transitions,
γ(x , y) = µ(x)P(x , y) = ν(y)Q(y , x), where P and Q are Markov
matrices. The Markov matrix P provides a way to map the initial
probability function µ to a final probability function ν.



Optimal coupling

• If γ̃ is an optimal coupling i.e. d(µ, ν) =
∑

x,y∈X d(x , y)γ̃(x , y), the
support of γ̃ is “small”. Let us define the graph on X whose edges
are defined by γ̃(x , y) > 0.

The graph of the support of an optimal coupling does not contain any
cycle.

Given two probability functions µ and ν, the mixture curve
µ(t) = (1− t)µ+ tν, 0 ≤ t ≤ 1, is a metric geodesic for the d-distance
i.e.,

d(µ(t), µ(s)) = (t − s)d(µ, ν) , 0 ≤ s ≤ t ≤ 1 .

Moreover, is γ̃ is optimal for d(µ, ν), then the coupling defined by

γ̃(x , y ; s, t) = (1− t)µ(x)(x = y) + sν(y) + (t − s)γ(x , y)

is optimal for d(µ(0), µ(t)).



Duality I

• The problem is clearly a linear programming problem: optimum of a
linear function, plus affine and inequality constrains. As such, we
expect it to a have a dual linear programming problem.

• A real function u on X is called 1-Lipschitz for the distance d , if
|u(x)− u(y)| ≤ d(x , y), for all x , y ∈ X . Equivalently,
u(y) ≤ d(x , y) + u(x). The set of 1-Lipschitz functions will denoted
by Lip1(d).



Duality II

Let µ and ν be given probability functions on the finite metric space
(X , d) and let P(µ, ν) be the set of couplings. Then

min

 ∑
x,y∈X

d(x , y)γ(x , y)

∣∣∣∣∣∣γ ∈ P(µ, ν)

 =

max

∑
x∈X

φ(x)µ(x)−
∑
y∈X

ψ(y)ν(y)

∣∣∣∣∣∣φ	 ψ ≤ d

 =

max

{∑
x∈X

u(x)(µ(x)− ν(x))

∣∣∣∣∣u ∈ Lip1(d)

}
.


