Change of measure I

Our probability model consist of

- A sample space Ω and σ -algebra \mathcal{F} ;
- A probability measure P on the measurable space (Ω, \mathcal{F}) ;
- A filtration $\mathcal{F}(t)$, $0 \leq t$, of the probability space $(\Omega, \mathcal{F}, \mathsf{P})$;
- A d-dimensional Browniam motion W(t), t ≥ 0, of the probability basis (Ω, F, P, (F(t)_{t≥0}).

Theorem (Probability density)

Let Z be a positive random variable such that $\mathbb{E}(Z) = 1$.

- 1. $\mathbb{Q}(A) = \mathbb{E}(Z\mathbf{1}_A), A \in \mathcal{F}$, defines a probability measure on (Ω, \mathcal{F}) .
- 2. *Z* is uniquely detemined by P and \mathbb{Q} and is called the density of \mathbb{Q} with respect to P, written as $\mathbb{Q} = Z \cdot P$.
- 3. If Z is strictly positive, then $P = \frac{1}{Z} \cdot \mathbb{Q}$.
- 4. $\mathbb{E}_{\mathcal{Q}}[\Phi] = \mathbb{E}_{\mathsf{P}}[Z\Phi]$ if one of the expectation exists.

Change of measure III

Theorem (Conditional expectation)

Formula If $\mathbb{Q} = Z \cdot P$, $\Phi \in L^1(\mathbb{Q})$ and \mathcal{G} is a sub- σ -algebra, then

 $\mathbb{E}_{\mathbb{Q}}\left[\Phi|\mathcal{G}\right] = \frac{\mathbb{E}_{\mathsf{P}}\left[Z\Phi|\mathcal{G}\right]}{\mathbb{E}_{\mathsf{P}}\left[Z|\mathcal{G}\right]}.$

Sufficency If the density Z is G-measurable, then

 $\mathbb{E}_{\mathbb{Q}}\left[\Phi|\mathcal{G}\right] = \mathbb{E}_{\mathsf{P}}\left[\Phi|\mathcal{G}\right].$

- The formula is a generalization of the conditioning formula for joint densities $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$.
- In the statistical model with likelyhood f(S(ω); θ) the conditional expectation with respect to the sufficient systistics S does not depend on θ.

Stochastic Calculus 2013 Part 2

Giovanni Pistone

Collegio Carlo Alberto

February 7, 2013 v. .99

Change of measure II

Example

Let $P = N(0, \sigma^2)$ and $\mathbb{Q} = N(\mu, \sigma^2)$. Then

$$\begin{split} \mathbb{E}_{\mathbb{Q}}\left[\Phi\right] &= \int \Phi(y) \frac{1}{\sqrt{2\pi\sigma^2}} \mathrm{e}^{-\frac{1}{2\sigma^2}(y-\mu)^2} dy \\ &= \int \Phi(y) \frac{1}{\sqrt{2\pi\sigma^2}} \mathrm{e}^{-\frac{1}{2\sigma^2}y^2} \mathrm{e}^{\frac{1}{\sigma^2}(\mu y - \frac{1}{2}\mu^2)} dy \\ &= \mathbb{E}_{\mathsf{P}}\left[Z\Phi\right], \quad \text{if } Z(y) = \mathrm{e}^{\frac{1}{\sigma^2}(\mu y - \frac{1}{2}\mu^2)}. \end{split}$$

Note:

- \mathbb{Q} is the image of P under the transformation $x \mapsto x + \mu = y$;
- the density Z is strictly positive because is an exponential;
- the exponent of the density has a peculiar affine form;
- Try the bivariate case.

Change of measure IV

Proof.

- The random variable $\frac{\mathbb{E}_{P}[Z\Phi|\mathcal{G}]}{\mathbb{E}_{P}[Z|\mathcal{G}]}$ is well defined and \mathcal{G} -measurable.
- If G is bounded and G-measurable,

$$\mathbb{E}_{\mathbb{Q}}\left[\left(\frac{\mathbb{E}_{\mathsf{P}}\left[Z\Phi|\mathcal{G}\right]}{\mathbb{E}_{\mathsf{P}}\left[Z|\mathcal{G}\right]}\right)G\right] = \mathbb{E}_{\mathsf{P}}\left[Z\left(\frac{\mathbb{E}_{\mathsf{P}}\left[Z\Phi|\mathcal{G}\right]}{\mathbb{E}_{\mathsf{P}}\left[Z|\mathcal{G}\right]}\right)G\right]$$
$$= \mathbb{E}_{\mathsf{P}}\left[\mathbb{E}_{\mathsf{P}}\left[Z|\mathcal{G}\right]\frac{\mathbb{E}_{\mathsf{P}}\left[Z\Phi|\mathcal{G}\right]}{\mathbb{E}_{\mathsf{P}}\left[Z|\mathcal{G}\right]}G\right]$$
$$= \mathbb{E}_{\mathsf{P}}\left[Z\Phi G\right]$$
$$= \mathbb{E}_{\mathbb{Q}}\left[\Phi G\right]$$

Girsanov's theorem

Theorem

Let W be a Brownian motion and Θ a process such that

$$\mathbb{E}_{\mathsf{P}}\left[\int_{0}^{T} \Theta^{2}(u) du\right], \mathbb{E}_{\mathsf{P}}\left[\int_{0}^{T} \Theta^{2}(u) Z^{2}(u) du\right] < +\infty.$$

Define

$$Z(t) = \exp\left(-\int_0^t \Theta(u)dW(u) - \frac{1}{2}\int_0^t \Theta^2(u)du
ight).$$

Then:

- 1. Z(t), $0 \le t \le T$ is martingale such that $\mathbb{E}_{P}[Z(T)] = 1$ and $\mathbb{Q}_{T} = Z(T) \cdot P$ is a probability.
- 2. The process $\widetilde{W}(t) = W(t) + \int_0^t \Theta(u) du$, $0 \le t \le T$ is a \mathbb{Q}_T -Brownian motion.

Martingale measure

Theorem (Martingales under $Z \cdot P$)

Let Z(t), $0 \le t \le T$, be a strictly positive martingale with Z(0) = 1. Then $\mathbb{E}_{P}[Z(T)] = 1$ and we can define $\mathbb{Q}_{T} = Z(T) \cdot P$. The adapted process X(t), $0 \le t \le T$ is a \mathbb{Q}_{T} -martingale if, and only if, Z(t)X(t), $0 \le t \le T$ is a P-martingale.

Proof

$$\mathbb{E}_{\mathbb{Q}_{T}}\left[X(t) - X(s)|\mathcal{F}(s)\right] = \frac{\mathbb{E}_{\mathsf{P}}\left[Z(T)(X(t) - X(s))|\mathcal{F}(s)\right]}{\mathbb{E}_{\mathsf{P}}\left[Z(T)|\mathcal{F}(s)\right]} \\ = \frac{\mathbb{E}_{\mathsf{P}}\left[Z(t)X(t)|\mathcal{F}(s)\right] - Z(s)X(s)}{Z(s)}$$

The LHS is zero if, and only if, the RHS's numerator is zero.

Corollary

If $dX = \Delta dW + \Theta ds$ and $dZ = \Sigma dW$, then

$$d(X_tZ_t) = X_t\Sigma_t dW_t + Z_t\Delta_t dW_t + Z_t\Theta_t dt + \Delta_t \circ \Sigma_t dt$$

and the condition becomes $Z\Theta + \Delta \circ \Sigma = 0$.

Stock under Risk-neutral measure I

• Let the *stock value process* be

$$dS(t) = \alpha(t)S(t)dt + \sigma(t)S(t)dW(t)$$

- If S(0) is a constant and α(t) is a deterministic function, then

 𝔅 (S(t)) = S(0)e^{f^t₀ α(u)du}, so that α(t) is the rate of return of the
 mean.
- If S(0) is random and $\alpha(t)$ is a process, and $\widetilde{S}(t) = e^{-\int_0^t \alpha(u) du} S(t)$,

$$\begin{split} d\widetilde{S}(t) &= -\alpha(t)\widetilde{S}(t)dt + \alpha(t)\widetilde{S}(t) + \sigma(t)\widetilde{S}(t)dW(t) \\ &= \sigma(t)\widetilde{S}(t)dW(t), \end{split}$$

so that $\mathbb{E}\left(e^{-\int_{0}^{t} \alpha(u) du} S(t)\right) = \mathbb{E}(S(0))$, then $\alpha(t)$ is the *mean rate* of return.

Stock under Risk-neutral measure II

• By the Ito formula we obtain

$$d(\widetilde{S}(t))^2 = 2\widetilde{S}(t)d\widetilde{S}(t) + \sigma^2(t)\widetilde{S}^2(t)dt$$

hence $\mathbb{E}\left(\widetilde{S}^{2}(t)\right) = S^{2}(0) + \mathbb{E}\left(\int_{0}^{t} \sigma^{2}(u)\widetilde{S}^{2}(u)du\right)$. The process $\sigma(t)$ is the *volatility*.

• The closed form solution of the Ito equation is

$$S(t) = S(0) \exp\left(\int_0^t \sigma(s) dW(s) + \int_0^t \left(\alpha(s) - \frac{1}{2}\sigma^2(s)\right) ds\right),$$

hence the process is positive.

• Define the *discount process*

$$D(t) = \mathrm{e}^{-\int_0^t R(s)ds},$$

whose differential is dD(t) = -R(t)D(t)dt.

Stock under Risk-neutral measure IV

• Let us apply Girsanov's theorem to the process

$$\widetilde{W}(t) = \int_0^t \Theta(s) ds + W(t).$$

The exponential martingale $Z(t) = e^{W(t) - \frac{1}{2}\Theta^2(s)ds}$ produces a new probability $\mathbb{Q} = Z(T) \cdot P$ unde which $\tilde{(t)}$, $0 \leq T$ is a Brownian motion, and the discounted stock price

$$D(t)S(t) = S(0) + \int_0^t \sigma(u)D(u)S(u)d\widetilde{W}(u)$$

is a martingale.

• The undiscounted stock price, as a function of \widetilde{W} is

$$dS(t) = R(t)S(t)dt + \sigma(t)S(t)dW(t)$$

whose mean return rate is R.

Stock under Risk-neutral measure III

• The discounted stock price is

$$D(t)S(t) = S(0) \exp\left(\int_0^t \sigma(s) dW(s) + \int_0^t \left(\alpha(s) - R(s) - \frac{1}{2}\sigma^2(s)\right) ds\right),$$

whose differential is

$$dD(t)S(t) = (\alpha(t) - R(t)D(t)S(t)dt + \sigma(t)D(t)S(t)dW(t) = \sigma(t)D(t)S(t)(\Theta(t)dt + dW(t)),$$

where

$$\Theta(t) = rac{lpha(t) - R(t)}{\sigma(t)}$$

is the market price of risk.