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• The course is based on (part of) Chapters 4 to 6 of the textbook by
Steven S Shreve Stochastic Calculus for Finance II Continuous-Time
Models 2nd ed 2004 Springer.

• Prerequisite are Martingale and Brownian motion covered in the
previous lectures and in Chapters 1 to 3 of the Shreve’s textbook.

• In Shrive’s textbook the mathematical treatment is essentialy
rigorous, but most of the proofs are actually skipped in favor of the
computations and their financial meaning. Such missing details are
to be found in other textbooks, see the list in §4.9.

Brownian motion

Definition
W is a Brownian motion for (Ω,F ,P, (F(t)t≥0) if

• W is a continuous process, W : Ω → C (R>0), such that

• W is adapted, i.e. Wt is Ft -measurable, t > 0,

• W starts from 0, i.e. W0 = 0 a.s.,

• the increments are gaussian, precisely Wt −Ws ∼ N(0, t − s),
0 ≤ s < t,

• the increments are independent from the past history, i.e. Wt −Ws

is independent of Fs , 0 ≤ s < t.

Piecewise linear approximation
Choose ∆ > 0 and the consider the discrete process
Zn = ∆1/2(Wn∆ −W(n−1)∆), n = 1, 2, . . . . Then Zn is a gaussian white
noise. The Brownian motion is approzimated by a piecewise linear
interpolation of a suiably scaled random walk.

Properties of W

Theorem
Let t0 = 0 < t1 < · · · < tn be a partition of the times.

• The random variables Wt1 , (Wt2 −Wt1), . . . (Wtn −Wtn−1) are
independent.

• The vector (Wt1 , . . . ,Wtn) has density

p(y1, . . . , yn) = (2π)−
n
2

n∏

j=1

(yj−yj−1)
− 1

2 exp



−1

2

n∑

j=1

(ytj − ytj−1)
2

tj − tj−1





• W is a Markov process with kernel

k(x , y) =
1

2π
√
t − s

exp

(
−1

2

(y − x)2

t − s

)

• W is a martingale.

• (W 2
t − t)t>0 is a martingale.



Continuous L2 martingales

Definition
A continuous process M is an L2 martingale if

1. E
(
M2

t

)
< +∞, and

2. E (Mt |Fs ) = Ms , 0 ≤ s < t.

Theorem
Let Mn, n = 1, 2, . . . be a sequence of L2 continuous martingales.Let T
be a finite horizon and assume that the L2 limit of Mn(T ) exists, i.e.
there exists a random variable M such that

lim
n→∞

E
(
(Mn(T )−M)2

)
= 0.

Then there exist an L2 continuous martingale Mt , t ∈ [0,T ] such that

lim
n→∞

E
(
supt∈[o,T ](Mn(t)−Mt)

2
)
= 0.

Simple processes

• W is a Brownian motion for (Ω,F ,P, (F(t)t≥0).

• An adapted process ∆ is of class L2 if

E
(∫ T

0
∆2(t)dt

)
< +∞ for all T > 0.

• The set of adapted processes ∆ of class L2 is a vector space.

• If Y1 is F(t1) measurable and E
(
Y 2
1

)
< +∞, then the process

∆(t) = Y1(t1 ≤ t) is adapted and of class L2. A finite sum of such
processes is a simple process:

∆(t) =
n∑

j=1

Yj(tj ≤ t).

• All trajectory of a simple process are pure jumps and
right-continuous. If we order the tj ’s in increasing order,

t1 < t2 < · · · < tn, and tj ≤ t < tj+1, then ∆t =
∑j

i=1 Yi .

Ito integral of the simple process ∆(t) = Y1(t1 ≤ t), t ≥ 0

• For ∆(t) = Y1(t1 ≤ t), define the Ito integral

∫ t

0
∆(s)dW (s) =

{
0 for t < t1
Y1(W (t)−W (t1)) for t1 ≤ t

= Y1(W (t)−W (t ∧ t1))

• The Ito integral is a continuous martingale

E
(∫ t

0
∆(u)dW (u)

∣∣∣∣F(s)

)
=

∫ s

0
∆(u)dW (u), s ≤ t.

• The Ito integral is isometric

E
((∫ t

0
∆(u)dW (u)

)2
)

= E
(∫ t

0
∆2(u)du

)
.

• The quadratic variation of the Ito integral is
∫ t
0 ∆2(s)ds.

Ito integral of a simple process ∆

• For ∆(t) =
∑n

j=1 Yj(tj ≤ t), define the Ito integral by linearity. If
the interval [0, t] contains the jumps 0 ≤ t1 < · · · tm ≤ t,

∫ t

0
∆(s)dW (s) =

n∑

j=1

Yj(W (t)−W (t ∧ tj)

=
m∑

j=1

Yj(W (t)−W (tj))

=
m∑

j=1

Yj(
m∑

i=j+1

W (ti+1)−W (ti ))

=
m∑

i=1

∆(ti )(W (ti+1)−W (ti ))

• The Ito integral is a continuous martingale.

• The Ito integral is isometric.

• The quadratic variation of the Ito integral is
∫ t
0 ∆2(s)ds.



Ito integral of an L2 process

• If ∆ is a process of class L2, there exists a sequence ∆n,
n = 1, 2, . . . of simple processes such that

lim
n→∞

E
(∫ T

0
|∆(u)−∆n(u)|2 du

)
= 0.

• The Ito integral of a process of class L2 is defined by continuity.

• The Ito integral is a linear operator mapping L2 processes into
continuous martingale.

• The Ito integral is isometric.

• The quadratic variation of the Ito integral is

[∫
∆dW

]
(t) =

∫ t

0
∆2(u)du

Continuous martingales

If M is a continuous bounded martingale, the computation

M2(t)−M2(s) =
n∑

j=1

M2(tj)−M2(tj−1)

=
n∑

j=1

2M(tj−1)(M(tj)−M(tj−1)) +
n∑

j=1

(M(tj)−M(tj−1))
2

produces the decomposition

M2(t) = M2(0) + 2

∫ t

0
M(u)dM(u) + [M] (t)

and, for an Ito integral,

(∫ t

0
∆dW

)
= 2

∫ t

0

(∫ s

0
∆(u)dW (u)

)
dW (s) +

∫ t

0
∆2(s)ds

Ito-Doeblin formula
Definition (Ito process)
An Ito process is a process of the form

X (t) = X (0) +

∫ t

0
∆(s)dW (s) +

∫ t

0
Θ(s)ds.

Theorem (Ito-Doeblin formula for the Brownian Motion)
If

• f ∈ C 1,2(R+,R2) and

• fx(t,W (t)), t ≥ 0, is an L2 process,

then f (t,W (t)), t ≥ 0, is an Ito process, and

f (t,W (t)) = f (0,W (0)) +

∫ t

0
ft(s,W (s))ds+

∫ t

0
fx(s,W (s))dW (s) +

1

2

∫ t

0
fxx(s,W (s))ds.

Proof of Ito-Doeblin formula I

We write for 0 ≤ s < t ≤ T

∫ t

s
∆(u)dW (u) =

∫ t

0
∆(u)dW (u)−

∫ s

0
∆(u)dW (u)

=

∫ T

0
(s < u ≤ t)∆(u)dW (u).

In particular,

(W (t)−W (s))2 = W (t)2 −W (s)2 − 2W (s)(W (t)−W (s))

= 2

∫ t

s
W (u)dW (u) + (t − s)− 2W (s)(W (t)−W (s))

= (t − s) + 2

∫ t

s
(W (u)−W (s))dW (u)



Proof of Ito-Doeblin formula II

The Taylor formula of order 1,2 for f gives

f (t,W (t))− f (s,W (s)) =ft(s,W (s))(t − s)

+fx(s,W (s))(W (t)−W (s))

+
1

2
fxx(s,W (s))(W (t)−W (s))2

+R1,2(s, t,W (s),W (t))

=ft(s,W (s))(t − s)

+fx(s,W (s))(W (t)−W (s))

+
1

2
fxx(s,W (s))(t − s)

+fxx(s,W (s))

∫ t

s
(W (u)−W (s))dW (u)

+R1,2(s, t,W (s),W (t))

Summing over a partition, the first tree term go to the Ito formula, the

last two terms go to zero.

Ito-Doeblin formula: Applications I

• The process f (t,W (t)) is a martingale if f10(t, x) +
1
2 f02(t, x) = 0.

• Let Hn(x) be a polynomial of degree n and define
f (t, x) = tn/2Hn(t−1/2x). We have

f1,0(t, x) = tn/2−1(
1

2
Hn(t

−1/2x)− x

2
H ′

n(t
−1/2x)),

f02(t, x) = tn/2−1H ′′
n (t

−1/2x).

• The martingale condition is satified if

nHn(y)− yH ′
n(y) + H ′′

n (y) = 0.

Ito-Doeblin formula: Applications II
• We can take the Hermite polynomials

Hn(y) = (−1)ne
y2

2
dn

dyn
e−

y2

2

to obtain the Hermite martingales

Mn(t) =

∫ t

0
u

n
2Hn(u

− 1
2W (u))dW (u).

[Hint: the n-th derivative of yg(y) is yg (n)(y) + ng (n−1)(y)]

• As H ′
n(y) = nHn−1(y), if fn(t, x) = tn/2Hn(t−1/2x), the x-derivative

is
d

dx
fn(t, x) = t

n
2−

1
2H ′

n(t
−1/2x) = nfn−1(t, x),

and we have the iterated Ito integrals

Mn(t) =

∫ t

0
Mn−1(u)dW (u).

Ito processes

• For an Ito process X (t) = X0 +M(t) + A(t), t ≥ 0, the integral is
defined by approximation on simple processes.

• The M part and the A part behave differenthy when the quadratic
variation is considered.

•

X 2(t) = X 2(0) + 2

∫ t

0
X (s)dX (s) + [M](t) =

X 2
0 + 2

∫ t

0
X (s)∆(s)dW (s) + 2

∫ t

0
X (s)Θ(s)ds +

∫ t

0
∆2(s)ds

• The quadratic variation of X and the quadratic variation of M are
equal.



Ito-Doebin for Ito process

Theorem (Ito-Doeblin formula for the Ito process)
If

• f ∈ C 1,2(R+,R),
• X is a Ito process with dX (t) = ∆(t)dW (t) +Θ(t)dt,

• fx(t,X (t))∆(t), t ≥ 0, is an L2 process,

then f (t,X (t)), t ≥ 0, is an Ito process, and

f (t,X (t)) =

f (0,X (0))+

∫ t

0
ft(s,X (s))ds+

∫ t

0
fx(s,X (s))dX (s)+

1

2

∫ t

0
fxx(s,X (s))d [X ](s)

= f (0,X (0)) +

∫ t

0
ft(s,X (s))ds +

∫ t

0
fx(s,X (s))∆(s)dW (s)

+

∫ t

0
fx(s,X (s))Θ(s)ds +

1

2

∫ t

0
fxx(s,X (s))∆2(s)ds

Geometric Brownian Motion

The process f (t,W (t)) is a martingale if f10(t, x) +
1
2 f02(t, x) = 0, for

example

f (t, x) = exp

(
θx − 1

2
θ2t

)
.

In such a case f (0, 0) = 1 and

f01(t, x) = θf (t, x).

Definition (Geometric Brownian motion)
The process X (t) = exp

(
θW (t)− 1

2θ
2t
)
is a positive martingale and

X (t) = 1 + θ

∫ t

0
X (u)dW (u)

More generally, the process X (t) = exp
(∫ t

0 θ(u)dW (u)− 1
2 ∈t

0 θ
2(u)du

)

is a positive martingale and dX (t) = θ(t)X (t)dW (t).

Vasicek interest rate model, Example 4.4.10

The solution of the stochastic differential equation SDE

dR(t) = (α− βR(t))dt + σdW (t)

is an Ito process. As an equation, it has the form

dR(t) = −βR(t)dt + d(αt + σW (t)),

that is it is a linear equation dR(t) = −βR(t)dt + dX (t), forced by the
Brownian motion with drift X (t) = βt + σW (t). From the Ito formula,

d(eβtR(t)) = βeβtR(t)dt + eβtdR(t) = eβtdX (t).

The solution is

eβtR(t) = R(0) +

∫ t

0
eβtdX (t).

Cox-Ingersoll-Ross interest rate model, Example 4.4.11

The solution of the non linear SDE

dR(t) = (α− βR(t))dt +
√
R(t)σdW (t)

is an Ito process. We can write

dR(t) = −βR(t)dt + (αdt +
√

R(t)σdW (t)) = −βR(t)dt + dY (t),

which suggests to compute

d(eβtR(t)) = βeβtR(t) + eβtdR(t)

= eβtαdt + eβtσ
√

R(t)dW (t).

The expected value is computable. Same for the second moment.



Black-Scholes-Merton equation, §4.5 I

Portfolio value X (t)

Stock value dS(t) = αS(t)dt + σS(t)dW (t)

Share ∆(t)

Share value ∆(t)S(t)

Differential portfolio value dX (t) = ∆(t)dS(t) + r(X (t)−∆(t)S(t))dt

We have

d(e−rtS(t)) = (α− r)e−rtS(t)dt + σe−rtS(t)dW (t)

d(e−rtX (t)) = ∆(t)d(e−rtS(t))

Black-Scholes-Merton equation, §4.5 II

let us assume that the the call at time t is a function of stock value S(t),
c(t, S(t)) and let us compute the differential of the discounted call
e−rtc(t, x) by the Ito-Doeblin forlula. From

∂

∂t
e−rtc(t, x) = e−rt(−rc(t, x) + c10(t, x))

∂

∂x
e−rtc(t, x) = e−rtc01(t, x)

∂e−rtc(t, x)

∂x
= e−rtc02(t, x)

we obtain

d(e−rtc(t, S(t))) =e−rt(−rc(t, S(t)) + c10(t, S(t)))dt

+ e−rtc01(t, S(t))dS(t) +
1

2
e−rtc02(t, S(t))d [S ](t)

Black-Scholes-Merton equation, §4.5 III

and, substituting the differentials

dS(t) = αS(t)dt + σS(t)dW (t)

d [S ](t) = σ2S2(t)dt

we get

d(e−rtc(t, S(t))) =e−rt(−rc(t, S(t)) + c10(t, S(t)))dt

+ e−rtc01(t, S(t))(αS(t)dt + σS(t)dW (t))

+
1

2
e−rtc02(t, S(t))σ

2S2(t)dt

Now we look for an equation for c(t, x) such that

d(e−rtX (t)) = d(e−rtc(t, S(t)))

We are comparing two Ito process. Forst we equate the martingale terms

e−rtc01(t, S(t))σS(t)dW (t) = e−rt∆(t)σS(t)dW (t).

Black-Scholes-Merton equation, §4.5 IV

The equality is true if
∆(t) = c01(t, S(t)).

e−rtc01(t, S(t))(α− r)S(t)dt =

e−rt(−rc(t, S(t))+c10(t, S(t))+c01(t, S(t))αS(t)+c02(t, S(t))σ
2S2(t))dt

The equality follows if c(t, x) satisfies the BSM equation

(
∂

∂t
+ rx

∂

∂x
+

1

2
σ2x2

∂

∂x

)
c(t, x) = rc(t, x), t ∈ [0,T ], x ≥ 0,

together with a suitable boudary condition e.g.,

c(T , x) = (x − K )+.



Multiple Brownian Motion I

Definition (Multiple Brownian motion)
On (Ω,F ,P, (F(t))t≥0), a d-dimensional Brownian motion is a process

W (t) = (W1(t), . . . ,Wd(t)), t ≥ 0

where

1. each Wi is a BM for F(t), t ≥ 0,

2. W1, . . . ,Wd are independent,

3. W (t)−W (s) is independent of F(s), s < t.

Theorem (Quadratic variation of the d -dim BM)

W (t)⊗W (t) =

∫ t

0
W (s)⊗ dW (s) +

∫ t

0
dW (s)⊗W (s) + I d t,

Multiple Brownian Motion II

where: a⊗ b = abT = [aibj ]i=1,...,d ;j=1,...,d , I = [δi,j ]i=1,...,d ;j=1,...,d .

Example d = 2 and proof

In the case d = 2, W (t) =

[
W1(t)
W2(t)

]
and the terms expand as follows.

W (t)⊗W (t) =

[
W1(t)
W2(t)

]
⊗

[
W1(t)
W2(t)

]
=

[
W 2

1 (t) W1(t)W2(t)
W2(t)W1(t) W 2

2 (t).

]

W (s)⊗dW (t) =

[
W1(s)
W2(s)

]
⊗
[
dW1(s)
dW2(s)

]
=

[
W1(s)dW1(s) W1(s)dW2(s)
W2(s)dW1(s) W2(t)dW2(s)

]
.

dW (s)⊗W (t) =

[
dW1(s)
dW2(s)

]
⊗
[
W1(s)
W2(s)

]
=

[
dW1(s)W1(s) dW1(s)W2(s)
dW2(s)W1(s) dW2(t)W2(s)

]
.

In particular,

W1(t)W2(t) =

∫ t

0
W1(s)dW2(s) +

∫ t

0
W2(s)dW1(s)

Proof: b ⊗ b − a⊗ a = a⊗ (b − a) + (b − a)⊗ a+ (b − a)⊗ (b − a).

Multivariate Taylor formula

For f ∈ C 1,2(R+,R2) the Taylor approximation of the increment from
(s, x) = (s, x1, x2) to (t, y) = (t, y1, y2) is

f (t, y1, y2)− f (s, x1, x2) =

f100(s, x1, x2)(t − s) + f010(s, x1, x2)(y1 − x1) + f001(s, x1, x2)(y2 − x2)+

1

2
f020(s, x1, x2)(y1−x1)

2+f011(s, x1, x2)(y1−x1)(y2−x2)+
1

2
f002(s, x1, x2)(y2−x2)+

R2(s, t, x , y),

or, in vector form,

f (t, y)− f (s, x) =

fs(s, x)(t − s) + fx(s, x)(y − x) +
1

2
fxx(s, x) • (y − x)⊗2+

R2(s, t, x , y),

where fx is the gradient row vector, fxx is the Hessian matrix, A •B is the

scalar product of matrices.



Multivariate Ito process

Definition (Multivariate Ito process)
An Ito process is a process of the form

X (t) = X (0) +

∫ t

0
∆(s)dW (s) +

∫ t

0
Θ(s)ds,

where X and Θ are vectors of the same dimension and ∆ is a matrix of
the proper dimensions.

Theorem (Quadratic variation of X )

X (t)⊗X (t) =

∫ t

0
X (s)⊗dX (s)+

∫ t

0
dX (s)⊗X (s)+

∫ t

0
∆(s)◦∆(s)ds,

where A ◦ B = ABT is the matrix whose i , j element is the scalar product
of the i row of A and the j row of B .

Multi-dimensional Ito-Doeblin formula

Theorem
If

• f ∈ C 1,2(R+,Rd),

• X is a Ito process with dX (t) = ∆(t)dW (t) +Θ(t)dt,

• fx(t,X (t))∆(t), t ≥ 0, is an L2 process,

then f (t,X (t)), t ≥ 0, is an Ito process, and

f (t,X (t)) =

f (0,X (0))+

∫ t

0
ft(s,X (s))ds+

∫ t

0
fx(s,X (s))dX (s)+

1

2

∫ t

0
fxx(s,X (s))•d [X ](s)

Notation: ft(t, x) =
∂
∂t f (t, x), fx(t, x) is the row gradient vector[

∂
∂x1

f (t, x1, . . . , xd), . . . ,
∂

∂xd
f (t, x1, . . . , xd)

]
, fxx(t, x) is the Hessian

matrix
[

∂2

∂xi∂xj
f (t, x1, . . . , xd)

]

i=1,...,d ;j=1,...,d
, A • B is the matrix scalar

product.

Ito-Doeblin formula for d = 2

•
[
dX1(t)
dX2(t)

]
=

[
∆11(s)dW1(s) +∆12(s)dW2(s)
∆21(s)dW1(s) +∆22(s)dW2(s)

]
+

[
Θ1(s)ds
Θ2(s)ds

]
.

• d [X ](t) = ∆(t) ◦∆(t)dt =[
∆11(t)∆11(t) +∆12(t)∆12(t) ∆11(t)∆21(t) +∆12(t)∆22(t)

simmetric! ∆21(t)∆21(t) +∆22(t)∆22(t)

]
dt

• ft(t, x) = f100(t, x1, x2).

• fx(t, x) =
[
f010(t, x1, x2) f001(t, x1, x2)

]
.bf

• fxx(t, x) =

[
∂f
∂x1

(t, x1, x2)
∂2

∂x1∂x2
f (t, x1, x2)

simmetric! ∂f
∂x2

(t, x1, x2)

]

• 1
2 fxx(t, x) •∆(t) ◦∆(t) =
1
2

∂f
∂x1

(t, x1, x2)
(
∆2

11(t) +∆2
12(t)

)
+ ∂2

∂x1∂x2
f (t, x1, x2)∆11(t)∆21(t) +

∆12(t)∆22(t) +
1
2

∂f
∂x2

(t, x1, x2)
(
∆2

21(t) +∆2
22(t)

)

Applications

Example The product of two Ito processes X1(t)X2(t) is the function
f (x) = x1x2 of the vector Ito process (t) = (X1(t),X2(t). Note that the
Hessian has zero diagonal elements while the other two elements are 1. If
the Ito process depend on a d-dimensional BM,

d(X1(t)X2(t)) = X1(t)dX2(t) + dX1(t)X2(t) +
d∑

j=1

∆1j(t)∆2j(t)dt.

Theorem (Lévy theorem d = 1)
A continuous L2 martingale whose quadratic variation is t is a Brownian
motion

Theorem (Lévy theorem for generic dimension d)
A continuous L2 multivariate martingale whose quadratic variation is I t is
a multivariate Brownian motion.

Proof Compute the moment generating function with the Ito formula.


