Stochastic Processes 2014

2. Wiener Process

Giovanni Pistone

Collegio Carlo Alberto

Revised June 9, 2014

Plan

- 1. Poisson Process (Formal construction)
- 2. Wiener Process (Formal construction)
- 3. Infinitely divisible distributions (Lévy-Khinchin formula)
- 4. Lévy processes (Generalities)
- 5. Stochastic analysis of Lévy processes (Generalities)

References

Patrick Billingsley, <i>Probability and measure</i> , second ed., Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., New York, 1986
Jean Jacod and Philip Protter, <i>Probability essentials</i> , second ed., Universitext, Springer-Verlag, Berlin, 2003
Henry P. McKean, <i>Stochastic integrals</i> , AMS Chelsea Publishing, Providence, RI, 2005, Reprint of the 1969 edition, with errata
Nicolò Pintacuda, Probabilità, Decibel-Zanichelli, Padova, 1994
R Core Team, $R: A$ language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2014
H. L. Royden, <i>Real analysis</i> , third ed., Macmillan Publishing Company, New York, 1988
W. A. Stein et al., Sage Mathematics Software (Version 5.9), The Sage Development Team, 2013, ${\tt http://www.sagemath.org}$
David Williams, <i>Probability with martingales</i> , Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991.

1. Recap: Standard Gaussian distribution

On the multivariate Gaussian distribution cf. [JP].

Construction

- $X \sim N(0,1)$ if, and only if, its density is $x \mapsto (2\pi)^{-1/2} e^{-x^2/2}$.
- $\mathbf{X} = (X_1, \dots, x_n) \sim \mathsf{N}_n(0, I)$ if, and only if, its components are independent and $\mathsf{N}(0, 1)$. Equivalently, the density is $\mathbf{x} \mapsto (2\pi)^{-n/2} \mathrm{e}^{-\|\mathbf{x}\|^2/2}$.
- $\mathbf{X} \sim N_n(0, I)$ if, and only if, the characteristic function is $\mathbf{t} \mapsto \mathrm{e}^{\|\mathbf{t}\|/2}$.
- If $\mathbf{X} \sim N_n(0, I)$ and $U = [\mathbf{u}_1 \cdots \mathbf{u}_n]$ is unitary i.e. $U^T U = I$, then $U \mathbf{X} \sim N_n(0, I)$.

E1

Proofs. The properties of the characteristic function shall be discussed later.

2. Recap: General Gaussian Distribution

Affine transformations

- 1. Let $\mathbf{X} \sim \mathsf{N}_n(0,I)$, $\boldsymbol{\mu} \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, $\Gamma = AA^T$, $\mathbf{Y} = \boldsymbol{\mu} + A\mathbf{X}$. Γ is symmetric and positive definite. The distribution of \mathbf{Y} depends on Γ . Such a distribution is called $\mathsf{N}_m(\boldsymbol{\mu},\Gamma)$.
- 2. If $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Gamma})$, $\mathbf{b} \in \mathbb{R}^m$, $B \in \mathbb{R}^{m \times n}$, then $\mathbf{b} + A\mathbf{Y} \sim N_m(\mathbf{b} + B\boldsymbol{\mu}, B\boldsymbol{\Gamma}B^T)$.
- 3. Given any $\mu \in \mathbb{R}^n$ and any symmetric positive definite $\Gamma \in \mathcal{S}_n^+$, the distribution $N(\mu, \Gamma)$ exists.
- 4. The characteristic function of $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \boldsymbol{\Gamma})$ is $\mathbf{t} \mapsto \exp\left(\boldsymbol{\mu}^T \mathbf{t} + \mathbf{t}^T \boldsymbol{\Gamma} \mathbf{t}/2\right)$.
- 5. $\mathbf{Y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Gamma})$ if, and only if, all linear combinations $\sum_j a_j Y_j$ are univariate Gaussian $N(0, \mathbf{a}^T \boldsymbol{\Gamma} \mathbf{a})$.

E2

3. Recap: Gaussian Distribution Conditioning

Density and conditioning

- 1. If $\mathbf{Y} \sim N(\boldsymbol{\mu}, \Gamma)$ and $\det \Gamma \neq \mathbf{0}$, the Y has density $\mathbf{y} \mapsto (2\pi)^{-n/2} (\det \Gamma)^{-1/2} \exp \left(-\mathbf{y}^T \Gamma^{-1/2} \mathbf{y}^t\right)$.
- 2. If $\mathbf{Y} \sim \mathsf{N}(\mu, \Gamma)$, the blocks $\mathbf{Y}_I = (Y_i \colon i \in I)$ and $\mathbf{Y}_J = (Y_j \colon j \in J)$ are independent if, and only if, $\Gamma_{ij} = 0$ for all $i \in I$, $j \in J$, i.e. independence and uncorrelation are equivalent.
- 3. If $(\mathbf{Y}_1, \mathbf{Y}_2) \sim N\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{bmatrix}\right)$, then the conditional distribution of \mathbf{Y}_1 given \mathbf{Y}_2 is

$$\mathsf{N}_{n_1} \left(\boldsymbol{\mu}_1 + L_{12} (\boldsymbol{\mathsf{Y}}_2 - \boldsymbol{\mu}_2), \Gamma_{11} - L_{12} \Gamma_{21} \right), \quad L_{12} \Gamma_{22} = \Gamma_{12}.$$

E3

4. Recap: Hilbert spaces

Scalar product

Let $(x,y) \mapsto \langle x,y \rangle$ be a scalar product on a vector space $V \ni x,y$, i.e. a symmetric bilinear mapping such that $\|x\|^2 = \langle x,x \rangle > 0$ unless x = 0.

- 1. $x \mapsto ||x|| = \sqrt{\langle x, x \rangle}$ is a norm. If this norm is complete, then $(V, \langle \cdot, \cdot \rangle)$ is called an *Hilbert space*. E.g. $L^2[0, 1], L^2(\mathbb{P})$.
- 2. Let $(\phi_n)_{n\in\mathbb{N}}$ be an *orthonormal* sequence in the Hilbert space. Then the series $\sum_{n=1}^\infty a_n\phi_n$ is convergent if, and only if $\sum_{n=1}^\infty a_n^2<+\infty$. The limit f satisfies $\|f\|^2=\sum_{n=1}^\infty a_n^2$ and $\langle f,\phi_n\rangle=a_n,\ n\in\mathbb{N}$. $(\phi_n)_{n\in\mathbb{N}}$ be an orthonormal *basis* if $\langle f,\phi_n\rangle=0$, $n\in\mathbb{N}$ implies f=0.
- 3. Given two vector spaces V, W, each one having a scalar product, a mapping $A \colon V \to W$ is called an *isometry* if $\langle Ax, Ay \rangle_W = \langle x, y \rangle_V$, $x, y \in V$. If A is an isometry, then A is linear.

E4

Prove item (3).

5. Wiener process = Brownian motion

The filtration of the basis $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}(t)_{t\geq 0}))$ on which a stochastic process is defined is frequently larger than the filtration generated by the process.

Definition

W is a Brownian motion for $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}(t)_{t\geq 0}))$ if W is a continuous process, $W: \Omega \to \mathcal{C}([0, +\infty[), \text{ such that}])$

- 1. W is adapted, i.e. W_t is \mathcal{F}_t -measurable, t > 0,
- 2. W starts from 0, i.e. $W_0 = 0$ a.s.,
- 3. the increments are Gaussian, precisely $(W_t W_s) \sim N(0, t s)$, 0 < s < t,
- 4. the increments are independent from the past history, i.e. $(W_t W_s)$ is independent of \mathcal{F}_s , $0 \le s < t$.

6. Properties of W

Theorem

- 1. The random variables W_{t_1} , $(W_{t_2} W_{t_1})$, ... $(W_{t_n} W_{t_{n-1}})$ are independent if $0 < t_1 < \cdots < t_n$.
- 2. The vector $(W_{t_1}, \ldots, W_{t_n})$, $0 < t_1 < \cdots < t_n$, has density

$$p(y_1,\ldots,y_n)=(2\pi)^{-\frac{n}{2}}\prod_{j=1}^n(t_j-t_{j-1})^{-\frac{1}{2}}\exp\left(-\frac{1}{2}\sum_{j=1}^n\frac{(y_j-y_{j-1})^2}{t_j-t_{j-1}}\right).$$

- 3. W is Markov with kernel $k(x,y) = \frac{1}{2\pi\sqrt{t-s}} \exp\left(-\frac{1}{2}\frac{(y-x)^2}{t-s}\right)$.
- 4. W, $(W_t^2 t)_{t>0}$, and $\left(\exp\left(aW_t \frac{a^2}{2}t\right)\right)_{t\geq 0}$, $a \in \mathbb{R}$, are martingales.

E5

7. Wiener integral: first step

Simple integrand

- 1. For each left-continuous time interval $]a,b] \in \mathbb{R}_+$, define $\int_a^b dW_t = \int (a < t \le b) \ dW_t = W_b W_a$, so that $\int_a^b dW_t \sim \mathsf{N}(0,t-s)$. If $]s_1,s_2]$ and $]t_1,t_2]$ are left-continuous intervals, then $\mathbb{E}\left(\left(\int (s_1 < t \le s_2) \ dW_t\right) \left(\int (t_1 < t \le t_2) \ dW_t\right)\right) = \int (s_1 < t \le s_2)(t_1 < t \le t_2) \ dt$.
- 2. On each left-continuous simple function $f(t) = \sum_{j=1}^n f_{j-1}(t_{j-1} < t \le t_j), \text{ define}$ $\int f(t) \ dW_t = \sum_{j=1}^n f_{j-1} \int_{t_{j-1}}^{t_j} dW_t \sim \mathsf{N}(0, \int |f(t)|^2 \ dt). \text{ If } f \text{ and } g$ are left-continuous simple functions, then $\mathbb{E}\left(\left(\int f(t) \ dW_t\right) \left(\int g(t) \ dW_t\right)\right) = \int f(t)g(t) \ dt$
- 3. The mapping $f \mapsto \int f(t) dW_t$ is linear.

E6

8. Wiener integral of L^2 functions

General integrand

- 1. Given any $f \in L^2([0,+\infty[)])$, there exists a sequence of left-continuous simple functions $(f_n)_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty} f_n = f$ in $L^2([0,+\infty[)]$, i.e. $\lim_{n\to\infty} \int |f(t)-f_n(t)|^2 dt = 0$.
- 2. $\int f(t) \ dW_t = \lim_{n \to \infty} \int f_n(t) \ dW_t$ exists in $L^2(\Omega, \mathcal{F}, \mathbb{P})$, i.e. $\lim_{n \to \infty} \mathbb{E}\left(\left(\int f(t) \ dW_t \int f_n(t) \ dW_t\right)\right) = 0$, and the limit does not depend on the approximating sequence.
- 3. $\int f(t) dW_t \sim N\left(0, \int |f(t)|^2 dt\right)$; for each $f, g \in L^2([0, +\infty[), \text{ the } isometric property } \mathbb{E}\left(\left(\int f(t) dW_t\right)\left(\int g(t) dW_t\right)\right) = \int f(t)g(t) dt$ holds.
- 4. The mapping $f \mapsto \int f(t) dW_t$ is linear.

We shall discuss later the existence of a *continuous* stochastic process $f \bullet W$ such that $(f \bullet W)_t = \int_0^t f(s) \ dW_s$.

E7

9. Calculus of the Wiener integral

Properties

1. If $f \in L^2([0, +\infty[) \cap C([0, +\infty[), \text{ then }]))$

$$\lim \sum_{j} f(t_{j_1})(W_{t_j} - W_{t_{j-1}}) = \int f(t) \ dW_t,$$

where the limit is taken along any sequence of partition such that $\max(t_i - t_{i_1}) \to 0$ and $t_n \to \infty$.

2. If $f \in L^2([0, +\infty[) \cap C^1([0, +\infty[), \text{ then })])$

$$\int_{s}^{t} f(u) \ dW_{u} = f(t)W_{t} - f(s)W_{s} - \int_{s}^{t} f'(u)W_{u} \ du.$$

3. If $(\phi_n)_{n\in\mathbb{Z}_+}$ is an orthonormal basis of $L^2([0,1])$ and $a_n(t)=\int_0^t\phi_n(s)\ ds$ fot $0\leq t\leq 1$, then there exists a Gaussian white noise Z_0,Z_1,Z_2,\ldots such that $W_t=\sum_n a_n(t)Z_n$ in $L^2(\Omega,\mathcal{F},\mathbb{P})$, namely $Z_n=\int_0^1\phi_n(t)\ dW_t$.

10. Haar functions

1. Haar functions are $h_0 = 1$, $h_{1,1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.5 & 0 & 0 & 0 \\ 0.5 & 0 & 0 & 0 \end{bmatrix}$

$$h_{1,n}(t)=2^{(n-1)/2}h_{1,1}(2^{-n+1}t),\ h_{j,n}(t)=h_{j,1}(t-2^{-j+1}),$$
 that is for $n\geq 1$ and $j=1,\ldots,2^{n-1},$

$$h_{j,n}(t) = \begin{cases} 2^{(n-1)/2} & \text{if } \frac{2(j-1)}{2^n} \le t < \frac{2j-1}{2^n}, \\ -2^{(n-1)/2} & \text{if } \frac{2j-1}{2^n} \le t < \frac{2j}{2^n}, \\ 0 & \text{otherwise.} \end{cases}$$

2. The Haar function $h_{j,n}$ is zero outside the interval $\left[\frac{2(j-1)}{2^n}, \frac{2j}{2^n}\right]$, whose length is 2^{-n+1} , and where the value is $\pm 2^{(n-1)/2}$.

11. Haar basis

```
left.limit.haar <-
   function(j,n){L1 <- c(2*(j-1)/2^n,sqrt(2^(n-1)))
        L2 <- c((2*j-1)/2^n,-sqrt(2^(n-1)))
        L3 <- c(2*j/2^n,0)
        Ls <- c(L1,L2,L3); Ls
}
Ls <- left.limit.haar(4,4)
x <- c(-.5,Ls[1],Ls[3],Ls[5],1.5)
y <- c(0,Ls[2],Ls[4],Ls[6],0)
plot(x,y,type="s",xlab="",ylab="")</pre>
```

- 1. The system $(h_0, h_{j,n}: n \in \mathbb{N}, j = 1, 2, \dots 2^{n-1})$ is an orthonormal basis of $L^2[0, 1]$.
- 2. The primitives of the Haar functions are the *Shauder functions* and are *tent functions*:

$$\int_0^t h_{j,n}(u) \ du = \begin{cases} 2^{(n-1)/2} \left(t - \frac{2(j-1)}{2^n} \right) & \text{if } \frac{2(j-1)}{2^n} \le t < \frac{2j-1}{2^n}, \\ -2^{(n-1)/2} \left(t - \frac{2j}{2^n} \right) & \text{if } \frac{2j-1}{2^n} \le t < \frac{2j}{2^n}, \\ 0 & \text{otherwise.} \end{cases}$$

12. Existence of the Wiener process

Theorem

Let $Z_0, Z_{j,n}$, n = 1, 2, ... and $j = 1, ..., 2^{n-1}$ be IID N(0,1). Define for each n = 1, 2, ... the continuous Gaussian process $W^N = F_0 Z_0 + \sum_{n \le N} F_{j,n} Z_{j,n}$.

- 1. The sequence $(W^N)_{N\in\mathbb{N}}$ converges uniformly almost surely to a continuous process W.
- 2. For each t the sequence of random variables $(W^N(t))_{N\in\mathbb{N}}$ converges to W(t) almost surely and in $L^2(\mathbb{P})$, and $W(t) \sim (0,t)$.
- 3. The continuous process is Gaussian, i.e. all finite dimensional distribution are multivariate Gaussian.
- 4. Increments over two disjoint intervals of W are uncorrelated, hence independent.
- 5. W is a Wiener process for the filtration it generates.