Stochastic Processes 2014

2. Wiener Process

Giovanni Pistone

Collegio Carlo Alberto
”___s\___“

Revised June 9, 2014

12



AT B .

Plan

Poisson Process (Formal construction)

Wiener Process (Formal construction)

Infinitely divisible distributions (Lévy-Khinchin formula)
Lévy processes (Generalities)

Stochastic analysis of Lévy processes (Generalities)



Billingsley

JP

McKean

Pintacuda
R

Royden
Sage

Williams

References

Patrick Billingsley, Probability and measure, second ed., Wiley Series in Probability and
Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc.,
New York, 1986

Jean Jacod and Philip Protter, Probability essentials, second ed., Universitext,
Springer-Verlag, Berlin, 2003

Henry P. McKean, Stochastic integrals, AMS Chelsea Publishing, Providence, RI, 2005,
Reprint of the 1969 edition, with errata

Nicold Pintacuda, Probabilita, Decibel-Zanichelli, Padova, 1994

R Core Team, R: A language and environment for statistical computing, R Foundation for
Statistical Computing, Vienna, Austria, 2014

H. L. Royden, Real analysis, third ed., Macmillan Publishing Company, New York, 1988

W. A. Stein et al., Sage Mathematics Software (Version 5.9), The Sage Development Team,
2013, http://www.sagemath.org

David Williams, Probability with martingales, Cambridge Mathematical Textbooks,
Cambridge University Press, Cambridge, 1991.


http://www.sagemath.org

1. Recap: Standard Gaussian distribution

On the multivariate Gaussian distribution cf. [JP].

Construction

e X ~ N(0,1) if, and only if, its density is x — (27r)*1/2e*X2/2.

o X =(Xi,...,xn) ~N,(0,/) if, and only if, its components are
independent and N(0,1). Equivalently, the density is
X > (2m) =26 X/,

e X ~ N,(0,/) if, and only if, the characteristic function is t — elltll/2

o If X~ N,(0,/) and U = [uy ---u,] is unitary i.e. UTU =1, then
UX ~ Ny (0, 1).

El

Proofs. The properties of the characteristic function shall be discussed
later.



2. Recap: General Gaussian Distribution

Affine transformations

1.

E2

Let X ~ N,(0,1), p € R, A€ R™" [ = AAT Y = p+ AX. T is
symmetric and positive definite. The distribution of Y depends on
I. Such a distribution is called N, (g, ).

IfY ~Np(p,lN), beR™ BeR™" then

b+ AY ~ N, (b+ Bu, BIBT).

Given any g € R" and any symmetric positive definite I € S;7, the
distribution N(g, ') exists.

The characteristic function of Y ~ N(g, ) is

t— exp (uTt + tTFt/2).

Y ~ N(g,T) if, and only if, all linear combinations 3 a;Y; are
univariate Gaussian N(0,a’Ta).

Proofs.

N
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3. Recap: Gaussian Distribution Conditioning
Density and conditioning
1. If Y ~ N(p,T) and detT # 0, the Y has density
y — (27)~"/?(det T) "2 exp (fyTF’1/2yf).

2. If Y ~N(p,T), the blocks Y, = (Yj:iel)and Y, =(Yj:j€J)
are independent if, and only if, [ =0forallie/, j€ J, ie.
independence and uncorrelation are equivalent.

3 0F (Ys, Ya) ~ N[ |#], [T Ta2)) ihen the conditional
2 Mo T

distribution of Y1 given Y5 is

an (IJ‘l + [—12(Y2 - IJ«2)7 M1 — L12F21), LioT o0 = Tps.

E3

Proofs.



4. Recap: Hilbert spaces

Scalar product
Let (x,y) — (x,y) be a scalar product on a vector space V 3 x,y, i.e. a
symmetric bilinear mapping such that ||x||* = (x, x) > 0 unless x = 0.

1. x = ||x|| = v/{x,x) is a norm. If this norm is complete, then
(V,(-,-)) is called an Hilbert space. E.g. L2[0,1], L2(P).

2. Let (¢n)nen be an orthonormal sequence in the Hilbert space. Then
the series > " a,¢, is convergent if, and only if >_°° a2 < +oo0.
The limit f satisfies ||f||*> = 3°°, a2 and (f, ¢,) = a,, n € N.

(én)nen be an orthonormal basis if (f,¢,) =0, n € N implies f = 0.

3. Given two vector spaces V/, W, each one having a scalar product, a
mapping A: V — W is called an isometry if (Ax, Ay),, = (X,¥)y.
x,y € V. If Ais an isometry, then A is linear.

E4
Prove item (3).



5. Wiener process = Brownian motion

The filtration of the basis (2, F,P, (F(t)t>0)) on which a stochastic
process is defined is frequently larger than the filtration generated by the
process.
Definition
W is a Brownian motion for (Q2, F, PP, (F(t)¢>0)) if W is a continuous
process, W: Q — C([0, +o0[), such that

1. W is adapted, i.e. W; is Fi-measurable, t > 0,

2. W starts from 0, i.,e. Wp =0 ass.,

3. the increments are Gaussian, precisely (W; — W,) ~ N(0,t — s),
0<s<t,

4. the increments are independent from the past history, i.e.
(W, — W) is independent of F5, 0 <5 < t.



6. Properties of W

Theorem

1. The random variables Wy, , (W, — Wy,), ... (W, — W,, ) are
independent if 0 < t; < --- < t,.

2. The vector (W, ..., W), 0 < t; < --- < t,, has density

b T 1 1 ()"*Y' 1)2
pya, - ym) = @m) 2 [[(—t-1) 2 exp [ -5 ) ——
- 24 Gt
j=1 Jj=1

3. W is Markov with kernel k(x,y)

_ 1 1 (y=x)?
= oavi=s XP (_E yt—s )
4. W, (W,_b2 — t)¢>0, and (exp (aWt = a;t)) ,acR, are
>0
martingales.

E5

Proofs.
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7. Wiener integral: first step
Simple integrand

1. For each left-continuous time interval ]a, b] € R, define
[P dW; = [(a < t < b) dW; = Wp — W,, so that
fab dW; ~ N(0,t — s). If ]s1, 5] and ]t1, to] are left-continuous
intervals, then E (([(s1 < t < ) dW,) ([(t1 < t < 1) dW,)) =
J(s1 <t <s)(h <t<t) dt.

2. On each left-continuous simple function
f(t) = 115 (tj 1 < t < tj), define
[ £(t) dW; = fioa Jy , dW; ~ N(O, [ |f(t)]* dt). If f and g
are left- contlnuous 5|mp|e functions, then
E (([f(t) dW:) ([ g(t) dW,)) = [ f(t)g(t) dt

3. The mapping f — [ f(t) dW, is linear.

E6

Proofs.



8. Wiener integral of L? functions

General integrand

1. Given any f € L2([0,+oc[), there exists a sequence of
left-continuous simple functions (f,)qen such that lim,_ o f, = f in
L2([0, +00), i.e. limy oo [|F(t) = f(t)]> dt = 0.

2. [f(t) dW; = limp_oo [ fa(t) dW; exists in L2(Q, F,P), i.e.
limpoo B ((f £(t) dW; — [ fo(t) dW;)) = 0, and the limit does
not depend on the approximating sequence.

3. [f(t) dW; ~ N (O,f |F(t) dt); for each f, g € L([0, +00]), the

Lsollgetric property E ([ £(t) dW:) ([ g(t) dW;)) = [ f(t)g(t) dt

4. The mapping f — [ f(t) dW, is linear.

We shall discuss later the existence of a continuous stochastic process f @ W such that (f ¢ W); = /Ot f(s) dWs.

E7

Proofs.



9. Calculus of the Wiener integral
Properties

L. If f € L2(]0, +oo[) N C([0, +o0[), then

|.me( Wy, — Wi, 1)_/f dW,

where the limit is taken along any sequence of partition such that
max(tj — t;) — 0 and t, — oo.

2. If f € L2([0, +oo]) N CL([0, +oc), then
/t f(u) dW, = f(t)W; — f(s) W, — /t f(u)W, du.

3. If (¢n)nez, is an orthonormal basis of L([0,1]) and

an(t) = fot ¢n(s) ds fot 0 < t <1, then there exists a Gaussian
white noise Zy, Z1, Z>, . .. such that W, = 3" a,(t)Z, in

L2(Q, F,P), namely Z, = [y ¢n(t) dW;.



10. Haar functions
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L0 = o—0
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hyo(t) = 200=1D/2hy 1(27742¢), by o(t) = hj1(t — 279+1), that is for
n>landj=1,...,2" 1,

20122 < g 2

hin(t) = { —20=1/2 jf 2J 1 <t<Z,

2!1 )

0 otherwnse.

2. The Haar function h; , is zero outside the interval 20 nl), g—f ,

whose length is 21 and where the value is +2("=1)/2,
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left.limit.haar <-

function(j,n){L1 <- c(2*(j-1)/2"n,sqrt(2"(n-1)))
L2 <- c((2%j-1)/27n,-sqrt (2" (n-1)))
L3 <- c(2*j/2°n,0)
Ls <- c¢(L1,L2,L3); Ls

¥
Ls <- left.limit.haar(4,4)

x <- c(-.5,Ls[1],Ls[3],Ls[5],1.5)

y <- ¢(0,Ls[2],Ls[4],Ls[6],0)

plot(x,y,type="s",xlab="",ylab="")

11. Haar basis

1. The system (ho, hj,: n € N,j =1,2,...2"1) is an orthonormal

basis of L2[0, 1].

2. The primitives of the Haar functions are the Shauder functions and

are tent functions:

t
/ hj n(u) du =
0

2(j—1
— a2l
_ 2

on

e 2(j—1) 2j—1
e R i e

e 2=l 2
if 5= <t<35,

otherwise.
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12. Existence of the Wiener process

Theorem
Let Zy,Z;,, n=1,2,... and j=1,...,2"1 be IID N(0,1). Define for
each n=1,2,... the continuous Gaussian process

whN = FOZO + E,KN (Ph s

1. The sequence (W"N)nen converges uniformly almost surely to a
continuous process W.

2. For each t the sequence of random variables (W"(t))nen converges
to W(t) almost surely and in L?(P), and W(t) ~ (0, t).

3. The continuous process is Gaussian, i.e. all finite dimensional
distribution are multivariate Gaussian.

4. Increments over two disjoint intervals of W are uncorrelated, hence
independent.

5. W is a Wiener process for the filtration it generates.



