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2.E WIENER PROCESS

GIOVANNI PISTONE

1. Exercise. The random variables
(1) thv (Wtz - th)v ceey (th - th—1)
are independent if 0 <t < -+ < ty,.
Proof. Note that we can assume 0 < t1 < cdots < t,,. Proceed by induction on n:
(2) E (fl(Wh)fZ(Wtz - th) t fn(th - th—l)) =
E (iWe) fa(Wey = Wiy) - E (fa(We,, = Wi, ) | Fr ) =
E (f1(Wi,) faWiy = Wiy) -+ ) E (fa(Wh,, = Wi, ) -
O

2. Exercise. The random vector (Wy,,...,Wy,), 0 <t1 < --- <t, is Gaussian with covariance
Cov (Wti, Wtj) = min(t;,t;). The density exists.

Proof. The increments (1) are independent and N(0,¢; —t;_1), j = 1,...,n, tp = 0, with joint
density

“ 1
Ti,...,Tp) = 2m) V2t — i)V ex <—ZE2>
p(z1 ) ]1:[1( )7t = i) p 2(t; —t;1) 7

3 = (2m) 2 (H(tj - tj_n) exp (—2 > t)

The transformation from the increments @ to the values y, A: © — y is

100 -- 1 0 0
110 --- -1 1 O
(4) y=11 11 .---|* =090 -1 1 ---1Y

The determinant of A is 1, hence

~1/2
. n 1 & 2
p(ylv v 7yn) = (27T) 2 (H(tj - tjl)) P ( 5 Z g'/tj 11 ) el
j=1 j=1 i-
n s 1 Y5 +y7—2yi1y
—n/2 J 1 J—195
(5) / (1:[ —tj1 > exp (—2 g — ) .
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The quadratic form

n 2 2
Y; +Yi — 2yj-1y;
6) y— I
;1 tj —tj-1

Lo "Zl < 1,1 ) 2, 1 2 i 1 _—
1 ) J2 — L
. LAl : -ttt b1 —t Yj t —t, = t— ;g0

is better described in terms of the covariance matrix I' = Cov(Wy,, ..., Wy,)
(7)
Fij = Cov (Wtiy Wtj) = Cov (Wmin(ti,tj)v Wmax(ti,tj)) = Cov <Wmin(ti,t]~)7 Wmin(ti,tj)> = min(tia tj),

and

(8) FzAdiag (\/tj —tj_lijz 1,...,7},) (Adlag («/tj—tj_li j = 1,...,77,))T =

Adiag ((tj —tj—1):j=1,...,n) AT

and

) Pl (A—I)Tdiag< L 1n> (A~

tj —tji—1
O

3. Exercise. The distribution of Wy given W1 = 0, t < 1 is equal to the distribution of the
Brownian bridge Wy — tW7.

Proof. The joint distribution of (W, W7) is No (0, [i ﬂ), with det [i i] =t —t% and

-1
E ﬂ = ﬁ [—115 _tt} The joint density is

1
(10) pea(yr,y2) = (2m) 71t — %) " exp <_2(t—t2) (v} — 2tyry2 + t@/%))

and the conditional density is

(2m) "1t — t2)" Y2 exp (—% (v} — 2ty1ys + ty%))
(A1) pw,w, (Y1ly2) = 20r) 2 =
(27) Y2 exp (—52)
1
20— £

(2m) (1 — )2 exp (— (2 — 21+l — (¢ — t2>y§>) _

_ _ 1

In particular, because of the continuity, we can define

(12) P, (y1]0) = (2m) 72 (t — %) 72 exp (—Q(tl_ﬂ) (?ﬁ)) -

We have Var (W; — tW;) = Var (W;) +t2 Var (W;) — 2t Cov (Wi, Wy) =t +t2 —2t2 =t —t2. O

4. Exercise. The Wiener process is a Markov process an a martingale.
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Proof. For all ¢ such that ¢ o W; is integrable and s < t
(13)
z2
E@@mma):E@ﬂ%—wn+wnnﬁg=f¢@+wg(@m—wu—srﬂ%wwm>dx:

ot (em20- >/(<W?) dy = [6k(Wiu) dy

that is the conditional distribution of W; given Fs is N(Ws,t — s). In particular, if ¢(y) = v,
then E (Wy | Fs) = W. O

5. Exercise. Define 6f(x) = zf(x) — f'(x) and 6"1 = H,(x). For Z ~ N(0,1), the random
variables H,(Z) are orthogonal.

Proof. As each H,, is a monic polynomial of degree n, and

(14) E(f'(2)9(2)) = (2%)_1/2ff/(2)9(Z)e_22/2 dz = —(2m) /2 f f(z)% (9(z)e™) az =

- 0 [ 1) (alere 2 g0 2 dz = E(7(2)00(2),

for m<n

(15) E (Hm(2)Hn(Z)) = E(Hn(Z)0"1) = E (d"Hpy(Z)) = 0.

O
6. Exercise. Let ¢: R x Ry — R and ¢ € C*'. Under integrability conditions, if t € R, and
%% (y,t) + %gb(y,t) =0, then M = ¢(W,-) is a martingale.

Proof. As k(z,y; s,t) = ——f((y — )/t — s) with f(z) = (27)"2¢7%"/2  in the limit ¢ | s

Vit—s
(16) limk(x,y; s, t) = lim ue W WE)/2 0 fy#e _ k(z,y,s,s)
tls o U—00 +oo ify==x B
We have f'(2) = —zf(2), f"(z) = (22— 1)f(z) and 4 (t—s)"Y/2 = —1(t—s)73/2. It follows that
(17)
2 2

Egﬂ%ywi):EL@—$Y*7ﬂ@—SY”%y—xD:(ﬁ—ﬁ*wfﬁ@—SY”%y—x»:

dy oy?
(t— ) ¥2((t— )" (y — )2 — DF((t— )Yy - 2)
and
(18) Th(a.yist) = S (t—s) V2F((E— 8) M2y — ) =
at T, Y;Ss, 6t S S Yy X

== P =) 4 ) (o) =) (50— 9 - ) -
= )RR = )y = ) — 5t 5y ) () My — ) =

- (=) IR ) Ry — )+ ) Ry — (- 8) MRy — ) =

St =) ((t = 5) (g — 2 1) F((t— )Py — ),

1 02 0
§a—y2k(x, Y; S, t) = %k(az, Y; S, t).
3



We want to show that E (¢(W4, t) ].7-" ) = ¢(Ws, s), that is § ¢(y, ) k(Ws, y; s,t) dy = ¢p(Ws, s),
which, in turn, is implied by (é(y, O)k(z,y;s,t) dy = ¢(x,s), x € R. The function ¢ —
§o(y, t)k(z,y; s,t) dy is defined for ¢ > s and with derivative equal to

(20) ;J¢(y,t)k($,y; s,t) dy = fjtsb(y,t)k(x,y; s,t) dy =

[ (ot 0.0+ o000 G hGoisnt)) dy -
2

[ (ot 05,0+ 500005 3oisnn)) dy -

0 1 02
| otk sty dy + 5 | 9006055k, is.) dy -

0 1 [ 02
fat¢(y7t)k(w7y, s,t) dy + B f a?sﬁ(y,t)k(x, y; s,t) dy =

0
Jatqﬁ(y, tk(x,y;s,t) dy — Jé(y, t)k(z,y;s,t) dy = 0.

For example,

102 0\, ,
(21) (26y2+8t> (y"—1t)=0
102 0 2
- v ay—a*t/2 _
(22) (263/ + at> 0

Other proofs are possible, namely
(23) t— fcﬁ(y,t)k(:m y; 5,t) dy = Jphi(x +(t — )2z, t)(2m) V22,
has zero derivative for ¢t > s.

7. Exercise. The series of continuous function on [0, 1]

w 271 o)

(24) t—tZ, + 2 Z <f s> Zjy = Z I/Vt(n)7
n=1 j=1 n=0

with Zo, Zjn, n €N, j =1...2"71 are IID N(0,1), and h;,, is the j-th Haar function of the

n-th order, is a Wiener process on [0,1] for its filtration. See [1, §2.3]

Proof.

(1) The Haar function are orthogonal in L?[0, 1] because different functions of the same
order have disjoint supports and functions of different orders are such that the one with
lower order is constant on the support of the other. The proof of the completeness use
a monotone class argument taking as a w-class the binary intervals.

(2) Wt(o) = tZp has the correct distribution at ¢t = 1, i.e. Wl(o) ~ N(0,1). If W is a Wiener
process, then Wt(o) ~ tWi, in general (¢t — Wt(o)) ~ (t — tW7).

(3) Ifn=1,2""1 =1, and the Haar function is h11(s) = (0 < s <1/2)—(1/2< s < 1) and
the Shauder function is Sy (¢ SO hia(s) ds=t(0<t<1/2)+(1/2—-t)(1/2<t<1).

The approximation of order 1 is Wt( ) = tZO + S1,1(t)Z11. At the points t = 0,1/2,1
the Gaussian vector is

Wo(i) 0Zo + S1.1(0) 0 0 0],
) Wil = |42+ S ()| = [ 320+ 320 | - |3 31[ 2]
Wl(l) 1720 + 51’1(1) ) 1 0 ’



(26)

(32)

(33)

with covariance

o ol[o o]" [o o o
Covwg), win Wiy = |12 1/2] |12 12| =0 12 1/2],
10 10 0o 3 1
so that (Wél)vwl(/lngl(l)) ~ (W07W1/27W1)'

(4) If n = 2, then 2"~! = 2 and 2("~1/2 = /2. The Haar function of order 2 are
hia(s) = vV2(0 < s < 1/4) —v2(1/4 <5 < 1/2),
hoo(s) = V2(1/2 < s < 3/4) —V2(3/4 < s < 1),
and the Shauder functions are
Sia(t) = V2H(0 <t < 1/4) +V2(1/2 —t)(1/4 < t < 1/2),
Soo(t) = V2(t —1/2)(1/2 < t < 3/4) +V2(1 —1)(3/4 < t < 1).
The approximation of order 2 is
W = tZy + S11(6) Z11 + S19(t) Z1a + So.2(t) Zas.
At the binary points ¢ = 0,1/4,1/2,3/4,1 the Gaussian vector is

e
g o
W1/24 (1/4)Zo + (1/4) Z11 + (V2/4) Z1.9
wf/g = (1/2)Zo + (1/2) 21, -
w® (3/4)Z0 + (1/4)Z11 + (V2/4) Z2 2
324§ ZU
_Wl _
0 0 0 0 P
1/4 1/4 2/4 0 Z”
1/2 1/2 0 0 Z“
3/4 1/4 0 2/4| |7
1 2,2
with covariance
Cov (W™, Wil winy, will, wi®)) =
0 0 0 0 0 0 0 o 1"
1/4 1/4 v/2/4 0 1/4 1/4 V2/4 0
1/2 1/2 0 0 1/2 1/2 0 0 =
3/4 1/4 0 +/2/4|[3/4 1/4 0 +/2/4
1 0 0 0 1 0 0 0
00 0 0 0
0 1/4 1/4 1/4 1
0 1/4 1/2 1/2 1/2 :COV(W(),W1/4,W1/2,W3/4,W1).
0 1/4 1/2 3/4 3/4
0 1/4 1/2 3/4 1

(5) To proceed, we want a better organization of the computations. At order 0 we have a
zero at t = 0; at order 1 we have zeros at t = 0, 1; at order 2 we have zeros at t = 0,1/2, 1.

At the points ¢t = 0,1/2, 1 we have Wt(2) = t(l). As the new point 1/4,3/4 the values of

Wt(l) are interpolated values, to which are added the vertex values of the new Shauder
functions. The increments on binary points are:
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i
&l ﬁ/% v -
4 %/
2)
Wi |
(1/4 — O)Zo + (5171(1/4) S 1( ))Zl,l + (Sl 2(1/4) 5172(0))21 2 + (52 2(1/4) Sy 2(0))2272
(1/2 — 1/4)Zo + (S1,1(1/2) — S1.1(1/4)) Zi + (S1,2(1/2) — S1.2(1/4) Z1s + (S22(1/2) — S22(1/4)) Zo2
(3/4 —1/2)Zy + (S1,1(3/4) — S11(1/2)) Z1,1 + (51,2(3/4) — S1,2(1/2)) Z12 + (S2,2(3/4) — S22(1/2)) Z2.2
(1 =3/4)Zo + (S11(1) — S1,1(3/4)) Z1,1 + (S1,2(1) — 51,2(3/4)) Z1,2 + (S2,2(1) — S2 2(3/4 )Z2,2

(1/4)20 + 51,1(1/4)2171 + 51,2(1/4)2172
(1/4)20 + (5171(1/2) — 8171(1/4))Z171 — 5172(1/4)Z172
(1/4)Z0 + (5171(3/4) — 8171(1/2))2171 + 5'272(3/4)2272

(1/4)Zy — S11(3/4)Z11 — S2,2(3/4)) Z2 2

(1/4)Z0 + (1/2)5’171(1/2)2171 + S1,2(1/4)Zl72
(1/4)Z0 + (1/2)5171(1/2)2171 — 5172(1/4)2172
(1/4)Z0 — (1/2)5'171(1/2)2171 + S2,2(3/4)ZQ72
(1/4)Zo — (1/2)S1,1(1/2)Z1 1 — S22(3/4)) Z22

1 1 1 0 (1/4)Z
11 =1 0| [(1/2)811(1/2)Z11
1 -1 0 1 S12(1/4)Z1 2 -
1 -1 0 -1 S2.9(3/4) Z2.9

1 1 1 0 (1/4)Z

1 1 -1 0 (1/4)Zv1 |

1 -1 1| | (V2/4)Z12

1 -1 —1| | (V2/4)Z22

1 1 o][14 o 0 0
1 -1 0 0 1/4 0 0
-1 0 1 0 0 +2/4 0
-1 0 —-1[]0 o0 0  V2/4| | Zap

—= === OO

and the covariance is

2 2 2 2 2
(35) Cov(Wih) — Wi Wil —wi Wil —wi wi® —wi)) =

1742 V374 1/2°
1 1 1 ofii6 o o o[t 1 1 o]"
1 1 -1 0 0 1/16 0 o0 ||t 1 -1 0| _
1 -1 0 1 o o0 18 0|1 -1 0 1| ~
1 -1 0 -1{|l 0o o o 18|t -1 0 -1
12 12 1 o]t 1 1 o]"
1112 12 -1 o1 1 -1 0
gl12 —12 0o 1|1 -1 0 1
12 -1/2 0 —1||1 -1 0o -1

(6) Let us prove the convergence. This proof is due to [2] and uses the Borel-Cantelli lemma
[3, §2.7]. First note that Z ~ N(0, 1) implies the following estimate of the queues:
(36)

2 [® 2 [ 9 e~ T/2
Pz =2 [ ey [2 [Tt g 2 [T o 208
|z|>x T Jz Ty X ™ X
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It follows that
(37)

P (x| Zy0] > A(0) ) = P (0 (1Z30] > A))) € TP (23] > 0) = 2P (12] > AGu)

5 o—Am)?/2
< 2n—l\/>.
T A(n)

J

O
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