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REFERENCES

e The importance of the Gaussian distribution depend largely on the Central Limit The-
orem, see [2, Part C]
e A classic on Multivariate Statistics is T. W. Anderson’s monograph [I].

1. STANDARD GAUSSIAN DISTRIBUTION

1. The real random variable Z is standard Gaussian, Z ~ Nj (0,1) if its distribution v has

density
1
Razm ¢(z) = (277)7% exp (—222>

with respect to the Lebesgue measure.

2. The R"-valued random variable Z = (Zy,...,Z,) is standard Gaussian, Z ~ Ny, (O, I,,) if
its components are IID Ny (0,1). We write Y¥" to denote the n-fold product measure.

3. For each multi-index a@ = (o, ..., a,) € Z% define Hermite polynomial Hy(x1,...,2,) =
Hy,, (x1) -+ Ha, (). The sequence  H, is orthonormal and total in L'(y®").

a!
4.
(1) The distribution v, = v®" of Z ~ N,, (0, I) has the product density

n . 1
B 5 s e 0(2) = [ () = (2m) Fexo (5 [41°)
j=1
(2) The moment generating function t — E (exp (t- Z)) € Rx is
n 1 1,9
R" 5 ¢— My(t) = jlj[lexp (th) = exp (2 It )

My is everywhere strictly convex and analytic.
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(3) The characteristic function ¢ — J,(¢) = E (exp (v—lC . Z)) eCis

2
R" 3¢ 3,(¢) = Hexp <—;§ZQ> = exp (; HCHQ)
j=1

¥ is nonnegative definite and analytic.

2. PoOSITIVE DEFINITE MATRICES

We collect here useful properties of matrices. See [I, Appendix A].

(1) Denote by M,y the vector space of m x n real matrices. We have M,, ; < R™. Let M,
be the vector space of n x n real matrices and by GL,, the group of invertible matrices.
We denote by S,, its sub-vector space of real symmetric matrices.

(2) The vector space M, ,, is an Hilbert space for the scalar product (A, B) = Tr (B'A).
The general linear group GL,, is an open subset of M, .

(3) The mapping f: M, f(A) = det (A) has derivative at A in the direction H (that is
derivative at zero of t — det (A + tH) € R), equal to Tr (adj(A)H).

(4) The mapping f: GL,, f(A) = A~! has derivative at A in the direction H, that is the
derivative at zero of t — (A +tH) € GL,, equal to —A"1HA™!,

(5) Each symmetric matrix A € S,, has n real eigen-values \;, ¢ = 1,...,n and correspond-
ingly an orthonormal basis of eigen-vectors w;, i = 1,...,n.

(6) A matrix A € M, is positive definite, respectively strictly positive definite, if & € R™ # 0
implies ' Az > 0, respectively > 0. We denote by S,/ the closed cone of S,, of positive
definite matrices. A positive definite matrix is strictly positive definite if it is invertible.
The set of strictly positive symmetric matrices is the interior of the cone &,.

(7) A symmetric matrix A is positive definite, respectively strictly positive definite, if, and
only if, all eigen-values are non-negative, respectively positive.

(8) A symmetric matrix B is positive definite if, and only if, A = B’B for some B € M,,.
Moreover, A € GL,, if, and only if, B € GL,.

(9) A symmetric matrix B is positive definite, if, and only if, there exist an upper triangular
matrix T such that A = T'T. T can be chosen to have nonnegative diagonal entries and
it is unique if A is invertible.

(10) A symmetric matrix is positive definite, respectively strictly positive definite, if and only
if all leading principal minors are nonnegative.

(11) A symmetric matrix A is positive definite if, and only if A = B? and B is positive
definite. We write B = A2 and call B the positive square root of A.

(12) A symmetric matrix A is positive definite, respectively strictly positive definite, if there
exist an Hilbert space H and vectors x1, ..., x,, respectively linear independent vectors,
with Qi5 = <£BZ', :Bj>.

3. GENERAL GAUSSIAN DISTRIBUTION

Proposition 1. (1) Let Z ~ N, (0,1), Ae R™" pe R™, ¥ = AAT. ThenY =b+ AZ
has a distribution that depends on I' and b only. The distribution of Y is Gaussian with
mean b and variance X, Ny, (b,X).
(2) Given any non-negative definite X, there exists matrices A such that ¥ = AAT.
(3) If det () # 0, then the distribution of Y = b+ AZ ~ N, (b,%), Ae R™*m AAT =3,
has a density given by

R™ 5y — py(y) = |det (A1) | ¢(A ™ (y — b)) =

)% det () F e (~ 300 - 072y - 0)

(4) If det (X) = 0 the distribution of N(b,X) has no density w.r.t. the Lebesque measure on
R™.
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4. CONDITIONING OF JOINTLY GAUSSIAN RANDOM VARIABLES

Proposition 2. Consider a partitioned Gaussian vector

_[r bi| |X11 X2
Y = [YZ] ~ Nn1+n2 <{b2] ) [221 222 .
Let r; = Rank (3;;) and ¥ = UZ'AZ'UZ»T with U; € R™M*"i - A; € R"*"i positive diagonal, i = 1,2.

(1) The blocks Y1, Ya are independent, say Y1 1L Ya, if, and only if, ¥12 = 0 and 391 = 0.
More precisely, if, and only if, there exist two independent standard Gaussian Z; ~
Ny, (0,1) and Zs ~ N,, (0,1) and matrices Ay, As such that

Yi=b+A1Z1,
Yo =by + AsZs .

(2) Define %23, = UsA;'UT. The Gaussian random vector with components

Vi =Y — (b + Lia(Ya — by)), Ly = Y1255,
Yo =Y — by

is such that E (371) — 0, Var (171) = Y11 — 158,501, and Vi 1L V. It follows
E (Y1|Y2) = by + L12(Y2 — b)
(3) The conditional distribution of Y1 given Ya = yo is Gaussian with
Y1|(Yo = y2) ~ Ny, (b1 + Li2(y2 — b2), 311 — L12321)
(4) Assume det (X) # 0. Then both det (312) # 0 and det (X),, # 0. If we define the

partitioned concentration to be

Koyl_ {Kll K12}

Ko Koo

then K11 = Ei; and KﬁlKlg = —2122521, so that the conditional density of Y1 given

Yo = yo in terms of the partitioned concentration is

_n 1
Pyilvs (Wily2) = (2m) 72 det (Kqpp)? x

1
exp (—2(111 — b1 — K Kia(y2 — b2)) K11(y1 — by — K" K12 (y2 — bz)))

Proof of . If the blocks are independent, they are uncorrelated. Viceversa, assume 312 = 0
and Yo = ZlTQ = 0. As X;; are nonnegative definite, i = 1,2, there are spectral decompositions
Y1 = U1A1U1T, Yoo = U2A2U2T, with U; € R™1 %" UiUZ-T = [,, and A; positive diagonal, i = 1, 2.
We define

A = UAN?, AF = ATVPUT

so that AiAiT = ¥, and AZFEZ-Z-A?T = I,., 1 =1,2. The Gaussian random vector
Zi| _[47 o0 ][vi—b
Zo| | 0 AF||Y2— by

is Ny, 4, (0, I, 11y ), in particular Z; 1L Z5. We have

AiZi = AT (Y —b) = UUL (Y — b)) =Y — b

because UiUiT is the orthogonal projection of R™ on the subspace of the values of the random
vector Y;, ¢ = 1,2. In conclusion, for ¢ = 1,2 there exist independent white noise presentations.
O
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Proof of . We start with an algebraic property sometimes called Schur complement lemma.
Write X3, = Us A5 'UJ and compute

I —Zupzh] [0 S I o]
0 I Y1 299 —252221 Il
Y11 — $12385,301 Ti2 — X1oXeX, I 0
o1 b)) —¥50 I

Y11 — 21X 5 0
0 )

where we have used the equalities 222232232 = Z;Q, 232222222 = Yo, (I — X92355)%91 = 0.
In particular, the last one depends on UsUJ being the orthogonal projection on the support of
Ys.

The matrix Yp = 211 — 212232221 is sometimes called the Schur complement of the parti-
tioned matrix. From the computation above we see that the Schur complement is nonnegative

definite and that
Y11 Y2
det <{221 Egg}) = det (2”2) det (X22) .

It follows that det (X) # 0 implies both det (31)5) # 0 and det (¥22) # 0.
We have N
il _ |1 —Y1235, ] [Yi — 0 N 0 Y2 O
Y, 0 I Yo — by ni+ny ’ 0 Y99
It follows

E(}/lnfz) =E (Yfl + b1 + L12(Y2 — bg)‘YQ) =E (371) + b1 + L12(Y2 — b2)

O

Proof of . The conditional distribution of Y7 given Y3 is a transition probability piy, |y, : B(R"™)x
R™ such that for all bounded f: R™

B()IYD) = [ £0n) srypa i),
We have
B(0)I¥) = E (77 + EGI¥)[¥2) = [ £o+ B(MI¥) 1(di0,Ep)

where v(dx; 0, Zl|2) is the measure of N, (0, 21‘2). We obtain the statement by considering the
effect on the distribution Ny, (0,%;}2) of the translation  — x + (b1 + L12(y2 — b2)). O

Proof of . A further application of the Schur complement gives

S S| _[I S35 | [Zye O I 0
o1 Doy 0 I | 0 Zo| (2 8n I

whose inverse is

Kn Kp| [ I 0] (252 0 |[I D02
Ky Ko| |33 I[| 0 x3]||0 I
_ . -
_ 2 0 [I —2122221}
S5 SnX, Ea | [0 I
B —1 —1 —1
_ 21‘2 —21‘2212222
ERYTRIIOMTED VD PED I NI I ity
In particular, we have Kq; = Eﬂ% and KﬁlKlg = —2122521, hence

Yi|(Yz = y2) ~ Ny (b1 = K Kaa(y2 — b2), Ky')
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so that the exponent of the Gaussian density has the factor
(1 — by + K11 K1a(y2 — b2)) K1 (y1 — b1 + K7 Ki2(y2 — b2))

5. CONDITIONAL INDEPENDENCE

Conditional independence is a key property in Statistics e.g. Graphical Models, in Stochastic
Processes e.g., Markov processes, in Random Fields, in Machine Learning.

Definition 1.

(1) The nonzero events A, B, C are such that A and C' are independent given B, A1 C| B,
if each one of the following equivalent conditions are satisfied:

P(AnC|B) =P (A|B)P (C|B)
P(A|BnC) =P (A|B)
P(AnBnC)P(B)=P(AnB)P(Bn ()
(2) Random variables Y7, Y3 are conditionally independent given the random variable Y3,

Y11LY5]Y; if each one of the following equivalent conditions are satisfied. If f;, i =
1,...,3, are bounded,

E (f1(Y1)f3(Y3)[Y2) = E (f1(Y1)[Y2) E (f3(Y3)[Y2)
E (f1(Y1)[Y2,Y3) = E(f1(Y1)[Y2)

(3) A stochastic process Yi,...,Yn is a Markov Process if (Y1,...,Yy) LYy, ..., Y| Yk,

k=1,2,...,N.
Proposition 3. Let be given
Y1 b1 Y1 Y12 Y3
Y=Y | ~Npjgnging | [b2], [ X2r Yoo Xos
Y3 b3 Y31 Y32 X33
We have Y1 1LY3| Y5 if, and only if, ¥13 = 212252223. In such a case,
(1)
- (2] i P )
(2)

Vi|(Ya = y2, Y3 = y3) = Y1|(Ya = y2) ~ Ny, (b1 + £1255,(y2 — ba), Byjo)
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HoME wWORK
Read all the texts below, then pick up and solve 2 exercises. The paper is due Mon May 16.

Ezercise 1. Derive in detail the conditional density of Proposition for the bi- and tri-variate
Gaussian distribution.

Ezercise 2. Prove the equivalences in Definition

Ezercise 3. Derive in detail the two forms of the conditional independence in Proposition 3| for
the tri-variate Gaussian distribution.

Ezercise 4. Compute the joint density of (Y7, Ys,Y3) ~ N(b,X), det (X) # 0, if the process is
Markov.

Ezercise 5. Compute the joint density of (Y1, Y2, Ys) ~ N(b,X), det (£) # 0, if the process is a
martingale, i.e. E(Y2|Y7) = Y7 and E (Y3|Y7,Y2) = Ys.
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