
STOCHASTIC PROCESSES AND CALCULUS 2016

2. MULTIVARIATE GAUSSIAN DISTRIBUTION

GIOVANNI PISTONE

Contents

References 1
1. Standard Gaussian Distribution 1
2. Positive Definite Matrices 2
3. General Gaussian Distribution 2
4. Conditioning of Jointly Gaussian Random Variables 3
5. Conditional independence 5
References 5
Home work 6

References

‚ The importance of the Gaussian distribution depend largely on the Central Limit The-
orem, see [2, Part C]

‚ A classic on Multivariate Statistics is T. W. Anderson’s monograph [1].

1. Standard Gaussian Distribution

1. The real random variable Z is standard Gaussian, Z „ N1 p0, 1q if its distribution γ has
density

R Q z ÞÑ φpzq “ p2πq´
1
2 exp

ˆ

´
1

2
z2
˙

with respect to the Lebesgue measure.

2. The Rn-valued random variable Z “ pZ1, . . . , Znq is standard Gaussian, Z „ Nn p0n, Inq if
its components are IID N1 p0, 1q. We write γbn to denote the n-fold product measure.

3. For each multi-index α “ pα1, . . . , αnq P Zně define Hermite polynomial Hαpx1, . . . , xnq “

Hα1px1q ¨ ¨ ¨Hαnpxnq. The sequence 1
α!Hα is orthonormal and total in L1pγbnq.

4.

(1) The distribution γn “ γbn of Z „ Nn p0, Iq has the product density

Rn Q z ÞÑ φpzq “
n
ź

j“1

φpzjq “ p2πq
´n

2 exp

ˆ

´
1

2
}z}2

˙

(2) The moment generating function t ÞÑ E pexp pt ¨ Zqq P Rą is

Rn Q t ÞÑMZptq “
n
ź

j“1

exp

ˆ

1

2
t2i

˙

“ exp

ˆ

1

2
}t}2

˙

MZ is everywhere strictly convex and analytic.

Date: Moncalieri, May 2016 v02.

1



(3) The characteristic function ζ ÞÑ qγnpζq “ E
`

exp
`?
´1ζ ¨ Z

˘˘

P C is

Rn Q ζ ÞÑ qγnpζq “
2
ź

j“1

exp

ˆ

´
1

2
ζ2i

˙

“ exp

ˆ

1

2
}ζ}2

˙

qγn is nonnegative definite and analytic.

2. Positive Definite Matrices

We collect here useful properties of matrices. See [1, Appendix A].

(1) Denote by Mmˆn the vector space of mˆn real matrices. We have Mn,1 Ø Rn. Let Mn

be the vector space of nˆ n real matrices and by GLn the group of invertible matrices.
We denote by Sn its sub-vector space of real symmetric matrices.

(2) The vector space Mm,n is an Hilbert space for the scalar product xA,By “ Tr pB1Aq.
The general linear group GLn is an open subset of Mm.n.

(3) The mapping f : Mn, fpAq “ det pAq has derivative at A in the direction H (that is
derivative at zero of t ÞÑ det pA` tHq P R), equal to Tr padjpAqHq.

(4) The mapping f : GLn, fpAq “ A´1 has derivative at A in the direction H, that is the
derivative at zero of t ÞÑ pA` tHq P GLn, equal to ´A´1HA´1.

(5) Each symmetric matrix A P Sn has n real eigen-values λi, i “ 1, . . . , n and correspond-
ingly an orthonormal basis of eigen-vectors ui, i “ 1, . . . , n.

(6) A matrix A PMn is positive definite, respectively strictly positive definite, if x P Rn ‰ 0
implies x1Ax ě 0, respectively ą 0. We denote by S`n the closed cone of Sn of positive
definite matrices. A positive definite matrix is strictly positive definite if it is invertible.
The set of strictly positive symmetric matrices is the interior of the cone Sn.

(7) A symmetric matrix A is positive definite, respectively strictly positive definite, if, and
only if, all eigen-values are non-negative, respectively positive.

(8) A symmetric matrix B is positive definite if, and only if, A “ B1B for some B P Mn.
Moreover, A P GLn if, and only if, B P GLn.

(9) A symmetric matrix B is positive definite, if, and only if, there exist an upper triangular
matrix T such that A “ T 1T . T can be chosen to have nonnegative diagonal entries and
it is unique if A is invertible.

(10) A symmetric matrix is positive definite, respectively strictly positive definite, if and only
if all leading principal minors are nonnegative.

(11) A symmetric matrix A is positive definite if, and only if A “ B2 and B is positive

definite. We write B “ A
1
2 and call B the positive square root of A.

(12) A symmetric matrix A is positive definite, respectively strictly positive definite, if there
exist an Hilbert space H and vectors x1, . . . ,xn, respectively linear independent vectors,
with aij “ xxi,xjy.

3. General Gaussian Distribution

Proposition 1. (1) Let Z „ Nn p0, Iq, A P Rmˆn, b P Rm, Σ “ AAT . Then Y “ b ` AZ
has a distribution that depends on Γ and b only. The distribution of Y is Gaussian with
mean b and variance Σ, Nm pb,Σq.

(2) Given any non-negative definite Σ, there exists matrices A such that Σ “ AAT .
(3) If det pΣq ‰ 0, then the distribution of Y “ b`AZ „ Nm pb,Σq, A P Rmˆm, AAT “ Σ,

has a density given by

Rm Q y ÞÑ pY pyq “
ˇ

ˇdet
`

A´1
˘
ˇ

ˇφpA´1py ´ bqq “

p2πq´
m
2 det pΣq´

1
2 exp

ˆ

´
1

2
py ´ bqTΣ´1py ´ bq

˙

(4) If det pΣq “ 0 the distribution of Npb,Σq has no density w.r.t. the Lebesgue measure on
Rn.
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4. Conditioning of Jointly Gaussian Random Variables

Proposition 2. Consider a partitioned Gaussian vector

Y “

„

Y1
Y2



„ Nn1`n2

ˆ„

b1
b2



,

„

Σ11 Σ12

Σ21 Σ22

˙

.

Let ri “ Rank pΣiiq and Σii “ UiΛiU
T
i with Ui P Rn1ˆri, Λi P Rriˆri positive diagonal, i “ 1, 2.

(1) The blocks Y1, Y2 are independent, say Y1 KK Y2, if, and only if, Σ12 “ 0 and Σ21 “ 0.
More precisely, if, and only if, there exist two independent standard Gaussian Zi „
Nr1 p0, Iq and Z2 „ Nr2 p0, Iq and matrices A1, A2 such that

#

Y1 “ b1 `A1Z1 ,

Y2 “ b2 `A2Z2 .

(2) Define Σ`22 “ U2Λ
´1
2 UT2 . The Gaussian random vector with components

rY1 “ Y1 ´ pb1 ` L12pY2 ´ b2qq , L12 “ Σ12Σ
`
22

rY2 “ Y2 ´ b2

is such that E
´

rY1

¯

“ 0, Var
´

rY1

¯

“ Σ11 ´ Σ12Σ
`
22Σ21, and rY1 KK rY2. It follows

E pY1|Y2q “ b1 ` L12pY2 ´ b2q

(3) The conditional distribution of Y1 given Y2 “ y2 is Gaussian with

Y1|pY2 “ y2q „ Nn1 pb1 ` L12py2 ´ b2q,Σ11 ´ L12Σ21q

(4) Assume det pΣq ‰ 0. Then both det
`

Σ1|2

˘

‰ 0 and det pΣq22 ‰ 0. If we define the
partitioned concentration to be

K “ Σ´1 “

„

K11 K12

K21 K22



,

then K11 “ Σ´11|2 and K´1
11 K12 “ ´Σ12Σ

´1
22 , so that the conditional density of Y1 given

Y2 “ y2 in terms of the partitioned concentration is

pY1|Y2py1|y2q “ p2πq
´

n1
2 det

`

K1|2

˘
1
2 ˆ

exp

ˆ

´
1

2
py1 ´ b1 ´K

´1
11 K12py2 ´ b2qq

TK11py1 ´ b1 ´K
´1
11 K12py2 ´ b2qq

˙

Proof of (1). If the blocks are independent, they are uncorrelated. Viceversa, assume Σ12 “ 0
and Σ21 “ ΣT

12 “ 0. As Σii are nonnegative definite, i “ 1, 2, there are spectral decompositions
Σ11 “ U1Λ1U

T
1 , Σ22 “ U2Λ2U

T
2 , with Ui P Rn1ˆr1 , UiU

T
i “ Iri and Λi positive diagonal, i “ 1, 2.

We define

Ai “ UiΛ
1{2
i , A`i “ Λ

´1{2
i UTi ,

so that AiA
T
i “ Σii and A`i ΣiiA

`T
i “ Iri , i “ 1, 2. The Gaussian random vector
„

Z1

Z2



“

„

A`1 0
0 A`2

 „

Y1 ´ b1
Y2 ´ b2



is Nr1`r2 p0, Ir1`r2q, in particular Z1 KK Z2. We have

AiZi “ AiA
`
i pYi ´ biq “ UiU

T
i pYi ´ biq “ Yi ´ bi

because UiU
T
i is the orthogonal projection of Rni on the subspace of the values of the random

vector Yi, i “ 1, 2. In conclusion, for i “ 1, 2 there exist independent white noise presentations.
�
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Proof of (2). We start with an algebraic property sometimes called Schur complement lemma.
Write Σ`22 “ U2Λ

´1
2 UT2 and compute

„

I ´Σ12Σ
`
22

0 I

 „

Σ11 Σ12

Σ21 Σ22

 „

I 0
´Σ`22Σ21 I



“

„

Σ11 ´ Σ12Σ
`
22Σ21 Σ12 ´ Σ12Σ22Σ

`
22

Σ21 Σ22

 „

I 0
´Σ`22Σ21 I



“

„

Σ11 ´ Σ12Σ
`
22Σ21 0

0 Σ22



where we have used the equalities Σ22Σ
`
22Σ

`
22 “ Σ`22, Σ`22Σ22Σ22 “ Σ22, pI ´ Σ22Σ

`
22qΣ21 “ 0.

In particular, the last one depends on U2U
T
2 being the orthogonal projection on the support of

Y2.
The matrix Σ1|2 “ Σ11 ´ Σ12Σ

`
22Σ21 is sometimes called the Schur complement of the parti-

tioned matrix. From the computation above we see that the Schur complement is nonnegative
definite and that

det

ˆ„

Σ11 Σ12

Σ21 Σ22

˙

“ det
`

Σ1|2

˘

det pΣ22q .

It follows that det pΣq ‰ 0 implies both det
`

Σ1|2

˘

‰ 0 and det pΣ22q ‰ 0.
We have

„

rY1
rY2



“

„

I ´Σ12Σ
`
22

0 I

 „

Y1 ´ b1
Y2 ´ b2



„ Nn1`n2

ˆ

0,

„

Σ1|2 0
0 Σ22

˙

It follows

E pY1|Y2q “ E
´

rY1 ` b1 ` L12pY2 ´ b2q
ˇ

ˇ

ˇ
Y2

¯

“ E
´

rY1

¯

` b1 ` L12pY2 ´ b2q

�

Proof of (3). The conditional distribution of Y1 given Y2 is a transition probability µY1|Y2 : BpRn1qˆ

Rn2 such that for all bounded f : Rn1

E pfpY1q|Y2q “

ż

fpy1q µY1|Y2pdy1|Y2q.

We have

E pfpY1q|Y2q “ E
´

fprY1 ` E pY1|Y2qq
ˇ

ˇ

ˇ
Y2

¯

“

ż

fpx` E pY1|Y2qq γpdx; 0,Σ1|2q

where γpdx; 0,Σ1|2q is the measure of Nn1

`

0,Σ1|2

˘

. We obtain the statement by considering the

effect on the distribution Nn1

`

0,Σ1|2

˘

of the translation x ÞÑ x` pb1 ` L12py2 ´ b2qq. �

Proof of (4). A further application of the Schur complement gives
„

Σ11 Σ12

Σ21 Σ22



“

„

I Σ12Σ
´1
22

0 I

 „

Σ1|2 0
0 Σ22

 „

I 0
Σ´122 Σ21 I



whose inverse is
„

K11 K12

K21 K22



“

„

I 0
´Σ´122 Σ21 I



«

Σ´11|2 0

0 Σ´122

ff

„

I ´Σ12Σ
´1
22

0 I



“

«

Σ´11|2 0

´Σ´122 Σ21Σ
´1
1|2 Σ´122

ff

„

I ´Σ12Σ
´1
22

0 I



“

«

Σ´11|2 ´Σ´11|2Σ12Σ
´1
22

´Σ´122 Σ21Σ
´1
1|2 Σ´122 Σ21Σ

´1
1|2Σ12Σ

´1
22 ` Σ´122

ff

In particular, we have K11 “ Σ´11|2 and K´1
11 K12 “ ´Σ12Σ

´1
22 , hence

Y1|pY2 “ y2q „ Nn1

`

b1 ´K
´1K12py2 ´ b2q,K

´1
11

˘
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so that the exponent of the Gaussian density has the factor

py1 ´ b1 `K
´1
11 K12py2 ´ b2qq

TK11py1 ´ b1 `K
´1
11 K12py2 ´ b2qq

�

5. Conditional independence

Conditional independence is a key property in Statistics e.g. Graphical Models, in Stochastic
Processes e.g., Markov processes, in Random Fields, in Machine Learning.

Definition 1.

(1) The nonzero events A,B,C are such that A and C are independent given B, AKKC|B,
if each one of the following equivalent conditions are satisfied:

P pAX C|Bq “ P pA|BqP pC|Bq

P pA|B X Cq “ P pA|Bq

P pAXB X CqP pBq “ P pAXBqP pB X Cq

(2) Random variables Y1, Y3 are conditionally independent given the random variable Y2,
Y1KKY3|Y2 if each one of the following equivalent conditions are satisfied. If fi, i “
1, . . . , 3, are bounded,

E pf1pY1qf3pY3q|Y2q “ E pf1pY1q|Y2qE pf3pY3q|Y2q

E pf1pY1q|Y2, Y3q “ E pf1pY1q|Y2q

(3) A stochastic process Y1, . . . , YN is a Markov Process if pY1, . . . , YkqKKYk, . . . , YN |Yk,
k “ 1, 2, . . . , N .

Proposition 3. Let be given

Y “

»

–

Y1
Y2
Y3

fi

fl „ Nn1`n2`n3

¨

˝

»

–

b1
b2
b3

fi

fl ,

»

–

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

fi

fl

˛

‚

We have Y1KKY3|Y2 if, and only if, Σ13 “ Σ12Σ
`
22Σ23. In such a case,

(1)
„

Y1
Y3

ˇ

ˇ

ˇ

ˇ

pY2 “ y2q „ Nn1`n3

ˆ„

b1
b3



`

„

Σ12

Σ32



Σ`22py2 ´ b2q,

„

Σ1|2 0
0 Σ3|2

˙

(2)

Y1|pY2 “ y2, Y3 “ y3q “ Y1|pY2 “ y2q „ Nn1

`

b1 ` Σ1,2Σ
`
22py2 ´ b2q,Σ1|2

˘
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Home work

Read all the texts below, then pick up and solve 2 exercises. The paper is due Mon May 16.

Exercise 1. Derive in detail the conditional density of Proposition 2(4) for the bi- and tri-variate
Gaussian distribution.

Exercise 2. Prove the equivalences in Definition 1.

Exercise 3. Derive in detail the two forms of the conditional independence in Proposition 3 for
the tri-variate Gaussian distribution.

Exercise 4. Compute the joint density of pY1, Y2, Y3q „ Npb,Σq, det pΣq ‰ 0, if the process is
Markov.

Exercise 5. Compute the joint density of pY1, Y2, Y3q „ Npb,Σq, det pΣq ‰ 0, if the process is a
martingale, i.e. E pY2|Y1q “ Y1 and E pY3|Y1, Y2q “ Y2.

Collegio Carlo Alberto
E-mail address: giovanni.pistone@carloalberto.org
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