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1. The 1-d Gauss-Sobolev space

Definition 1. If dγ(z) = 1√
2π

e−
1
2
z2 dz is the standard normal distribution, a 1-dimensional

Gaussian space is a probability space (Ω,F ,P) with a random variable Z : Ω→ R, such
that F = σ(Z), Z ∼ N(0, 1). On a Gaussian space every random variable Y is of the
form Y = f(Z).

We shall study the Hilbert space H = L2(F), that is Y = f(Z) ∈ H means f ∈ L2(γ).
The scalar product of X = f(Z) and Y = g(Z) in H is

〈X, Y 〉 =

∫
f(z)g(z)

1√
2π

e−
1
2
z2 dz = 〈f, g〉γ .

Note that for each X = f(Z) ∈ H, E (X) =
∫
f(z) dz = 〈1, X〉.

Let f be a real function, differentiable and with compact support. Then the integration
by parts formula gives a remarkable result:∫

f ′(z) γ(dz) =

∫
zf(z) γ(dz) .

Date: Moncalieri, May 2016 - v02.
1



that generalises to the following proposition.

Proposition 1.

(1) Let f : R→ R be absolutely continuous, that is

f(x) = f(0) +

∫ x

0

f ′(t) dt

for some f ′ integrable on every real interval. Then f is continuous. Moreover, if
f ′ ∈ L1(γ), then (x 7→ xf(x)) ∈ L1(γ) and∫

zf(z) dγ(z) =

∫
f ′(z) dγ(z) .

(2) The previous equality applies to each polynomial. In particular, for each n ≥ 0∫
z2n dγ(z) =

∫
z · z2n−1 dγ(z) = (2n− 1)

∫
z2(n−1) dγ(z) .

It follows E (Z2n) = (2n− 1)!! so that f(Z) ∈ H for all polynomial f .

Proof. (1) See NP12-1 p. 5.
(2) The previous item and induction.

�

We now extend the previous proposition in a functional way. Note the peculiar termi-
nology. Below, the name S is used in a sense which is different from its use in Fourier anal-
ysis. The name divergence is intended to recall that for each f : Rn → R and g : Rn → Rn,
with proper assumptions, we have grad f(x) = (∂if(x) : i = 1 . . . , n) and∫

grad f(x) · g(x) dx = −
∫
f(x) div g(x) dx ,

hence div g(x) =
∑n

i=1 ∂igi(x).

Definition 2. The function f belongs to S if f ∈ C∞(R) and for each derivative f (n)

there exists a monomial xm such that limx→±∞ x
−mf (n) = 0.

Proposition 2.

(1) S is an algebra with unity that contains the algebra of real polynomial functions.
The derivation acts d : S → S.

(2) Let f, g ∈ S. The operator δ : S defined by δf(x) = xf(x) − f ′(x) is called
divergence operator. It takes values in S and

〈df, g〉γ = 〈f, δg〉γ
(3) On S,

dδ − δd = I

Proof. (1) Let φ be the Lebesgue density of γ. If f ∈ S, then d
d[
f(x)(g(x)φ(x))] =

f ′(x)g(x)φ(x) + f(x)δg(x)φ(x) and each term is Lebesgue integrable.
(2) A computation.

�

Proposition 3. Let S ◦ Z be the vector subspace of H of random variables X such that
X = f(z) with f ∈ S. It is a dense subspace of H.

2



Proof. There is a proof in NP12-1 p. 6 based on Functional Analysis and Fourier Anal-
ysis. A different proof could be based on a variant of the Monotone Class Theorem of
W91¶3.14. In fact, the property of being a π-system for a family of events becomes the
property of being closed for the product in the case of a family of real functions. Pre-
cisely, if fn, gn ∈ S and fn ↓ 1A and gn ↓ 1B, n → ∞ and A,B ∈ F , then fngn ∈ S and
fngn ↓ 1A∩B. �

Proposition 4. (1) The derivation operator d : S → L2(γ) is closable, that is if the
sequence (fn)n∈Z of functions in S converges to 0 in L2(γ) and the sequence of
derivatives (f ′n)n∈Z converges to η ∈ L2(γ), then η = 0.

(2) The Gauss-Sobolev space D of real functions which are absolutely continuous and
such that f, f ′ ∈ L2(γ) with the graph norm

‖f‖D =
(
‖f‖2γ + ‖f ′‖2γ

)
is an Hilbert space, with S ⊂ D ↪→ L2(γ).

(3) S is dense in D, d extends to D as df = f ′ and δ extends to a domain containing
D with

〈df, g〉γ = 〈f, δg〉γ , f ∈ D, g ∈ Dom δ .

Proof. (1) Cf. NP12-1 p. 7, where a more general case is discussed. For g ∈ S we
have ∫

η(x)g(x) γ(dx) = lim
n→∞

∫
dfn(x)g(x) γ(dx)

= lim
n→∞

∫
fn(x)δg(x) γ(dx) = 0 .

(2) It is a general argument of Functional Analysis. Essentially, it is the same argu-
ment we have above, with f ′ in place of df .

(3) Again, it is a check of the definitions. Note that the extension is already given
and we need only to consider the definition of δ on Dom δ by a standard argument
in Functional Analysis.

�

Remark 1. The space D has 1 derivative and square integrability. Wher more generality
is allowed for, it should be denoted by D1,2. With this notation, for example, the space
D2,2 has derivatives up to the secon order, that is f ′(x) = f ′(0) +

∫ x
0
f ′′(u) du and

f(y) = f(0) + f ′(0)y +

∫ y

0

(y − u)f ′′(u) du .

However, this simple setting is not available when the number of independent gaussian
in the Gaussian space is larger than 1.

2. Hermite polynomials

In this Section we discuss an orthonormal base of L2(γ).

Definition 3. The 1-dimensional Hermite polynomials Hn are defined by successive
application of the divergence operator to the constant function 1:

H0(x) = 1, Hn+1 = δHn(x)

Proposition 5.

(1) Each Hermite polynomial Hn is a monic polynomial of degree n.
3



(2) The sequence of Hemite polynomials is total in L2(γ). In other words, the vector
space generated by the Hermite polynomials is the ring of polynomials and it is
dense in L2(γ).

(3) dHn = nHn−1
(4) (d+ δ)Hn(x) = xHn(x)
(5) δdHn = nHn

(6) Hn(x) = (−1)nex
2/2 dn

dxn
e−x

2/2

(7) The sequence (n!)−
1
2Hn is an orthonormal sequence in L2(γ). Because of 2 it is

an orthonormal basis.
(8) If f is a polynomial of degree less that 2n, then the unique polynomial r of degree

less that n such that f(x) = q(x)Hn(x) + r(x) (division of polynomials) is such
that E (f(Z)) = E (r(Z)).

(9) If f ∈ C∞(R) and f (n) ∈ L2(γ) for all n, then

f =
∞∑
n=0

1

n!

∫
f (n)(x) γ(dx) Hn

in L2(γ).
(10) In particular, (

x 7→ ecx−
c2

2

)
=
∞∑
n=0

(
x 7→ cn

n!
Hn(x)

)
Proof. (1) By induction.

(2) Because of the density of the set of polynomials.
(3) By induction using Prop. 2(3):

dHn+1(x) = dδHn(x) = Hn(x) + δdHn(x) = Hn(x) + nδHn−1(x) = (n+ 1)Hn(x) .

(4) Computation from (3).
(5) Computation from (3).
(6) By induction.
(7) Assume m ≤ n and compute

〈Hm, Hn〉γ = 〈Hm, δ
n1〉γ = 〈dnHm, 1〉γ .

(8) From (7) we get
∫
q(x)Hn(x) γ(dx) = 0.

(9) The Fourier expansion of f ∈ L2(γ) is

f =
∞∑
n=0

1

n!
〈f,Hn〉γ =

∞∑
n=0

1

n!
〈f, δn1〉γ

and, by induction, 〈f, δn1〉γ = 〈dnf, 1〉γ =
∫
f (n)(x) γ(dx).

�

Proposition 6.

(1) For all n = 1, 2, . . . the Hermite polynomial Hn(x) has n real roots which are
separated by the n− 1 real roots of Hn−1(x)

(2) There exists weights w1, . . . , wn ∈ R+ such that for each polynomial of degree less
than 2n− 1

E (f(Z)) =
n∑
j=1

wjf(xj) .
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Proof. (1) We proceed by induction. The theorem is true for the couple H1(x), H2(x).
From H ′n+1(x) = (n + 1)Hn(x) we see that the derivative of Hn+1(x) is zero at
each of the n roots of Hn(x). Moreover, at the same points, the second derivative
is H ′′n+1(x) = (n+ 1)nHn−1(x) and cannot be zero by the induction assumption.

(2) First reduce to the case of degree less than n with Prop. 5(8). Let x1, . . . , xn be
the roots of Hn(x) and let Ln,k(x), k = 1, . . . , n be the Lagrange polynomials. for
each real function g, the polynomial Ln[g](x) =

∑n
k=1 g(xk)Ln,k(x) interpolates g

and it is equal everywhere if g is a polynomial of degree less than n. In conclusion

E (f(Z)) = E

(
n∑
k=1

f(xk)Ln,k(Z)

)
=

n∑
k=1

f(xk) E (Ln,k(Z)) .

�

3

Definition 4.

(1) For each u ∈ S2 = {u = (u1, u2) ∈ R2|u21 + u22 = 1}, define the operator Qu : S by

Quf(x) =

∫
f(u2x+ u1z) γ(dz) = E (f(u2x+ u1Z))

(2) For each t ≥ 0 the Ornstein-Uhlenbeck semi-group is the second order differential
operator defined on S by

Ptf(x) = Q(
√
1−e−2t,e−t)f(x).

Here semi-group means that Pof = f and Ps+tf = PsPtf .
(3) The Ornstein-Uhlenbeck operator L is defined on S by

Lf(x) = δdf(x) = − d2

dx2
f(x) + x

d

dx
f(x)

(4) The Hermite polynomials are the eigen-functions of L:

LHn(x) = nHn(x)

We need to check the semi-group property.

Proposition 7.

(1) Qu, hence Pt extend to contraction operators on L2(γ).
(2) 〈Quf, g〉γ = 〈f,Qug〉γ that is both Qu and Pt are auto-adjoint.

(3) dQuf(x) = u2Qu(df)(x) if f ∈ D.
(4) Qu(δf)(x) = u2δQuf(x)
(5) LQu = QuL
(6) QuHn = un2Hn

Proof.

(1) It is a direct check using the fact u1Z1 + u2Z2 ∼ N(0, 1) if Z1, Z2 are independent
and N(0, 1).

(2) Use the rotational invariance of the distribution γ ⊗ γ.

�

Proposition 8.

(1) P0f = f .
(2) Ps ◦ Pt = Ps+t.
(3) d

dt
Ptf = −LPtf , in particular d

dt
Ptf
∣∣
t=0

= −Lf .
5



4

Proposition 9 (Poincaré inequality). If Z ∼ N(0, 1) and f ∈ D1,2, then

Var (f(Z)) ≤ E
(
f ′(Z)2

)
Proof. See [NP12-1] p. 12.

Var (f(Z)) = E (f(Z)(f(Z)− E (f(Z))))

= E (f(Z)(P0f(Z)− P∞f(Z)))

= −
∫ ∞
0

E

(
f(Z)

d

dt
Ptf(Z)

)
dt

=

∫ ∞
0

E (f(Z)δDPtf(Z)) dt

=

∫ ∞
0

E (df(Z)DPtf(Z)) dt

=

∫ ∞
0

e−t E (df(Z)Ptdf(Z)) dt

≤
∫ ∞
0

e−t
√

E (df(Z)2)
√

E (Ptdf(Z)2) dt

≤
∫ ∞
0

e−t E
(
df(Z)2

)
dt = E

(
df(Z)2

)
�

Proposition 10 (Variance expansion). If Z ∼ N(0, 1) and f ∈ S, then

Var (f(Z)) =
∞∑
n=0

1

n!
E
(
f (n)(Z)

)2
.

If, moreover E
(
f (n)(Z)2

)
/n!→ 0, then

Var (f(Z)) =
∞∑
n=1

(−1)n+1

n!
E
(
f (n)(Z)2

)
.

Proof. See [NP12-1] pp. 15-16 The Fourier expansion of f is

f(Z)− E (f(Z)) =
∞∑
n=1

1

n!
E
(
f (n)(Z)

)
Hn(Z)

and

E
(
(f(Z)− E (f(Z)))2

)
=
∞∑
n=1

(
1√
n!

E
(
f (n)(Z)

))2

which proves the first part. For the second part, define

g(t) = E
(
Q(
√
1−t,
√
t)f(Z)2

)
, 0 ≤ t ≤ 1

and note that Var (f(Z)) = g(1)− g(0). Then compute the Taylor expansion. �
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Home work

Solve two of the following exercises. The paper is due on Mon May 9.

Exercise 1. Compute the Fourier transform of each Hn.

Exercise 2. Does x 7→ |x| belong to D? Prove or dispove.

Exercise 3. Let φ be the Gaussian N(0, 1) density. Then φa = y 7→ a−1φ(a−1y) is the
N(0, a2) density. For each f ∈ L2(γ) define

fa(y) = f ? φa(y) =

∫
f(x)φa(y − x) dx =

∫
f(y − x)φa(x) dx

Is fa ∈ S? If fa ∈ S, compute the derivatives. Does fa converge to f in L2(γ), a → 0?.
If f ∈ D does fa → f in D?

Exercise 4. Provide a numerical application of Proposition 6, e.g. compute E (cos(X)2).

As a second option, chose one among the exercises in Sec. 1.7 of the book [NP12-1].

Collegio Carlo Alberto
E-mail address: giovanni.pistone@carloalberto.org
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