STOCHASTIC CALCULUS 2013 PART II

GIOVANNI PISTONE

1. Weakly assigment

Read [2, Ch 2-3]. All the random variables in the following are defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P}(\cdot))$. Choose two among the exercises discussed below. Deadline: coming week.

2. Conditional Expectation

Theorem 1 (Fubini). Let X, Y, be independent random variables. Assume f(X, Y) is integrable and define the partial expectation

 $x \mapsto \widehat{f}(x) = \operatorname{E}\left(f(x, Y)\right).$

Then

$$E(f(x,Y)) = E\left(\widehat{f}(X)\right).$$

Theorem 2. Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . For each $X \in L^1$ there exists a unique \widetilde{X} such that

(1) \widetilde{X} is \mathcal{G} -measurable, and

(2) $E(YX) = E(Y\widetilde{X})$ if Y is bounded and *G*-measurable.

The random variable \widetilde{X} is called the conditional expectation of X given \mathcal{G} and it is denoted by $E(X|\mathcal{G})$.

Theorem 3. Let X, Y independent random variables and let $\mathcal{G} = \sigma(X)$. Define the partial expectation

$$\widehat{f}(x) = \operatorname{E}\left(f(x,Y)\right).$$

Then

$$E(f(X,Y)|\mathcal{G}) = \widehat{f}(X).$$

Proof. Exercise 1a Hint: 1. prove that f(x, Y) is integrable; 2. check the definition of conditional expectation for $\widehat{f}(X)$ by observing that $g(x) \to (f(x, Y)) = \to (g(x)f(x, Y))$.

Theorem 4. Let Q be a positive density and $E_Q[X] = E(QX)$. Then

$$\mathbb{E}_{Q}\left[X|\mathcal{G}\right] = \frac{\mathbb{E}\left(QX|\mathcal{G}\right)}{\mathbb{E}\left(Q|\mathcal{G}\right)}.$$

Proof. Exercise 1b

3. Multivariate Hermite Polynomials

Define

$$\delta f(x) = x f(x) - f'(x)$$
$$= -e^{x^2/2} \frac{d}{dx} \left(f(x) e^{-x^2/2} \right)$$

If $Z \sim \mathcal{N}(0, 1)$, then

$$\mathcal{E}\left(g(Z)\delta f(Z)\right) = \mathcal{E}\left(dg(Z)f(Z)\right),$$

i.e. δ is the transpose of the derivative w.r.t. the standard Gaussian measure. Moreover, $d\delta - \delta d = id$.

Definition 1. The Hermite polynomials are

$$H_0 = 1,$$

$$H_n(x) = \delta^n 1, n > 0.$$

Date: ver. 0.9 January 15, 2013.

The first Hermite polynomials are

$$H_1(x) = x,$$

$$H_2(x) = x^2 - 1,$$

$$H_3(x) = x^3 - 3x,$$

$$H_4(x) = x^4 - 6x^2 + 3,...$$

Theorem 5. (1) Let $Z \sim N(0,1)$. The random variables $H_n(Z)$ are orthogonal, $E(H_n(Z)H_m(Z)) = 0$ if $n \neq m$, and $E(H_n(Z)^2) = n!$.

$$(2) \quad dH_n = nH_{n-1},$$

(3) $H_{n+1} = xH_n - nH_{n-1}$.

Proof. (1) Let
$$m \leq n$$
. The conclusion follows from

$$E(H_n(Z)H_m(Z)) = E(d^n H_m(Z))$$

by observing that $H_m(z) = z^m + \cdots$.

(2) By induction: $dH_1(x) = 1$, and

$$dH_n(x) = d\delta H_{n-1}(x) = \delta dH_{n-1}(x) + H_{n-1}(x)$$

= $(n-1)\delta H_{n-2}(x) + H_{n-1}(x) = nH_{n-1}(x)$

Theorem 6. Let Z_1, \ldots, Z_k be IID N(0,1) and define the multivariate standard normal $\mathbf{Z} = (Z_1, \ldots, Z_k)$. The random variables

$$\frac{1}{\boldsymbol{n}!}H_{\boldsymbol{n}}(\boldsymbol{Z}) = \frac{1}{n_1!}H_{n_1}(Z_1)\cdots \frac{1}{n_k!}H_{n_k}(Z_k),$$

where $\mathbf{n} = (n_1, \ldots, n_k)$ is a multi-index and $\mathbf{n}! = n_1! \cdots n_k!$, are an orthonormal basis of $L^2(\sigma(\mathbf{Z}))$.

 \Box

A discrete time real stochastic process Y_0, Y_1, \ldots adapted to the filtation $\mathcal{F}_t, t = 0, 1, \ldots$ is a *martingale* if it is integrable and

$$\mathcal{E}\left(Y_t \left| \mathcal{F}_s \right.\right) = Y_s, \quad \text{if } s \le t$$

Theorem 7. Let $(Y_t, \mathcal{F}_t: t = 1, 2, ...)$ be a square-integrable martingale.

(1) The process

$$A_t = \sum_{s \le t} \operatorname{E} \left(Y_s^2 - Y_{s-1}^2 \left| \mathcal{F}_{t-1} \right. \right)$$

is integrable, increasing and predictable, i.e. A_t is \mathcal{F}_{t-1} -measurable.

(2) $(Y_t^2 - A_t, \mathcal{F}_t: t = 1, 2, ...)$ is a martingale.

The process A is called the compensator of
$$Y^2$$
.

Definition 2. A discrete time stochastic process Y_0, Y_1, \ldots adapted to the filtration $\mathcal{F}_0, \mathcal{F}_1, \ldots$ is a Markov process if for all s < t and all real function f such that $f(Y_t)$ is integrable, there exists a real function $\hat{f}_{s,t}$ such that

If

$$\widehat{f}_{t-1,t}(x) = \int f(y)\kappa(x,y)dy$$

 $\operatorname{E}\left(f(Y_t) | \mathcal{F}_s\right) = \widehat{f}_{s,t}(Y_s)$

the function κ is called kernel or transition probability of the Markov process.

5. Gaussian Random Walk

Let Z_1, Z_2, \ldots be IID N(0, 1) and define the Gaussian Random Walk GRW to be the stochastic process

$$W_0 = 0,$$

$$W_1 = Z_1 = W_0 + Z_1,$$

$$W_2 = Z_1 + Z_2 = W_1 + Z_2,$$

$$W_3 = Z_1 + Z_2 + Z_3 = W_2 + Z_3,$$

$$\vdots$$

Theorem 8. (1) The GRW is a Gaussian process.

- (2) The random vector (W_1, \ldots, W_{t-1}) and the random variable $(W_t W_{t-1}) = Z_t$ are independent.
- (3) The GRW is a Markov process with kernel

$$\kappa(x,y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(y-x)^2\right).$$

- (4) The GRW is a square-integrable martingale.
- (5) The compensator of Y^2 is $A_n = n$.

Proof. Exercise 3

Theorem 9 (Hermite martingales of the GRW). Chose an Hermite polynomial H_n and define the real stochastic process

$$X_0 = 0,$$

$$X_t = t^{\frac{n}{2}} H_n\left(\frac{W_t}{\sqrt{t}}\right), \quad t = 1, 2, \dots$$

The process $(X_t)_t$ is a square integrable martingale for the filtration where F_0 is trivial and

$$F_t = \sigma(W_1, \dots, W_t) = \sigma(Z_1, \dots, Z_t), \quad t > 0.$$

Proof. Exercise 4 Hint. We want to prove

$$\mathbf{E}\left(t^{\frac{n}{2}}H_n\left(\frac{W_t}{\sqrt{t}}\right)|\mathcal{F}_{t-1}\right) = (t-1)^{\frac{n}{2}}H_n\left(\frac{W_{t-1}}{\sqrt{t-1}}\right)$$

that is

$$\mathbf{E}\left(t^{\frac{n}{2}}H_n\left(\frac{w_{t-1}+Z_n}{\sqrt{t}}\right)\right) = (t-1)^{\frac{n}{2}}H_n\left(\frac{w_{t-1}}{\sqrt{t-1}}\right).$$

Try first the case $n = 1, 2, \ldots$ Write $\frac{w_{t-1}}{\sqrt{t-1}} = y$ to reduce to

$$\left(\frac{t}{t-1}\right)^{\frac{n}{2}} \mathbf{E}\left(H_n\left(\frac{\sqrt{t-1}y+Z_n}{\sqrt{t}}\right)\right) = H_n\left(y\right),$$

and apply to the LHS the definition of Hermite polynomial. $\hfill \Box$

Exercise 4': It is interesting to compare the beaviour of the different Hermite martingales with a simulation, for example n = 1, 2, 3, 4 on t = 0, 1, ..., 100. First obtain a random sample $z, ..., z_{100}$, compute the cumulated sums, then the Hermite polynomials, and plot.

References

- Paul Malliavin, Integration and probability, Graduate Texts in Mathematics, vol. 157, Springer-Verlag, New York, 1995, With the collaboration of Hélène Airault, Leslie Kay and Gérard Letac, Edited and translated from the French by Kay, With a foreword by Mark Pinsky. MR MR1335234 (97f:28001a)
- Steven E. Shreve, Stochastic calculus for finance. II, Springer Finance, Springer-Verlag, New York, 2004, Continuous-time models. MR 2057928 (2005c:91001)

Collegio Carlo Alberto *E-mail address*: giovanni.pistone@carloalberto.org