
STOCHASTIC CALCULUS 2013

PART I

GIOVANNI PISTONE

1. Weakly assigment

Read [2, Ch 1-2]. All the random variables in the following
are defined on the probability space (Ω,F ,P (·)). Choose two
among the exercises discussed below. Deadline: coming week.

2. Expectation

Definition 1. If X is a nonnegative random variable, X ∈
L+, its expectation is well defined and equal to

E (X) =

∫ +∞

0

P (X > x) dx.

The mapping x 7→ P (X > x) is nonincreasing, hence the
integral is an ordinary integral. If X ∼ B(p), then E (X) = p.

Theorem 1. (1) If X ∈ L+, then E (X) = 0 if, and only
if X = 0 a.s.

(2) If X,Y ∈ L+, then X + Y ∈ L+ and E (X + Y ) =
E (X) + E (Y ).

(3) If X,Y ∈ L+ and X ≤ Y , then E (X) ≤ E (Y ), with
equality if, and only if, X = Y a.s.

(4) If Xn ↑ X, n→∞, then E (Xn) ↑ E (X).

Proof. Exercise 1 �

Definition 2. If X is a real random variable, and both E (X+)
and E (X−) are finite, then X ∈ L1 and its expected value is

E (X) = E
(
X+
)
− E

(
X−
)
.

Theorem 2. Let G be a sub-σ-algebra of F . For each X ∈ L1

there exists a unique X̃ such that

(1) X̃ is G-measurable, and

(2) E (Y X) = E
(
Y X̃

)
if Y is bounded and G-measurable.

The random variable X̃ is called the conditional expectation
of X given G and it is denoted by E (X |G ).

3. Bregman divergence

Let f be (strictly) convex and C1 on the open interval
I =]a, b[, a ∈ {−∞} ∪R, b > a and in R ∪ {+∞}. Define the
Bregman divergence between x and y in I as

d(y;x) = f(y)− f(x)− f ′(x)(y − x).

The divergence is nonnegative and it is zero if, and only if,
x = y. The mapping y 7→ d(y;x) is convex with derivative

d

dy
d(y;x) = f ′(y)− f ′(x).

The mapping x 7→ d(y;x) is not convex in general. Check as
Exercise 2a that

(1) d(y;x)− d(y; z) = d(z;x) + (f ′(z)− f ′(x))(y − z)

Definition 3. If X and Y are random variables with values
in I, the random variable d(Y ;X) is nonnegative and we can
define their Bregman divergence by

D(y;x) = E (d(Y ;X)) .
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The divergence is nonnegative, possibly +∞, and it is zero
if, and only if, X = Y a.s.

If f(x) = x2, then I = R and

d(y;x) = y2 − x2 − 2x(y − x)

= (y − x)2

and
D(Y ;X) = E

(
(Y −X)2

)
.

If f(x) = x lnx− x with I =]0,+∞[, then

d(y;x) = y ln y − y − (x lnx− x)− lnx(y − x)

= y(ln y − lnx) + x− y

= y ln
(y
x

)
− y + x.

If Q and P are positive densities, then

D(Q;P ) = E

(
Q ln

(
Q

P

)
−Q+ P

)
= E

(
Q ln

(
Q

P

))
− 1 + 1

= E

(
Q ln

(
Q

P

))
= EQ

[
ln

(
Q

P

)]
.

If P = 1, then D(Q; 1) = E (Q ln (Q)) is called the en-
tropy of Q. Check the keyword minimal entropy measure on
Google, e.g. http://www.math.ethz.ch/~mschweiz/Files/
MEMM-eqf.pdf. For other examples of Bregman divergence,
see http://en.wikipedia.org/wiki/Bregman_divergence.

Theorem 3. Let G be a sub-σ-algebra of F . Assume X and
Y take values in I and X is G-measurable. If Y ∈ L1, the

conditional expectation Ỹ = E (Y |G ) takes values in I and

D(Y ;X) ≥ D(Y ; Ỹ ).

Viceversa, if Ỹ is the minimum point of X 7→ D(Y ;X) over

all X taking values in I and G-measurable, then Ŷ = E (Y |G ).

Proof. Exercise2b

(1) If I =]a, b[ and a is finite, then I ⊂ {y : y − a > 0}.
As Y −a > 0 a.s., it follows E (Y − a |G ) = Ỹ −a > 0
a.s.

(2) From (1),

d(Y ;X)− d(Y ; Ỹ ) = d(Ỹ ;X) + (f ′(Ỹ )− f ′(X))(Y − Ỹ )

≥ (f ′(Ỹ )− f ′(X))(Y − Ỹ ).

If (f ′(Ỹ )− f ′(X)) were bounded, the expected value
of the inequality would be zero. If not, multiply the

inequality by (−n < f ′(Ỹ )− f ′(X) < n).

(3) IfD(Y ;X) = d(Y ; Ỹ ) and (f ′(Ỹ )−f ′(X)) were bounded,

then D(X; Ỹ ) = 0.

�

4. Hermite polynomials

Define

δf(x) = xf(x)− f ′(x)

= −ex
2/2 d

dx

(
f(x)e−x

2/2
)
.

If Z ∼ N (0, 1), then

E (g(Z)δf(Z)) = E (dg(Z)f(Z)) ,

i.e. δ is the transpose of the derivative w.r.t. the standard
Gaussian measure. Moreover, dδ − δd = id.
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Definition 4. The Hermite polynomials are

H0 = 1,

Hn(x) = δn1, n > 0.

The first Hermite polynomials are

H1(x) = x,

H2(x) = x2 − 1,

H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3, . . .

Theorem 4. (1) Let Z ∼ N(01). The random variables
Hn(Z) are orthogonal, E (Hn(Z)Hm(Z)) = 0 if n 6=
m, and E

(
Hn(Z)2

)
= n!.

(2) dHn = nHn−1,
(3) Hn+1 = xHn − nHn−1.

Proof. Exercise 3. There are various references, e.g. [1,
230–233] �

Theorem 5. (Hn(Z)/
√
n!), n = 0, 1, 2 . . . , is an orthonor-

mal basis of L2(σ(Z)).

A proof is in the reference above. We skip it, but this
example is of interest for us:

exp

(
tZ − t2

2

)
=

∞∑
n=0

tn

n!
Hn(Z).

4.1. Gaussian quadrature.

Theorem 6. (1) Each Hermite polynomial Hn, n ≥ 1,
has n distinct real roots.

(2) The roots of Hn+1 are separated by the roots of Hn,
n ≥ 1.

Let f be a polynomial in one variable with real coefficients.
By polynomial division

f(x) = q(x)Hn(x) + r(x)

where r has degree smaller than Hn and r(x) = f(x) on
{x : Hn(x) = 0}. The n − 1 degree polynomial r is the re-
mainder.

It follows

E (f(Z)) = E (q(Z)Hn(Z)) + E (r(Z))

= E (q(Z) δ1n(Z)) + E (r(Z))

= E (dnq(Z)) + E (r(Z)) .

Hence

E (f(Z)) = E (r(Z)) iff E (dnq(Z)) = 0

Note that dnq(Z) = 0 if and only if q has degree smaller
than n and this is only if f has degree smaller or equal to
2n− 1. The expected value can be zero in many other cases.

If r has degree ness than n, then

r(x) =

n∑
i=1

r(xi)Li(x),

where x1, . . . , xn are the roots of Hn(x) = 0 and

Li(x) =

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

are the Lagrange polynomials. The quadrature formula fol-
lows:

E (f(Z)) = E (r(Z))

=

n∑
i=1

r(xi) E (Li(Z))

=

n∑
i=1

r(xi)wn,i.

The values of the weights wn,i are precomputed and available
in numerical tables and numerical software. See e.g. the clas-
sical tables http://people.math.sfu.ca/~cbm/aands/ and
the relevant R funtions.

Exercise 4 Write in detail the method of quadrature and
compute numerically an example.

References

1. Paul Malliavin, Integration and probability, Graduate Texts in Math-

ematics, vol. 157, Springer-Verlag, New York, 1995, With the collab-
oration of Hélène Airault, Leslie Kay and Gérard Letac, Edited and

translated from the French by Kay, With a foreword by Mark Pinsky.

MR MR1335234 (97f:28001a)
2. Steven E. Shreve, Stochastic calculus for finance. II, Springer Fi-

nance, Springer-Verlag, New York, 2004, Continuous-time models.

MR 2057928 (2005c:91001)

Collegio Carlo Alberto

E-mail address: giovanni.pistone@carloalberto.org


