STOCHASTIC CALCULUS 2013 PART I

GIOVANNI PISTONE

1. Weakly assigment

Read [2, Ch 1-2]. All the random variables in the following are defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P}(\cdot))$. Choose two among the exercises discussed below. Deadline: coming week.

2. EXPECTATION

Definition 1. If X is a nonnegative random variable, $X \in \text{If } Q$ and P are positive densities, then L^+ , its expectation is well defined and equal to

$$\mathcal{E}(X) = \int_{0}^{+\infty} \mathbb{P}(X > x) \, dx$$

The mapping $x \mapsto \mathbb{P}(X > x)$ is nonincreasing, hence the integral is an ordinary integral. If $X \sim B(p)$, then E(X) = p.

- (1) If $X \in L^+$, then E(X) = 0 if, and only Theorem 1. if X = 0 a.s.
 - (2) If $X, Y \in L^+$, then $X + Y \in L^+$ and E(X + Y) = $\mathbf{E}(X) + \mathbf{E}(Y).$
 - (3) If $X, Y \in L^+$ and $X \leq Y$, then $E(X) \leq E(Y)$, with equality if, and only if, X = Y a.s.
 - (4) If $X_n \uparrow X$, $n \to \infty$, then $E(X_n) \uparrow E(X)$.

Proof. Exercise 1

Definition 2. If X is a real random variable, and both $E(X^+)$ and $E(X^{-})$ are finite, then $X \in L^{1}$ and its expected value is $\mathbf{E}(X) = \mathbf{E}(X^{+}) - \mathbf{E}(X^{-}).$

Theorem 2. Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . For each $X \in L^1$ there exists a unique \widetilde{X} such that

- (1) \widetilde{X} is \mathcal{G} -measurable, and
- (2) $E(YX) = E(Y\widetilde{X})$ if Y is bounded and \mathcal{G} -measurable.

The random variable \widetilde{X} is called the conditional expectation of X given \mathcal{G} and it is denoted by $E(X|\mathcal{G})$.

3. Bregman divergence

Let f be (strictly) convex and C^1 on the open interval $I = [a, b], a \in \{-\infty\} \cup \mathbb{R}, b > a \text{ and in } \mathbb{R} \cup \{+\infty\}.$ Define the Bregman divergence between x and y in I as

$$d(y;x) = f(y) - f(x) - f'(x)(y - x).$$

The *divergence* is nonnegative and it is zero if, and only if, x = y. The mapping $y \mapsto d(y; x)$ is convex with derivative

$$\frac{d}{dy}d(y;x) = f'(y) - f'(x).$$

The mapping $x \mapsto d(y; x)$ is not convex in general. Check as Exercise 2a that

(1)
$$d(y;x) - d(y;z) = d(z;x) + (f'(z) - f'(x))(y - z)$$

Definition 3. If X and Y are random variables with values in I, the random variable d(Y; X) is nonnegative and we can define their Bregman divergence by

$$D(y;x) = \mathcal{E}(d(Y;X)).$$

The divergence is nonnegative, possibly $+\infty$, and it is zero if, and only if, X = Y a.s.

If $f(x) = x^2$, then $I = \mathbb{R}$ and

$$d(y;x) = y^{2} - x^{2} - 2x(y - x)$$
$$= (y - x)^{2}$$

and

$$D(Y; X) = \mathbb{E}\left((Y - X)^2\right).$$

If $f(x) = x \ln x - x$ with $I =]0, +\infty[$, then
$$d(y; x) = y \ln y - y - (x \ln x - x) - \ln x(y - x))$$
$$= y(\ln y - \ln x) + x - y$$
$$= y \ln\left(\frac{y}{x}\right) - y + x.$$

$$D(Q; P) = E\left(Q\ln\left(\frac{Q}{P}\right) - Q + P\right)$$
$$= E\left(Q\ln\left(\frac{Q}{P}\right)\right) - 1 + 1$$
$$= E\left(Q\ln\left(\frac{Q}{P}\right)\right) = E_Q\left[\ln\left(\frac{Q}{P}\right)\right]$$

If P = 1, then $D(Q; 1) = E(Q \ln(Q))$ is called the *en*tropy of Q. Check the keyword minimal entropy measure on Google, e.g. http://www.math.ethz.ch/~mschweiz/Files/ MEMM-eqf.pdf. For other examples of Bregman divergence, see http://en.wikipedia.org/wiki/Bregman_divergence.

Theorem 3. Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Assume X and Y take values in I and X is \mathcal{G} -measurable. If $Y \in L^1$, the conditional expectation $\widetilde{Y} = E(Y|\mathcal{G})$ takes values in I and

$$D(Y;X) \ge D(Y;Y).$$

Viceversa, if \widetilde{Y} is the minimum point of $X \mapsto D(Y; X)$ over all X taking values in I and \mathcal{G} -measurable, then $\widehat{Y} = \mathbb{E}(Y | \mathcal{G})$.

Proof. Exercise2b

(1) If I =]a, b[and a is finite, then $I \subset \{y : y - a > 0\}$. As Y - a > 0 a.s., it follows $E(Y - a | \mathcal{G}) = \tilde{Y} - a > 0$ a.s.

(2) From
$$(1)$$
,

$$d(Y;X) - d(Y;\widetilde{Y}) = d(\widetilde{Y};X) + (f'(\widetilde{Y}) - f'(X))(Y - \widetilde{Y})$$

$$\geq (f'(\widetilde{Y}) - f'(X))(Y - \widetilde{Y}).$$

If $(f'(\widetilde{Y}) - f'(X))$ were bounded, the expected value of the inequality would be zero. If not, multiply the inequality by (-n < f'(Y) - f'(X) < n).

(3) If $D(Y; X) = d(Y; \widetilde{Y})$ and $(f'(\widetilde{Y}) - f'(X))$ were bounded, then $D(X; \widetilde{Y}) = 0.$

4. Hermite polynomials

Define

$$\delta f(x) = x f(x) - f'(x)$$
$$= -e^{x^2/2} \frac{d}{dx} \left(f(x) e^{-x^2/2} \right)$$

If $Z \sim \mathcal{N}(0, 1)$, then

$$\mathcal{E}\left(g(Z)\delta f(Z)\right) = \mathcal{E}\left(dg(Z)f(Z)\right)$$

i.e. δ is the transpose of the derivative w.r.t. the standard Gaussian measure. Moreover, $d\delta - \delta d = id$.

Date: ver. 1.1 January 15, 2013.

GIOVANNI PISTONE

Definition 4. The Hermite polynomials are

$$H_0 = 1,$$

$$H_n(x) = \delta^n 1, n > 0.$$

The first Hermite polynomials are

$$H_1(x) = x,$$

$$H_2(x) = x^2 - 1,$$

$$H_3(x) = x^3 - 3x,$$

$$H_4(x) = x^4 - 6x^2 + 3, \dots$$

Theorem 4. (1) Let $Z \sim N(01)$. The random variables $H_n(Z)$ are orthogonal, $E(H_n(Z)H_m(Z)) = 0$ if $n \neq m$, and $E(H_n(Z)^2) = n!$. (2) $dH_n = nH_{n-1}$,

(3) $H_{n+1} = xH_n - nH_{n-1}$.

Proof. **Exercise 3**. There are various references, e.g. [1, 230-233]

Theorem 5. $(H_n(Z)/\sqrt{n!})$, n = 0, 1, 2..., is an orthonormal basis of $L^2(\sigma(Z))$.

A proof is in the reference above. We skip it, but this example is of interest for us:

$$\exp\left(tZ - \frac{t^2}{2}\right) = \sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(Z).$$

4.1. Gaussian quadrature.

Theorem 6. (1) Each Hermite polynomial H_n , $n \ge 1$, has n distinct real roots.

(2) The roots of H_{n+1} are separated by the roots of H_n , $n \ge 1$.

Let f be a polynomial in one variable with real coefficients. By polynomial division

$$f(x) = q(x)H_n(x) + r(x)$$

where r has degree smaller than H_n and r(x) = f(x) on $\{x: H_n(x) = 0\}$. The n-1 degree polynomial r is the remainder.

It follows

$$E(f(Z)) = E(q(Z)H_n(Z)) + E(r(Z))$$
$$= E(q(Z) \delta 1^n(Z)) + E(r(Z))$$
$$= E(d^n q(Z)) + E(r(Z)).$$

Hence

$$E(f(Z)) = E(r(Z)) \quad \text{iff} \quad E(d^n q(Z)) = 0$$

Note that $d^n q(Z) = 0$ if and only if q has degree smaller than n and this is only if f has degree smaller or equal to 2n - 1. The expected value can be zero in many other cases.

If r has degree ness than n, then

$$r(x) = \sum_{i=1}^{n} r(x_i) L_i(x),$$

where x_1, \ldots, x_n are the roots of $H_n(x) = 0$ and

$$L_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}$$

are the Lagrange polynomials. The *quadrature formula* follows:

$$E(f(Z)) = E(r(Z))$$
$$= \sum_{i=1}^{n} r(x_i) E(L_i(Z))$$
$$= \sum_{i=1}^{n} r(x_i) w_{n,i}.$$

The values of the weights $w_{n,i}$ are precomputed and available in numerical tables and numerical software. See e.g. the classical tables http://people.math.sfu.ca/~cbm/aands/ and the relevant R functions.

Exercise 4 Write in detail the method of quadrature and compute numerically an example.

References

- Paul Malliavin, Integration and probability, Graduate Texts in Mathematics, vol. 157, Springer-Verlag, New York, 1995, With the collaboration of Hélène Airault, Leslie Kay and Gérard Letac, Edited and translated from the French by Kay, With a foreword by Mark Pinsky. MR MR1335234 (97f:28001a)
- Steven E. Shreve, Stochastic calculus for finance. II, Springer Finance, Springer-Verlag, New York, 2004, Continuous-time models. MR 2057928 (2005c:91001)

Collegio Carlo Alberto *E-mail address:* giovanni.pistone@carloalberto.org