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Brémaud Pierre Brémaud, An introduction to probabilistic modeling, Undergraduate texts in
mathematics, Springer, New York, 1997

DD1 Didier Dacunha-Castelle and Marie Duflo, Probabilités et statistiques. tome 1: Problèmes à
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Random variables

Random variable
Let (S ,S) and (R,B) be measurable spaces, and X : S → R a function.
The function X is a (R,B)-random variable if X−1(B) ⊂ S.

If C ⊂ B is a generating set of B, and X−1(C) ⊂ S, then X is a random variable. In fact, let

E =
{

B ∈ B
∣∣∣X−1(B) ∈ S

}
. Then E is a sub-σ-algebra of B, and C ⊂ E, then E = B, see [Williams 3.2.b].

The σ-algebra generated by X is X−1(B). From C ⊂ B, we have X−1(C) ⊂ X−1(B), hence

σ(X−1(C)) ⊂ X−1(B) = X−1(σ(C)). Let E =
{

B ∈ B
∣∣∣X−1(B) ∈ σ(X−1(C))

}
. As E is a σ-algebra

containing C and contained in in B, then E = B and X−1(B) = σ(X−1(C)).

Checking Measurability

Let (S ,S) be a measurable space and X : S → R. If C is a family of
subsets of R and X−1(C) ⊂ S, then

1. X is a random variable in (S , σ(C));

2. σ(X ) = X−1(σ(C)) = σ(X−1(C)).

In particular, if S ⊂ R and X : S 3 x 7→ x ∈ R is the immersion, then
X−1(C) = C ∩ S = {C ∩ S |C ∈ C}.
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2. Stochastic Process
1 Trajectory: definition

Let I be a real interval, the set of times. Let D be a set of real functions
u : I → R, the set of trajectories. Given t ∈ I, the mapping Πt : D → R
defined by Πt(u) = u(t) is the evaluation of the trajectory at t. Let
D = σ(Πt : t ∈ I) be the σ-algebra generated by the evaluations. The
measurable space (D,D) is a space of trajectories.

2 Stochastic process: definition

Given a probability space (Ω,F ,P) and a space of trajectories (D,D), a
stochastic process on (Ω,F ,P) with trajectories in D is a random
variable X : Ω→ D, X−1 : D → F . The distribution of X is P ◦X−1.

3 Stochastic process: distribution

1. If t1, . . . , tn ∈ I, then (Xt1 , . . . ,Xtn ) is random variable in Rn whose
distribution is called finite-dimensional distribution at t1, . . . , tn ∈ I.

2. Finite dimensional distributions characterize the distribution of the
stochastic process.
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E1
Check 3.1–2. Use [Williams.3]: Def 3.1 applies to general range, not just
to real valued functions.

The family of events of the form
{
ω ∈ S

∣∣∣Xt1
∈ B1, . . . , Xtn ∈ Bn

}
, for B1, . . . , Bn ∈ B, is a π-system that

generates X−1(D). Note that it is enough to take the B’s is a π-system for R.

E2
Consider the polynomials l0(x) = 1, l1(x) =

√
3(2x − 1),

l2(x) =
√

5(6x2 − 6x + 1); check the orthonormality on [0, 1]. Define

Li (t) =
∫ t

0
li (x)dx . Given Z0,Z1,Z2 iid N(0, 1), define the stochastic

process W (2) = L0Z0 + L1Z1 + L2Z2. Compute Cov
(

W
(2)
s ,W

(2)
t

)
and

the marginal distribution of (W
(2)
s ,W

(2)
t )
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Note that W (2) is a stochastic process whose trajectories are polynomials of degree up to 3, and

E
(

W
(2)
t

)
= E (L0(t)Z0 + L1(t)Z1 + L2(t)Z2) = 0.

∫ 1

0
l0(x)l0(x) dx =

∫ 1

0
12 dx = 1∫ 1

0
l1(x)l1(x) dx =

∫ 1

0
(
√

3(2x − 1))2 dx = 3

∫ 1

0
(4x2 − 4x + 1) dx = 1∫ 1

0
l0(x)l1(x) dx =

∫ 1

0
1(
√

3(2x − 1)) dx = 0∫ 1

0
l2(x)l2(x) dx =

∫ 1

0
(
√

5(6x2 − 6x + 1))2 dx = 5

∫ 1

0
(36x4 − 72x3 + 48x2 − 12x + 1) dx = 1∫ 1

0
l0(x)l2(x) dx =

∫ 1

0
1(
√

5(6x2 − 6x + 1)) dx = 0∫ 1

0
l1(x)l2(x) dx =

∫ 1

0
((
√

3(2x − 1)))((
√

5(6x2 − 6x + 1))) dt = 0

Cov
(

W (2)
s ,W

(2)
t

)
= E ((L0(s)Z0 + L1(s)Z1 + L2(s)Z2)(L0(t)Z0 + L1(t)Z1 + L2(t)Z2)) =

n∑
i,j=0

Li (s)Lj (t) E
(

Zi Zj
)

=
n∑

i=0

Li (s)Li (t)

(W (2)
s ,W

(2)
t ) ∼ N

(
0,

[ ∑n
i=0 L2

i (s)
∑n

i=0 Li (s)Li (t)∑n
i=0 Li (s)Li (t)

∑n
i=0 L2

i (t)

])
To be continued in the chapter on Wiener process.
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Exponential distribution

The exponential distribution Exp(λ) has support [0,+∞[ and it is a
model for random times. The parameter λ > 0 is the intensity. The
positive random variable X has exponential distribution with intensity λ
(λ > 0) if its density is fX (x) = λ exp(−λx)(x > 0). The survival
function is 1 if x < 0 and for x ≥ 0 its value is RX (x) = exp(−λx). The
distribution function is 0 if x < 0 and for x ≥ 0 its value is
FX (x) = 1− RX (x) = 1− exp(−λx). The quantile function,
{x |FX (x) ≥ u} = {x |QX (u) ≤ x}, 0 < u < 1, is QX (u) = − 1

λ ln(1− u),
∈]0, 1[. The expected value is

E (X ) =
∫ +∞

0
RX (x)dx =

∫ +∞
0

exp(−λx)dx = 1
λ . The moment

generating function is MX (t) = E (exp(tX )) = λ
λ−t if t < λ. The

variance is Var (X ) = 1
λ2 . If X1, . . . ,Xn are iid Exp(λ), then

T = X1 + · · ·+ Xn is Γ(n, λ), with density fT (t) = λntn−1

(n−1)! e
−λt(t > 0). [ If

p is a proposition, the (p) is the truth value, i.e. the indicator function.]
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The exponential distribution is memory-less

Easy version

Let X ∼ Exp(λ). For each a, t ≥ 0,

P (X > t + a | X > a) = P (X > t) .

More sophisticated version

Let X ∼ Exp(λ) and let G be a σ-algebra independent of X . If A and B
are positive G-measurable random variables, then for all t > 0,

E (B(X > t + A)) = P (X > t)E (B(X > A)) .

Proofs: Independence implies (see [Williams 8.3-4])

E (B(X > t + A)) = E
(∫ +∞

0
B(x > t + A) λe−λx dx

)
= E

(
Be
−λ(t+A)

)
= e
−λt E

(
Be
−λA

)
The easy version is A = a, B = 1, G trivial.
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E3
Same assumptions: E (B(X > t + A) |G ) = Be−λ(t+A).

Use [Williams 9.10].

E4
Compute E ((X > t) |σ({X > a} : a ≤ s) ), s ≤ t.

Let (S,S, P) the probability space where X is defined and let Xt = (X ≤ t) be the stochastic processes that has
a unit jump at the random time X . For each time t, the σ algebra σ(Xt ) is {∅, S, {X ≤ t} , {X > t}}, with
generator {X > t}. The σ-algebra Fs = σ(Xa : a ≤ s) has generators C = {{X > a}|a ≤ s}, which is a
π-system as {X > a1} ∩ {X > a2} = {X > max(a1, a2)}, see [Williams 1.6]. A bounded random variable B is
Fs -measurable if, and only if, B = g(X )(X ≤ s) + c(X > s), with g Borel bounded and c constant. In fact the
class H = {g(X )(X ≤ s) + c(X > s)|g ∈ Bb, c ∈ R} is a monotone class containing the indicators of C
because (X > a) = (X > a)(X ≤ s) + (X > a), see [Williams 3.14]. Let us compute g and c such that
E ((X > t) |Fs ) = g(X )(X ≤ s) + c(X > s), see [Williams 9.2]. For all s ≤ a,

E ((X > a)(X > t)) = E ((X > a)(g(X )(X ≤ s) + c(X > s))) , a ≤ s,

hence
exp (−λt) = E ((a < X ≤ s)g(X )) + c exp (−λs) , a ≤ s.

If a = s, exp (−λt) = c exp (−λs), then c = exp (−λ(t − s)). It follows

E ((a < X ≤ s)g(X )) =

∫ s

s
g(x) λe−λx dx = 0, s ≤ a

so that g = 0 and E ((X > t) |Fs ) = exp (−λ(t − s)) (X > s).
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E5
Compute E (Xt − Xs |Fs ), s ≤ t.

From the previous computation,

E (Xt − Xs |Fs ) = 1− E ((X > t) |Fs )− Xs = 1− exp (−λ(t − s)) (X > s)− Xs =

1− exp (−λ(t − s)) (1− Xs )− Xs = (exp (−λ(t − s))− 1)(Xs − 1) ≥ 0,

then (Xt ,Ft )t≥0 is a sub-martingale, see [Williams 10.3].

E6
Show that A = λ

∫ ·
0

(Xu − 1) du is an absolutely continuous compensator
of X·, that is it is a process with absolutely continuous trajectories and
such that M = X· − A is a martingale [CD1].

Having checked that it is correct to exchange integration with conditional expectation,

E (At − As |Fs ) =

E
(
λ

∫ t

s
(Xu − 1) du |Fs

)
= −λ

∫ t

s
E ((X > u) |Fs ) du = −λ

∫ t

s
e
−λ(u−s)(X > s) du =(

−λ
∫ t

s
e
−λ(u−s) du

)
(X > s) = e

−λ(u−s)
∣∣∣t
s

(X > s) = E (Xt − Xs |Fs ) ,

so that E (Xt − At |Fs ) = Xs − As .
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E7
Compute E (φ(Xt) |Fs ) to show that the process X· is a Markov process.
Compute the transitions.

As φ(Xt ) = φ(0)(X > t) + φ(1)(X ≤ t) = φ(1) + (φ(0)− φ(1)(X > t), the conditional expectation is

E (φ(Xt ) |Fs ) = φ(1)+(φ(0)−φ(1)) E ((X > t) |Fs ) = φ(1)+(φ(0)−φ(1))e−λ(t−s)(X > s) = Ps,tφ(Xs ),

with

Ps,tφ(x) =

{
φ(0)e−λ(t−s) + φ(1)

(
1− e−λ(t−s)

)
if x = 0

φ(1) if x = 1.

The transitions are computed as

P (Xt = y|Xs = x) =
P (Xs = x, Xt = y)

P (Xs = x)
=

E ((Xs = x)(Xt = y))

P (Xs = x)
=

E ((Xs = x) E ((Xt = y) |Fs ))

P (Xs = x)

and the previous formula for φ = 1y .

E8
If X1,X2, . . . is an infinite sequence of independent random variables with
common distribution Exp(λ) and T0 = 0, T1 = X1, T2 = X1 + X2,
T3 = X1 + X2 + X3 . . . i.e., T0 = 0 and Tn = Tn−1 + Xn, n ≥ 1, then
Tn ↑ +∞ for n→∞ a.s.
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For all a > 0

P (Tn ≤ a) = λ

∫ a

0

(λt)n−1

(n − 1)!
e
−λt dt → 0, n →∞,

as
(

(λt)n−1/(n − 1)!
)

n
is decreasing if n ≥ λa. Cf. [Williams 12.5].
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11. Poisson process: construction

Definition
Let X1,X2, . . . be iid Exp(λ) on the probability space (S ,S,P) and
T0 = 0 and Tn = Tn−1 + Xn, n ≥ 1. Let (D,D) be the space of
trajectories on the set of times [0,+∞[ which are 0 at t = 0 and take the
value n = 0, 1, 2 . . . on the interval [tn, tn+1[ where t0 < t1 < t2 . . . and
tn →∞ as n→∞. The Poisson process with jump times (Tn)n is
defined at each ω ∈ {limn Tn = +∞} as the trajectory in (D,D) with
jumps T1(ω),T2(ω), . . . , that is

Nt(ω) =
∑

n

n (Tn(ω) ≤ n < Tn+1(ω)) =

# {Tk (ω)|Tk ≤ t} =
∞∑

n=0

(Tn ≤ t).
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12. Poisson process: properties from Def (0)

1. Each Nt is Poisson distributed with mean λt:
P (Nt = n) = (λt)n

n! e−λt .

2. Each increment Nt − Ns , s < t, is Poisson distributed with mean
λ(t − s): P (Nt − Ns = n) = (λ(t−s))n

n! e−λ(t−s).

3. Disjoint increments are independent: for all natural n and reals
t1 < T2 < · · · < tn, the random variables Ntj − Ntj−1 , j = 1, . . . , n
and independent, hence

4. the sequence Nt1 ,Nt2, . . . ,Ntn has the Markov property

E
(
φ(Ntn )

∣∣Ntn−1 ,Ntn−2 , . . .
)

=
∞∑

n=0

φ(n + Ntn−1 )
(λ(tn − tn−1)n

n!
e−λ(Tn−tn−1)
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1. P (Nt = n) = E ((Tn ≥ t)(t − Tn < Xn+1)) = E ((Tn ≤ t) exp (−λ(t − Tn))) =∫ t
0 e−λ(t−x) λnxn−1

(n−1)!
e−λx dx = e−λt (λt)n

n!
.

2.a P (Ns = n,Nt = n) = E ((Tn ≥ s)(t − Tn < Xn+1)) = E ((Tn ≤ s) exp (−λ(t − Tn))) =∫ s
0 e−λ(t−x) λnxn−1

(n−1)!
e−λx dx == e−λt (λs)n

n!
= Poisson(n, λ).

P (Nt − Ns = 0) =
∑∞

n=0 P (Ns = n,Nt = n) =
∑∞

n=0 e−λt (λs)n

n!
= e−λ(t−s) = Poisson(0;λ(t − s)).

2.b P (Ns = n − 1,Nt = n) = E
(

(Tn−1 ≤ s < Tn ≤ t)(t − Tn < Xn+1)
)

=

E
(

(Tn−1 ≤ s < Tn ≤ t) exp (−λ(t − Tn))
)

=

e−λt E
(

(Tn−1 ≤ s)e
λTn−1 (s − Tn−1 ≤ Xn < t − Tn−1)eλXn

)
=

e−λt E
(

(Tn−1 ≤ s)e
λTn−1

∫ t−Tn−1
s−Tn−1

eλxλe−λx dx

)
= λ(t − s)e−λt E

(
(Tn−1 ≤ s)e

λTn−1
)

=

λ(t − s)e−λt ∫ s
0 eλx λn−1xn−2

(n−2)!
e−λx dx = λ(t − s)

(λs)n−1

(n−1)!
e−λt .

P (Nt − Ns = 1) =
∑∞

n=1 P (Ns = n − 1,Nt = n) =
∑∞

n=1 λ(t − s)
(λs)n−1

(n−1)!
e−λt = λ(t − s)e−λ(t−s) =

Poisson(1;λ(t − s)).

2.c P (Ns = n − k,Nt = n) = E
(

(Tn−k ≤ s < Tn−k+1)(Tn ≤ t)(t − Tn < Xn+1)
)

=

E
(

(Tn−k ≤ s < Tn−k+1)(Tn ≤ t) exp (−λ(t − Tn))
)

=

e−λt E
(

(Tn−k ≤ s < Tn−k+1)(Tn ≤ t)eλTn
)

=

e−λt E
(

(Tn−k ≤ s < Tn−k+1)e
λTn−k+1 (Xn−k+2 + · · · + Xn−1 ≤ t − Tn−k+1)e

λ(Xn−k+2+···+Xn−1)
)

=

e−λt E
(

(Tn−k ≤ s)(t < Tn−k+1)e
λTn−k+1

∫ t−Tn−k+1
0 eλy λk−1yk−2

(k−2)!
e−λy dy

)
=

e−λt λk−1

(k−1)!
E
(

(Tn−k ≤ s)(t < Tn−k+1)e
λTn−k+1 (t − Tn−k+1)k−1

)
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14. Poisson process: filtration
Let N be a Poisson process with jump times T1,T2, . . . . We say that N
is the counting process of the sequence T1,T2, . . . We have
{Nt ≥ n} = {Tn ≤ t}.
σ-algebras generated by a Poisson process

1. The σ-algebra σ(Nt) has the generating π-system
{{Tn ≤ t}|n = 1, 2, . . .}.

2. The σ-algebra Ft = σ(Ns : s ≤ t) has generating π-system Ct =

{{Tn1 ≤ s1, . . . ,Tsm ≤ sm}|m ∈ N, n1 ≤ · · · ≤ nm, s1 < · · · < sm ≤ t}

3. A random variable Y is Ft measurable if, and only if,

Y =
∞∑

k=0

Gk (Nt = k)

where Gk is a σ(T1, . . . ,Tk )-measurable random variable, k ∈ Z+.

14 / 31



15. Proofs for slide 14 items 1,2

1. The sets [a,+∞[, a ∈ R form a π-system for (R,B), hence {{Nt ≥ a}|a ∈ R} is a π-system of σ(Nt ).
As Nt actually takes values in Z+, the system contains set of the form {Nt ≥ n} = {Tn ≤ t} for
n = 0, 1, . . .

2. The π-system for Ft contains sets which are finite intersections of elements of the form {Tn ≤ s} for all
n and s ≤ t, that is, for example,

{
Tn1
≤ t1,Tn2

≤ t2, . . . ,Tnm ≤ tm

}
for all m, n1, . . . , nm ∈ N and t1, . . . , tm ∈ R+. If we order the ti ’s in increasing order, consider the
π-system property for each time, and the increasing order of the Tn ’s we obtain the stated subclass.
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16. Proof for slide 14 item 3
We use the monotone class theorem [Williams 3.14]. Consider the set of random variables

H =


∞∑

k=0

Gk (Nt = k)

∣∣∣∣∣∣Gk ∈ L
∞(Gk ), k ∈ Z+

 ,
with Gk = σ(T1, . . . ,Tk ). It is a vector space, it contains the constants, and it is closed for increasing limits. In
fact, on each element of the partition {Nt = k}, k ∈ Z+ is a generic class of bounded random variables.
Moreover, it is an ring, as

∞∑
k=0

Gk (Nt = k)

∞∑
k=0

G ′k (Nt = k)

 =
∞∑

k=0

Gk G ′k (Nt = k).

Each indicator function of the form (Tn ≤ s), n ∈ Z+, s ≤ t, belongs to H. In fact,

(Tn ≤ s)(Nt = k) = (Tn ≤ s,Tk ≤ t,Tk+1 > t) =

{
(Tn ≤ s)(Nt = k) if n ≤ k,

0 if n > k,

hence
(Tn ≤ s) =

∑
k≥n

(Tn ≤ s)(Nt = k) =
∑

k

Gk (Nt = k),

with Gk = 0 for k < n and Gk = (Tn ≤ s) for k ≥ n. As H is closed for product, each element of the π-system
Ct is included, and the result follows for bounded random variables. The general case is obtained by point-wise
limits of bounded random variables.
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17. Poisson process: conditioning

Conditioning to Ft

Let N be a Poisson process on (S ,S) with jumps T1,T2, . . . , and let a
time s ≥ 0 be given.

1. For each integrable random variable Y there exists a sequence
Yk = gk (T1, . . . ,Tk ), k = 0, 1, . . . , such that

E (Y |Fs ) =
∞∑

k=0

Yk (Ns = k).

2. Each Yn = gn(T1, . . . ,Tn), n = 0, 1, . . . is characterized by

E (Y (Ns = n)G ) = e−λs E
(
Yn(Tn ≤ s)eλTn G

)
, G ∈ L∞(T1, . . . ,Tn).
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18. Exercise

E9
Prove the previous theorem

See [Williams 9.2]. The conditional expectation E (Y |Fs ) is a random variable measurable for Fs , then
E (Y |Fs ) =

∑∞
k=0 Yk (Ns = k). Note that Gn(Ns = n), Gn = g(Y1, . . . , Yn), Gn indicator, n = 0, 1, . . . , is a

π-system for Fs . Then we want

E (YGn(Ns = n)) = E (E (Y |Fs ) Gn(Ns = n)) = E

∞∑
k=0

Yk (Ns = k)

 Gn(Ns = n)

 = E (YnGn(Ns = n)) .

As
(Ns = n) = (Tn ≤ s < Tn+1) = (Tn ≤ s < Tn + Xn+1) = (Tn ≤ s)(s − Tn < Xn+1),

from the independence of (T1, . . . ,Tn) and Xn+1,

E (YnGn(Ns = n)) = E (YnGn(Tn ≤ s)(s − Tn < Xn+1)) =

E
(

YnGn(Tn ≤ s)e−λ(s−Tn)
)

= e
−λs E

(
YnGn(Tn ≤ s)eλTn

)
.
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19. Markov property, independent increments

Key result

1. The Poisson process is a Markov process i.e., for each bounded
φ : R→ R and times s < t we have

E (φ(Nt) |Fs ) = φ̂(Ns),

with transition

φ̂(n) =
∞∑

k=n

φ(k)
(λ(t − s))k−n

(k − n)!
=
∞∑

m=0

φ(n + m)
(λ(t − s))m

m!
.

2. It follows that the Poisson process has independent homogeneous
increments i.e., for each bounded φ : R→ R and times s < t we
have

E (φ(Nt − Ns) |Fs ) = E (φ(Nt−s)) .
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Ex.10
Proof of 1.

We apply the formula for conditioning to the r.v. Y = φ(Nt ), that is E (φ(Nt ) |Fs ) =
∑∞

k=0 Yk (Ns = k), with

the characterization E (φ(Nt )(Ns = n)Gn) = e−λs E
(

Yn(Tn ≤ s)eλTn Gn

)
, Gn = gn(T1, . . . ,Tn). The RES

is

E (φ(Nt )(Ns = n)Gn) =
∞∑

k=0

φ(k) E ((Nt = k)(Ns = n)Gn) =
∞∑

k=n

φ(k) E ((Nt = k)(Ns = n)Gn)

because Ns ≤ Nt . We compute each term of the RES. For k = n we have

E ((Nt = n)(Ns = n)Gn) = E ((Tn ≤ s)(t < Tn+1)Gn) =

E ((Tn ≤ s)(t − Tn < Xn+1)Gn) = E
(

(Tn ≤ s)e−λ(t−Tn)Gn
)

= e
−λt E

(
(Tn ≤ s)e−λTn Gn

)
.

If k = n + 1,

E ((Nt = n + 1)(Ns = n)Gn) = E ((Ns = n)(Tn+1 ≤ t < Tn+2)Gn) =

E ((Ns = n)(Tn+1 ≤ t < Tn+1 + Xn+2)Gn) = E ((Ns = n)(Tn+1 ≤ t)(t − Tn+1 < Xn+2)Gn) =

e
−λt E

(
(Ns = n)(Tn+1 ≤ t)eλTn+1 Gn

)
= e
−λt E

(
(Tn ≤ s < Tn + Xn+1)(Tn + Xn+1 ≤ t)eλ(Tn+Xn+1)Gn

)
=

e
−λt E

(
(Tn ≤ s)eλTn (s − Tn < Xn+1)(Tn ≤ t)(Xn+1 ≤ t − Tn)eλXn+1 Gn

)
=

e
−λt E

(
(Tn ≤ s)eλTn (s − Tn < Xn+1 ≤ t − Tn)eλXn+1 Gn

)
= λ(t − s)e−λt E

(
(Tn ≤ s)eλTn Gn

)
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If k = n + h, h > 1,

E ((Nt = n + h)(Ns = n)Gn) = E
(

(Ns = n)(Tn+h ≤ t < Tn+h+1)Gn
)

=

E
(

(Ns = n)(Tn+h ≤ t < Tn+h + Xn+h+1)Gn
)

= E
(

(Ns = n)(Tn+h ≤ t)(t − Tn+h < Xn+h+1)Gn
)

=

e
−λt E

(
(Ns = n)(Tn+h ≤ t)eλTn+k Gn

)
=

e
−λt E

(
(Ns = n)(Tn+1 + (Xn+2 + · · · + Xn+h) ≤ t)eλ(Tn+1+(Xn+2+···+Xn+h))Gn

)
=

e
−λt E

(
(Ns = n)eλTn+1 (Tn+1 ≤ t)(Xn+2 + · · · + Xn+h ≤ t − Tn+1)eλ(Xn+2+···+Xn+h)Gn

)
=

e
−λt E

(
(Ns = n)eλTn+1 (Tn+1 ≤ t)

(∫ t−Tn+1

0
e
λx λ

h−1xh−2

(h − 2)!
e
−λx dx

)
Gn

)
=

λh−1

(h − 1)!
e
−λt E

(
(Ns = n)eλTn+1 (Tn+1 ≤ t)(t − Tn+1)h−1Gn

)
=

λh−1

(h − 1)!
e
−λt E

(
(Tn ≤ s < Tn+1)eλTn+1 (Tn+1 ≤ t)(t − Tn+1)h−1Gn

)
=

λh−1

(h − 1)!
e
−λt E

(
(Tn ≤ s)eλTn (s − Tn < Xn+1 ≤ t − Tn)eλXn+1 (t − Tn − Xn+1)h−1Gn

)
=

λh−1

(h − 1)!
e
−λt E

(
(Tn ≤ s)eλTn

(∫ t−Tn

s−Tn

e
λx (t − Tn − x)h−1

λe
−λx dx

)
Gn

)
=

(λ(t − s))h

h!
e
−λt E

(
(Tn ≤ s)eλTn Gn

)
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Collecting all cases

E (φ(Nt )(Ns = n)Gn) = e
−λt E

∞∑
k=n

φ(k)
(λ(t − s))k−n

(k − n)!

 (Tn ≤ s)eλTn Gn

 .

It follows Yn =
∑∞

k=n φ(k)
(λ(t−s))k−n

(k−n)!
and

E (φ(Nt ) |Fs ) =
∞∑

n=0

(Ns = n)
∞∑

k=n

φ(k)
(λ(t − s))k−n

(k − n)!
=
∞∑

n=0

φ̂(n)(Ns = n) = φ̂(Ns )

Ex.11
Proof of 2.
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E12Telegrapher process.

Define Yt =
∫ t

0 (−1)Nu du. Is it independent increments? A
sub-martingale? A Markov process?



Poisson process as a Lévy process

Equivalent definition (1)

A counting process N(t), t ≥ 0 is a Poisson process with intensity λ > 0
if, and only if,

1. N(0) = 0

2. The process has independent increments.

3. The number of events occurring in the time interval ]s, t], with
length t − s, has Poisson distribution with mean λ(t − s):

P (N(t)− N(s) = n) = e−λ(t−s) (λ(t − s))n

n!
n = 0, 1, 2

R In particular, such a process has stationary increments and is
continuous in probability.
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Ex.13
Proof of Poisson (1) is equivalent to Poisson (0).

The “only if” part is already proved. Let us compute the joint finite distributions of the process N. For

t1 < · · · < tn the random variable (Nt1
, . . . ,Ntn ) has values in

{
k ∈ Zn

+

∣∣∣k1 ≤ · · · ≤ kn

}
and (discrete)

density

P
(

Nt1
= k1, . . . ,Ntn = kn

)
= P

(
Nt1

= k1, . . . ,Ntn − Ntn−1
= kn − kn−1

)
=

n∏
j=1

P
(

Ntj
− Ntj−1

= kj − kj−1

)
k0 = 0, t0 = 0

=
n∏

j=1

e
−λ(tj−tj−1) (λ(tj − tj−1))

kj−kj−1

(kj − kj−1)!

= e
−λtn

n∏
j=1

(λ(tj − tj−1))
kj−kj−1

(kj − kj−1)!
.

With tj = s1 + · · · + sj , kj = h1 + · · · + hj , we have sj > 0 and hj ≥ 0, for j = 1, . . . , n, hence

P
(

Ns1
= h1, . . . ,Ns1+···+sn = h1 + · · · + hn

)
=

n∏
j=1

e
−λsj

(λsj )
hj

hj !
= e
−λ(s1+···+sn)

n∏
j=1

(λsj )
hj

hj !
.

Let us compute the joint distribution of the arrival times. The vector (T1, . . . ,Tn) takes values in
{t|0 < t1 < · · · < tn}, which in turn is the image of Rn

> under the cumulative sum map
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sum : x 7→ (x1, . . . , x1 + · · · + xn). As
{

]s1,+∞[× · · · ×]sn,+∞[
∣∣sj > 0

}
is a π-system, its cumulative sum

image is a π-system {]t1,+∞[× · · · ×]tn,+∞[|0 < t1 < · · · < tn}. Let us compute the probability of each
element

P (T1 > t1, . . . ,Tn > tn) = P
(

Nt1
< 1, . . . ,Ntn < n

)
=

∑
k2≤···≤kn,kj<j

P
(

Nt1
= 0, . . . ,Ntn = kn

)

=
∑

k2≤···≤kn,kj<j

e
−λtn

n∏
j=2

(λ(tj − tj−1))
kj−kj−1

(kj − kj−1)!

This equation uniquely identifies the joint distribution of T1, . . . ,Tn , hence the joint distribution of the
inter-times Xj = Tj − Tj−1, j = 1, . . . , n. Assume first n = 1,

P (T1 > t1) = P
(

Nt1
< 0

)
= e
−λt1 , −

∂

∂t1

P (T1 > t1) = λe
−λt1 .

If n = 2,

P (T1 > t1,T2 > t2) = P
(

Nt1
< 1,Nt2

< 2
)

= P
(

Nt2
= 0
)

+ P
(

Nt1
= 0,Nt2

= 1
)

=

e
−λt2 + e

−λt1 e
−λ(t2−t1)

λ(t2 − t1) = e
−λt2 (1 + λ(t2 − t1)),

and

−
∂

∂t1

P (T1 > t1,T2 > t2) = λe
−λt2 , (−1)2 ∂2

∂t1∂t2

P (T1 > t1,T2 > t2) = λ
2
e
−λt2 .
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If n = 3 we have a summation of P
(

Nt1
= k1,Nt2

= k2,Nt3
= k3

)
over the cases k1 ≤ k2 ≤ k3, k1 < 1,

k2 < 2, k3 < 3, that is

k1 0 0 0 0 0
k2 0 0 0 1 1
k3 0 1 2 1 2

The time t1 appears in P
(

Nt1
= k1,Nt2

= k2,Nt3
= k3

)
only if k2 = 1, hence

−
∂

∂t1

P (T1 > t1,T2 > t2,T3 > t3) = −e
−λt3

∂

∂t1

(λ(t2 − t1) + λ(t2 − t1)λ(t3 − t2)) =

− e
−λt3 (1 + λ(t3 − t2))

∂

∂t1

λ(t2 − t1) = λe
−λt3 (1 + λ(t3 − t2))

so that the recursion is apparent and gives

(−1)3 ∂3

∂t1∂t2∂t3

P (T1 > t1,T2 > t2,T3 > t3) = λ
3
e
−λt3 .

Variant definition (2)
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A counting process N(t), t ≥ 0 is a Poisson process with intensity λ > 0
if

1. N(0) = 0

2. The process has independent and stationary increments.

3. P (N(t) = 1) = λt + o(t) as t → 0

4. P (N(t) > 1) = o(t) as t → 0

E (N(t)) = λt and for t → 0:

 P (N(t) = 1) = e
−λt (λt) = λt + o(t)

P (N(t) > 1) = 1− e
−λt − e

−λt (λt) = 1− e
−λt (1 + (λt)) = o(t)

Ex.14
The two definitions are equivalent.
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Let us consider the moment generating function of N(t), i.e. g(t) = E
(
euN(t)

)
. Note g(0) = 1, and let us derive

a differential equation for g .

g(t + h) = E
(
e

uN(t+h)
)

= E
(
e

uN(t)
e

u(N(t+h)−N(t))
)

independence

= E
(
e

uN(t)
)
E
(
e

u(N(t+h)−N(t))
)

stationarity

= g(t)g(h)

As h → 0

g(h) =
∑

k

e
uk P (N(h) = k)

= (1− λ + o(h)) + e
u (λh + o(h)) +

∑
k>1

e
uk o(h)

= 1− (λh) + e
u (λh) + o(h)

By letting h → 0 in the definition of derivative we obtain the equation

g′(t) = λ(eu − 1)g(t)

whose solution is

g(t) = exp
[
λ
(
e

u − 1
)]

This is the moment generating function of the Poisson(λt) distribution.

Ex.15
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Check the following:

• prove the last statement;

• take a subdivision of the interval [0, t] and use the binomial law to
count how many contain a jump of N(t);

• avoid the stationarity condition by introducing a new condition
infinitesimal condition.
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30. Poisson process: simulation
• The conditional distribution of a random variable X given the event B is the probability measure µX|B of

the domain of X such that for all integrable φ it holds E (φ ◦ X 1B ) = P (B)
∫
φ(x) µX|B (dx). Note

that µX|B is supported by B and the notation E (φ ◦ X |B ) =
∫
φ(x) µX|B (dx). The conditional

distribution is identified on a monotone class.

• Let U1, . . . ,Un be iid U(0, t). The sorting map τ(t1, . . . , tn) = (t(1), . . . , t(n)) is almost surely defined

and takes values in the open simplex ∆(t) = {s = (s1, . . . , sn)|0 < s1 < · · · < sn < t}. The
∆(t)-valued random variable (U(1), . . . ,U(n)) = τ(U1, . . . ,Un) is the order statistics of (U1, . . . ,Un).

The distribution ν of the order statistics is the image under the sorting map of the uniform distribution,∫
∆(t) φ(s) ν(ds) =

∫
∆(t) φ(s) τ∗ν(ds) = t−n ∫

[0,t]n φ ◦ τ(t) dt =

t−n ∑
Π∈P

∫
Π−1(∆(t))

φ ◦ τ(t) dt = n!t−n ∫
∆(t) φ(t) dt, where P is the group of permutation

matrices on Rn .

Past jump times are uniform and independent

Let T1,T2, . . . be the arrival times of a Poisson process with intensity λ.

• The joint distribution of T1, . . . ,Tn, conditional to {N(t) = n} has
uniform density

f (t1, . . . , tn) =
n!

tn
(0 < t1 < · · · < tn < t)

• Such a density is the joint density of the order statistics of n
random variables U1, . . . ,Un IID uniformly distributed on ]0, t[. 30 / 31



A simulation

lambda <- 1; t <- 10

n <- rpois(1,lambda*t); uniform <- runif(n,0,t)

x <- sort(uniform)

plot(c(0,x,t),c(0:n,n),type="s",xlab="t",ylab="N")

0 2 4 6 8 10

0
5

10
15

t

N
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Ex.16
Proof.
Consider the monotone class {t 7→ φ1(t1) · · ·φn(tn)|φi bounded}.

E (φ1(T1) · · ·φn(Tn)(Nt = n)) = E (φ1(T1) · · ·φn(Tn)(Nt = n))

= E (φ1(T1) · · ·φn(Tn)(Tn ≤ t)(t − Tn < Xn+1))

= e
−λt E

(
φ1(T1) · · ·φn(Tn)(Tn ≤ t)eλTn

)
= e
−λt E

(
φ1(X1) · · ·φn(X1 + · · · + Xn)(X1 + · · · + Xn ≤ t)eλ(X1+···+Xn)

)
= λ

n
e
−λt

∫
· · ·
∫

]0,∞[n

φ1(x1) · · ·φn(x1 + · · · + xn)(x1 + · · · + xn ≤ t) dx1 · · · dxn

=

= λ
n
e
−λt

∫
· · ·
∫

∆(t)

φ1(s1) · · ·φn(sn) dt1 · · · dtn

=
(λt)n

n!
e
−λt

∫
· · ·
∫
φ1(s1) · · ·φn(sn)

n!

tn
1∆(t) dt1 · · · dtn.
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