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Some books

There will be written notes of this course. Howevere, it is useful to have
a set of standard textbook to which refer in case of need..

• P. Malliavin. Integration and probability, volume 157 of Graduate
Texts in Mathematics. Springer-Verlag, 1995. With the
collaboration of Héléne Airault, Leslie Kay and Gérard Letac, Edited
and translated from the French by Kay, With a foreword by Mark
Pinsky is a textbook that presents topics in integration theory and
calculus. In particular it contains specific probability topics such as,
conditioning, martingales, Gaussian spaces.

• S. M. Ross. Introduction to probability models. Academic Press,
London, 12th edition, 2019 is a very popular introductory textbook
oriented to applications and with many examples of contemporary
applications.

• W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New
York, third edition, 1987 is a classical textbook that presents
integration theory and othe topics in calculus that are of interest in
probability.



Measurable space

Definition

• A family B of subsets of S is an field (or a Borel algebrab ) on S if
it contains ∅ and S , and it is stable for the complements, finite
unions, and finite intersection.

• A family F of subsets of S is a σ-field on S if it is an field on S and
it is stable for denumerable unions and intersections.

• A measurable space is a couple (S ,F), where S is a set and F is a
σ-field on S .

• Given the family C of subsets of S , the σ-field generated by C is
σ(C) = ∩{A | C ⊂ A and A is a σ-field}.

• Examples: the field generated by a finite partition; the Borel σ-field
of R is generated by the open intervals, or by the closed intervals, or
by the intervals, or by the open sets, or by semi-infinite intervals.
The Borel σ-field of a metric space is generated by the open sets.

§1.1-2 of Malliavin..



Measure space
Definition

• A measure µ of the measurable space (S ,F) is a mapping
µ : F → [0,+∞] such that µ(∅) = 0 and for each sequence (An)n∈N
of disjoint elements of F , µ(∪n∈NAn) =

∑∞
i=1 µ(An).

• A measure is finite if µ(S) < +∞; a measure is σ-finite if there is a
sequence (Sn)n∈N in F such that ∪n∈NSn = S and µ(Sn) < +∞ for
all n ∈ N.

• A probability measure is a finite measure such that µ(S) = 1; a
probability space is the triple (S ,F , µ), where µ is a probability
measure.

• Examples: Lebesgue measure; probability measure on a partition;
probability measure on a denumerable set; Lebesgue measure on the
unit cube.

• Equivalently, a probability measure is finitely additive and
sequentially continuous at ∅.

§1.3 of Malliavin.



Monotone classes I

• A seguence of sets (An)n∈N is monotone if An ⊂ An+1, or
An ⊃ An+1. In such a case, limn→∞ An = ∪nAn, respectively
limn→∞ An = ∩nAn.

• A class of sets M in monotone is for all monotone sequence (An) in
M the limit is in M, limn→∞ An ∈M.

• A σ-algebra is a monotone set. The intersection of monotone
classes is a monotone class.

• Given a class of sets C, the intersection of all monotone classes that
contain C is the monotone class generated by C, m(C).

Theorem (of monotone classes)

The σ algebra generated by a field B is equal to the monotone class
generated by B, σ(B) = m(B)

See Malliavin § 1.4 and a more sophisticated version below. This result is
used in almost every proof of uniqueness for measures. It is also relevant
the corrisponding result for classes of real random variables.



Monotone classes II

Proof.

1. m(B) ⊂ σ(B) is trivial.

2. Define Φ(A) = {B |A ∪ B,A \ B,B \ A ∈ m(B)} and check that
B ∈ Φ(A) is equivalent to A ∈ Φ(B).

3. Check that Φ(A) is a monotone class and contains m(B).

4. Check that m(B) is a σ-algebra.

Theorem (of uniqueness)

If two finite measures are equal on a field B, they are equal on σ(B).

Proof.
Show that the class of events where the measures are equal is a
monotone class that contains a field.



Product system aka π-system

Definition
Let S be a set. A π-system on S is a family I of subsets of S which is
stable under finite intersection.

• Examples: the family of all points of a finite set and the empty set;
the family of open intervals of R; the familily of closed intervals of
R; the family of cadlàg intervals of R; the family of convex (resp.
open convex, closed convex) subsets of R2; the family of open
(resp. closed) set in a topological space.

• If Ii is a π-system of Si , i = 1, . . . , n, then {×n
i=1Ii | Ii ∈ Ii} is a

π-system of ×n
i=1Si .

• The family of all real functions of the form α0 +
∑n

j=1 αj1Ii , n ∈ N,
αj ∈ R, j = 0, . . . , n is a vector space and it is stable for
multiplication.



Dynkin system aka d-system

Definition
Let S be a set. A d-system on S is a family D of subsets of S such that

1. S ∈ D

2. If A,B ∈ D and A ⊂ B, then B \ A ∈ D. (Notice that S \ A = Ac)

3. If (An)n∈N is an increasing sequence in D, then ∪n∈N ∈ D

• Given probabilities µi and i = 1, 2 on the measurable space (S ,F),
the family D = {A ∈ F |µ1(A) = µ2(A)} in a d-system.

• Given measurable spaces (Si ,Fi ), i = 1, 2, the product space
(S ,F) = (S1 × S2,F1 ⊗F2),
F1 ⊗F2 = σ {A1 × A2 |A1 ∈ F1,A2 ∈ F2}, and x ∈ S1, the family
D = {A ∈ F1 ⊗F2 |A ∩ {x} × S2 = {x} × Ax ,Ax ∈ F2} is a
d-system.



Dynkin’s lemma

Theorem

1. A family of subsets of S is a σ-field if, and only if, it is both a
d-system and a π-system.

2. If I is a π-system, then d(I) = σ(I).

3. Any d-system that contains a π-system contains the σ-field
generated by the π-system.

Theorem
If two probability measures on the same measurable space agree on a
π-system I they are equal on σ(I).



Probability space

Definition
A probability space is a triple (Ω,F ,P) of a sample space Ω (set of
possible worlds), a σ-field F on Ω, a probability measure P : F → [0, 1].
An element ω ∈ Ω is a sample point (world); an element A ∈ F is an
event; the value P (A) is the probability of the event A.

• Examples: a finite set, all its subsets, a probability function
p : Ω→ R>0 such that

∑
ω∈Ω p(ω) = 1; Z≥ with all its subsets,

and a probability function p : Z≥ → R>0 such that
∑∞

k=0 p(k) = 1;
the restriction of a probability space to a sub-σ-field; the product of
two probability spaces.

• Bernoulli trials. Let Ω = {0, 1}N and let
Fn =

{
A× {0, 1} × {0, 1} × · · ·

∣∣A ⊂ {0, 1}n}, F = σ(Fn : n ∈ N).
Given θ ∈ [0, 1], the function
pn(x1x2 · · · xn · · · ) = θ

∑n
i=1 xi (1− θ)n−

∑n
i=1 xi uniquely defines

probability spaces (Ω,Fn,Pn), n ∈ N, such that Pn+1|Fn
= Pn,

hence a probability measure P on F .



lim sup and lim inf

Definition

• Let (an)n∈N be a sequence of real numbers.

lim sup
n→∞

an = ∧m∈N ∨n≥m an (maximum limit)

lim inf
n→∞

an = ∨m∈N ∧n≥m an (minimum limit)

• Let (En)n∈N be a sequence of events in the measurable space (Ω,F).

lim sup
n→∞

En = ∩m∈N ∪n≥m En (En infinitely often)

lim inf
n→∞

En = ∪m∈N ∩n≥m En (En eventually)

A similar definition applies to sequences of functions. If (fn)n is a
sequence of non-negative functions, then the set of x ∈ S such that
limn fn(x) = 0 is equal to the set {lim supn fn = 0}.



Fatou lemma
Theorem

P
(

lim inf
n→∞

En

)
≤ lim inf

n→∞
P (En) ≤ lim sup

n→∞
P (En) ≤ P

(
lim sup
n→∞

En

)

• (lim supn En)c = lim infn E
c
n ; lim supn 1En = 1lim supn En .

• Proof of FL. Write ∪m ∩n≥m En = ∪mGm so that
Gm ↑ G = lim infn En. We have P (Gm) ≤ ∧n≥m P (En); monotone
continuity (increasing) implies P (Gm) ↑ P (G ) hence,
∨m P (Gm) = P (G ). The middle inequality is a property of lim inf
and lim sup. The least inequality follows from a similar proof using
continuity on decreasing sequences or, by taking the complements.

• BC1. Assume
∑∞

n=1 P (En) < +∞. We have for all m ∈ N that

P
(

lim sup
n

En

)
≤ P (∪n≥mEn) ≤

∞∑
n=m

P (En)→ 0 if m→∞

hence P (lim supn En) = 0.



Measurable function

Definition
Given measurable spaces (Si ,Si ), i = 1, 2, we say that the function
h : S1 → S2 is measurable, or is a random variable, if for all B ∈ S2 the
set h−1(B) = {s ∈ S1 | h(s) ∈ B} belongs into S1.

Theorem

• Let C ⊂ S2 and σ(C ) = S2. If h−1 : C → S1, then h is measurable.

• Given measurable spaces (Si ,Si ), i = 1, 2, 3, if both h : S1 → S2,
g : S2 → S3 are measurable functions, then g ◦ f : S1 → S3 is a
measurable function.

• Given measurable spaces (Si ,Si ), i = 0, 1, 2 and hi : S0 → Sj ,
j = 1, 2, consider h = (h1, h2) : S0 → S1 × S2. with product space
(S1 × S2,S1 ⊗S2), Then both h1 and h2 are measurable if, and only
if, h is measurable.



Image measure

Definition
Given measurable spaces (Si ,Si ), i = 1, 2, a measurable function
h : S1 → S2, and a measure µ1 on (S1,S1), then µ2 = µ1 ◦ h−1 is a
measure on (S2,S2). We write h#µ1 = µ2 ◦ h−1 and call it image
measure. If µ1 is a probability measure, we say that h#µ1 is the
distribution of the random variable h.

• Bernoulli scheme Let (Ω,F ,P) be the Bernoulli scheme, and define
Xt : Ω→ {0, 1} to be the t-projection, Xt(x1x2 · · · ) = xt . It is a
random variable with Bernoulli distribution B(θ). The random
variable Yn = X1 + · · ·+ Xn has distribution Bin(θ, n). The random
variable T = inf {k ∈ N |Xk = 1} has distribution Geo(θ).



Real random variable

Definition
Let (S ,S) be a measurable space. A real random variable is a real
function h : S → R with is measurable into (R,B).

Theorem

• h : S → R is a real random variable if, and only if, for all c ∈ R the
level set {s ∈ S} h(s) ≤ c is measurable. The same property holds
with ≤ replaced by < or ≥ or >. The condition can be taken as a
defintion of extended random variable i.e.
h : S → R = R ∪ {−∞,+∞}.

• If g , h : S → R are real random variables and Φ: R2 → R is
continuous, then Φ ◦ (g , h) is a real random variable.

• Let (hn)n∈N be a sequence of real random variables on (S ,S). Then
supn fn, infn fn, lim supn fn, lim infn fn are real random variable.



A monotone-class theorems

Theorem
Let H be a vector space of bounded real functions of a set S and assume
1 ∈ H. Assume

1. H is a monotone class i.e., if for each bounded increasing sequence
(fn)n ∈ N in H the function ∨nfn belong to H.

2. H contains the indicator functions of a π-system I.

Then, H contains all bounded measurable functions of (S , σ(I )).

• Application. Consider measurable spaces (Ωi ,Fi ), i = 1, 2. Define
Ω = Ω1 × Ω2 and I = {A1 × A2 |A1 ∈ F1,A2 ∈ F2}. Then
F1 ⊗F2 = σ(I). Let H be the set of all bounded real funtions
f : Ω1 × Ω2 → R such that for each fixed x ∈ Ω1 the mapping
Ω2 3 y 7→ f (x , y) is F2-measurable and for each fixed y ∈ Ω2 the
mapping Ω1 3 x 7→ f (x , y) is F1-measurable.



Simple functions

Let (S ,F) be a measurable space.

Definition
A measurable real function, f : S → R, f −1 : B → F , is simple if it takes
a finite number of values; equivalently, it is of the form f =

∑m
k=1 ak1Ak

,
ak ∈ R, Ak ∈ F , k = 1, . . . ,m, m ∈ N. The algebra with unity of all
simple functions is denoted by S; the cone of all non-negative simple
function is denoted by S+.

• Both S and S+ are closed for ∨ and ∧; f = f + − f −, f ∈ S.

• If f is measurable and non-negative, there exist an incresasing
sequence (fn)n∈N in S+ such that limn→∞ fn(s) = f (s), s ∈ S .

• If f is measurable and bounded, there exist an sequence (fn)n∈N in
S such that limn→∞ fn = f uniformely.



Integral of a non-negative function
Let (S ,F , µ) be a measure space.

Definition

• If f ∈ S, f =
∑m

k=1 ak1Ak
, we define its integral to be∫

f dµ =
m∑

k=1

akµ(Ak) where 0 · ∞ =∞ · 0 = 0

• If f : S → [0,+∞] is measurable, namely f ∈ L+, we define its
integral to be∫

f dµ = sup

{∫
h dµ

∣∣∣∣ h ∈ S+, h ≤ f

}

• The integral is linear and monotone on
S1 =

{
f ∈ S

∣∣ ∫ f + dµ,
∫
f − dµ ≤ ∞

}
. The integral is convex and

monotone on L+.

• If f ∈ L+ and
∫
f dµ = 0, then µ {f > 0} = 0.



Monotone-Convergence Theorem

Theorem (MON)

let (fn)n∈N be a non-decreasing sequence in L+. Then the pointwise limit
f = limn→∞ fn belongs to L+ and limn→∞

∫
fn dµ =

∫
f dµ.

• A sequence of simple functions converging to f is always available.

• If α, β ∈ R>0, f , g ∈ L+, then∫
(αf + βg) dµ =

∫
αf dµ+

∫
βg dµ

• Exercise: If µ(S) = 1, then
∫
f dµ =

∫∞
0
µ {f > u} du.



Fatou Lemmas

Theorem (FATOU)

Let (fn)n∈N be a sequence in L+.

1.
∫

(lim infn→∞ fn) dµ ≤ lim infn→∞
∫
fn dµ.

2. If, moreover, fn ≤ g , n ∈ N, and
∫
g dµ <∞, then∫

(lim supn→∞ fn) dµ ≥ lim supn→∞
∫
fn dµ.

• Exercise: Prove 1. by observing that lim sup is the limit of an
increasing sequence.

• Exercise: If (fn)n∈N is a decreasing sequence in L+ and∫
f1 dµ <∞, then

∫
(limn→∞ fn) dµ = limn→∞

∫
fn dµ.

• Exercise: If (fn)n∈N is a sequence in L+ and fn ≤ g , n ∈ N,∫
g dµ <∞, then

∫
(limn→∞ fn) dµ = limn→∞

∫
fn dµ.



Integrability

Definition

• Let L1 be the vector space of measurable real functions such that∫
|f | dµ =

∫
f + dµ+

∫
f − dµ <∞

• Define the integral to be the linear mapping

L1 3 f 7→
∫

f dµ =

∫
f + dµ−

∫
f − dµ ∈ R

• Exercise. Revise L1-convergence and Dominated Convergence
Theorem.



Expectation

• Let E: L∞(S ,S)→ R be such that

• E (1) = 1.
• E is linear and positive (hence monotone).
• E is continuous on non-increasing sequence converging to 0.

• Every such E defines a probability measure when restricted to
indicators, P (A) = E (1A) and E (f ) =

∫
f d P

• A similar observation holds for a E: L+(S ,S).

• If f ∈ L(S ,L), as f = f+ − f− and |f | = f+ + f−, if E (|f |) <∞
then E (f+) ,E (f−) <∞. In such a case, we say that
f ∈ L1(S ,S,P) and define E (f ) = E (f+)− E (f−).

• E: L1(S ,S,P)→ R is positive, linear, normalized, continuous for
the bounded pointwise convergence.

• Exercise: carefully check everything!



Densities

Let be given a measure space (S ,F , µ) and a measurable non-negative
mapping p : S → R such that

∫
p dµ <∞.

The set function

p · µ : F → R>0, A 7→
∫

1Ap dµ

is a bounded measure. In fact: p · µ(∅) =
∫

0 dµ = 0; given a sequence
(An)n∈N of disjoint events, then MON implies

p · µ(∪n∈NAn) =

∫
1∪n∈NAnp dµ =

∫ ∑
n∈N

1An dµ =

∑
n∈N

∫
1An dµ =

∑
n∈N

p · µ(An)

Exercise: If f : S → R is measurable and fp ∈ L1(S ,F , µ), then
f ∈ L1(S ,F , p · µ) and

∫
f d(p · µ) =

∫
fp dµ. [Hint: try first simple

functions, then use MON]



Inequalities I

• Expectation is a positive operator, hence it preserves the order.
Most common application is a family of inequalities whose simplest
form is Markov inequality: If x ≥ 0 and a > 0, then 1[a,+∞[ ≤ a−1x .
It follows that for each non-negative random variable X we have
P (X ≥ a) ≤ a−1 E (X ).

• The previous inequality can be optimised to get, for example, the
exponential Markov inequality. Observe that for all t > 0 it holds
{X ≥ a} =

{
etX ≥ eta

}
. It follows that

P (X ≥ a) ≤ e−ta E
(
etX
)

= exp
(
−
(
ta− logE

(
etX
)))

.

If I (a) = supt>0

(
ta− logE

(
etX
))

, then logP (X ≥ a) ≤ −I (a).

• Jensen inequality: Let Φ: R→ R be convex with proper domain D.
Assume X is an integrable random variable such that Φ(X ) is
integrable. Then Φ (E (X )) ≤ E (Φ ◦ X ). In fact, for each xo ∈ D
there is an affine function such that Φ(x0) + b(xo)(x − x0) ≤ Φ(x),
x ∈ R. It follows that Φ(x0) + b(xo)(E (X )− x0) ≤ E (Φ ◦ X ). In
particular, Jensen inequality follows if x0 = E (X ).



Inequalities II
• Fenchel’s inequality: Given the convex function Φ, there exists a

convex function Ψ such that Ψ(y) = supx (xy − Φ(x)). In
particular, the inequality xy ≤ Φ(x) + Ψ(y) holds for all x , y . It
follows that E (XY ) ≤ E (Φ ◦ X ) + E (Ψ ◦ Y ) if all terms are well
defined.

• An important example of Fenchel inequality follows from
xy ≤ 1

α |x |
α + 1

β |y |
β , where α, β > 1 and α−1 + β−1 = 1. The

integral inequality is E (XY ) ≤ 1
α E (|X |α) + 1

β E
(
|Y |β

)
.

• For x ∈ R, q > 0 and have xq ≤ ex − 1 + q log q. If f is a random
variable and q is a probability density w.r.t. µ, then∫
fq dµ ≤

∫
ef dµ− 1 +

∫
q log q dµ.

• Lebesgue space: For each α ≥ 1, define

Lα = {X ∈ L |E (|X |α) <∞} .

Define
X 7→ (E (|X |α))

1/α
= ‖X‖α

.



Inequalities III

• Hölder inequality. Apply Fenchel inequality to f = X/ ‖X‖α and
g = Y / ‖Y ‖β . It follows

E (fg) = E

(
X

‖X‖α
Y

‖Y ‖β

)
≤ 1

α
+

1

β
= 1.

It follows that E (XY ) ≤ ‖X‖α ‖Y ‖β .

• Minkowski inequality. Apply Hölder inequality to

E (|X + Y |α) = E
(
|X + Y | |X + Y |α−1

)
≤

E
(
|X | |X + Y |α−1

)
+ E

(
|Y | |X + Y |α−1

)
to get ‖X + Y ‖α ≤ ‖X‖α + ‖Y ‖α.



Change of variable formula

Let be given a measure space (S ,F , µ), a measurable space (X,G) and a
measurable mapping φ : S → X, p−1 : G → F . Let φ#µ = µ ◦ φ−1 be the
push-forward measure.

• If h ∈ S(X,G) i.e. h =
∑n

k=1 bk1Bk
, bk ∈ R, Bk ∈ G, k = 1, . . . , n.

Then∫
h dφ#µ =

n∑
k=1

bkφ#µ(Bk) =
n∑

k=1

bkµ[φ−1(Bk)] =

n∑
k=1

bk

∫
1Bk
◦ φ dµ =

∫
h ◦ φ dµ

• If f ∈ L+, then MON implies
∫
f dφ#µ =

∫
f ◦ φ dµ

• If f : X→ R is measurable and f ◦ φ ∈ L1(S ,F , µ) then
f ∈ L1(X,G, φ#µ) and

∫
f dφ#µ =

∫
f ◦ φ dµ.



Product measure I
Definition
Given measure spaces (Si ,Fi , µi ), i = 1, . . . , n, n = 2, 3, . . . , the product
measure space is

(S ,F , µ) = ⊗n
i=1(Si ,Fi , µi ) = (×n

i=1Si ,⊗n
i=1Fi ,⊗n

i=1µi ),

where
F = ⊗n

i=1Fi = σ {×n
i=1Ai |Ai ∈ Fi , i = 1, . . . , n}

and µ = ⊗n
i=1µi is the unique measure on (×n

i=1Si ,⊗n
i=1Fi ) such that

µ(×n
i=1Ai ) =

n∏
i=1

µi (Ai ), Ai ∈ Fi , i = 1, . . . , n.

• Let Xi : S 7→ Si , i = 1, . . . , n, be the projections. Then
⊗n

i=1Fi = σ {Xi |i = 1, . . . , n}.
• Examples: Counting measure on N2, Lebesgue measure on R2, the

finite Bernoulli scheme.

• Product measure of probability measures is a probability measure.



Product measure II
Recall all measures are σ-finite. Assume n = 2.

Sections
If C ∈= F = F1 ⊗F2, then for each x1 ∈ S1 the set
{x2 ∈ S2 | (x1, x2) ∈ C} belongs to F2.

Proof.
Let O be the family of all subsets of S for which the proposition is true.
O is a σ-algebra that contains all the measurable rectangles, hence
F ⊂ O.

Partial integration

The mapping S1 : x1 7→ µ2 {x2 ∈ S2 | (x1, x2) ∈ C} is non-negative and
F1-measurable.

Proof.
If C ∈ F then the function is well defined. The set of all C ∈ F such
that the function is measurable contains measurable rectangles, is a
π-system, and is a d-system.



Product measure III
Product measure: existence
The set function µ : F 3 C 7→

∫
µ2 {x2 ∈ S2 | (x1, x2) ∈ C} µ1(dx − 1) is

a measure such that µ(A1 × A2) = µ1(A1)µ2(A2) on measurable
rectangles. Hence, µ = µ1 ⊗ µ2.

Proof.
The integral exists because the integrand is non-negative. µ(∅) = 0; if
(Cn)n∈N is a sequence in F of disjoint events, then for all x1 ∈ S1 we have

µ2 {x2 ∈ S2 | (x1, x2) ∈ ∪n∈NCn} = µ2 (∪n∈N {x2 ∈ S2 | (x1, x2) ∈ Cn}) =∑
n∈N

µ2 {x2 ∈ S2 | (x1, x2) ∈ Cn}

MON implies

µ (∪n∈NCn) =

∫ ∑
n∈N

µ2 {x2 ∈ S2 | (x1, x2) ∈ Cn} µ1(dx1) =

∑
n∈N

∫
µ2 {x2 ∈ S2 | (x1, x2) ∈ Cn} µ1(dx1) =

∑
n∈N

µ(Cn)



Product measure IV

• Consider n = 3. The product measure space

⊗3
i=1(Si ,Fi , µi ) = (×3

i=1Si ,⊗3
i=1Fi ,⊗3

i=1µi )

is identified with

(S1 × S2,F1 ⊗F2, µ1 ⊗ µ2)⊗ (S3,F3, (µ1 ⊗ µ2)⊗ µ3)

One has to check that

(F1 ⊗F2)⊗F3 = F1 ⊗F2 ⊗F3

• The n =∞ case requires Charateodory. See the Bernoulli scheme
example.



Fubini theorem I

Section
Let f : S1 × S2 → R be F1 ⊗F2 measurable. For all x1 ∈ S1 the function
fx1 : x2 7→ f (x1, x2) is F2-measurable.

Proof.
For each y ∈ R, consider the level set
C = {(x1, x2) | f (x1, x2) ≤ y} ∈ F1 ⊗F2. The set {(x2) | f x1(x2) ≤ y} is
the x1-section of C .

Theorem (Non-negative integrand)

Let f : S1 × S2 → R be F1 ⊗F2-measurable and non-negative. Then the
mapping S1 3 x1 7→

∫
f (x1, x2) µ2(dx2) is F1-measurable and∫

f dµ1 ⊗ µ2 =

∫ (∫
f (x1, x2) µ2(dx2)

)
µ1(dx1)

§8-5 of Malliavin.



Fubini theorem II

Theorem (Integrable integrand)

Let f : S1 × S2 → R be µ1 ⊗ µ2-integrable. Then the mapping
S1 3 x1 7→

∫
f (x1, x2) µ2(dx2) is µ1-integrable and∫
f dµ1 ⊗ µ2 =

∫ (∫
f (x1, x2) µ2(dx2)

)
µ1(dx1)

Proof: Non-negative integrand.

Choose an increasing sequence of simple non-negative functions
converging to f and use MON.

Proof: Integrable integrand.

Decompose f = f + − f − and use the previous form of the theorem.



Independence

Definition
Let (Ω,F , µ) be a probability space.

1. The sub-σ-algebras F1, . . . ,Fn are independent if Ai ∈ Fi ,
i = 1, . . . , n, implies µ(A1 ∩ · · · ∩ An) = µ(A1) · · ·µ(An).

2. The random variables Xi : Ω→ Si , X
−1
i : Gi → F , i = 1, . . . , n, are

independent, if

(X1, . . . ,Xn)#µ = (X1)#µ⊗ · · · ⊗ (Xn)#µ

If Fi = σ(Xi ), the 1. and 2. are equivalent. If Ai = X−1
i (Bi ),

i = 1, . . . , n,

µ(A1 ∩ · · · ∩ An) = µ(X−1
1 (B1) ∩ · · · ∩ X−1

n (Bn)) =

µ((X1, . . . ,Xn)−1(B1 × · · · × Bn)) = (X1, . . . ,Xn)#µ(B1 × · · · × Bn) =

(X1)#µ⊗ · · · ⊗ (Xn)#µ(B1 × · · · × Bn) = (X1)#µ(B1) · · · (Xn)#µ(Bn) =

µ(X−1
1 (B1)) · · ·µ(X−1

n (Bn)) = µ(A1) · · ·µ(An)


