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1. Probability functions

1.1. Convex sets. Convex analysis is an important topic in applied probability. A
standard reference is the monographs [1].

A subset H of a vector space V is an affine space if tx´ y |x, y P Hu is a sub-vector
space of V which is called the vector subspace parallel to H. The dimension of the affine
space H is the dimension its parallel vector subspace. Given x0, . . . , xn P V the set of
all vectors of the form x0 `

řn
j“1 λjxj, λj P R, is the affine space generated by the given

vectors. An affine space of dimension n´ 1 in Rn is an hyper-plane,
A subset C of the vector space V is convex if for all x, y P C all of the segment

p1 ´ λqx ` λy, λ P r0, 1s belongs to C. The intersection of two convex sets is convex.
Given x0, . . . , xn P V the set of all λ0x0` ¨ ¨ ¨ ` λnxn with λ0` ¨ ¨ ¨ ` λn “ 1 is the convex
set generated by the given vectors. Such a set is called a polytope (or convex polytope).
Notice that

řn
j“0 λjxj “ p1´

řn
j“1 λjqx0`

řn
j“1 λjxj “ x0`

řn
j“1 λjpxj ´x0q that is, the

polytope is a part of the affine space generated. A notable example of convex set is the
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half-space of v P V such that xc, vy ď b with c P V and b P R. A finite intersection of
half-spaces is a convex set called a polyhedron. A bounded polyhedron is a polytope.

The vectors x0, . . . , xm are affinely independent if the vectors x1 ´ x0, . . . , xm ´ x0 are
linearly independent. They form a vector basis of the sub-space parallel to the generated
polytope which in this case is called a simplex. Two simplexes of the same dimension
can be mapped one onto the other by an affine transformation that map their respective
generators (the vertexes).

1.2. Affine geometry of the probability simplex. Let λ be a probability function
on Ω. As λ P RΩ, we can write λ “

ř

xPΩ λpxqδx, so that the set ∆pΩq is the convex set
generated by the probability functions associated to the Dirac probability measures. Let
us code Ω as t1, . . . , Nu and write λ “

řn
j“1 λjej. The vectors ej ´ em, j “ 1, . . . , N ´ 1

are linearly independent so that ∆pΩq is a special simplex which is called the proba-
bility simplex. The parallel vector space is the vector space of the vectors of the form
řn
j“1 αjpej ´ e1q that is of the form

řn
j“1 αjej with

řn
j“1 αj “ 0. These are the vectors

which are orthogonal to the constant vectors.
The set of probability functions with support Ω1 Ă Ω form a simplex of dimension

#Ω1 ´ 1. If #Ω1 “ n´ 1 this sub-simplex is a face of ∆pΩq.
There is another simplex that represents the probability simplex ∆pΩq namely, the solid

probability simplex. In fact, we can represent a probability function by its n ´ 1 values
λj, . . . , λn´1 which form a vector in Rn´1 satisfying the conditions λj ě 0 and

řn´1
j“1 λj ď 1.

The vectors e1, . . . , en´1, 0 P Rn´1 are affinely independent and generate a simplex of
dimension n ´ 1 as

řn´1
J“1 λjej ` λn0. The mapping between the two representations is

given by Rn Q ej ÞÑ ej P Rn´1 for j “ 1, . . . , n´ 1 and Rn Q en ÞÑ 0 P Rn´1.

Example 1. Study the probability simplex ∆pt1, 2, 3uq. In particular, construct the solid
simplex and show it is a polyhedron. Consider the representation as an equilateral trian-
gle. [Check for example http://henr.in/crumbs/simplex/ .

Example 2. Study the probability simplex on Ω “ t0, 1u2. It is a simplex of dimension 3
and it is interesting to consider its graphical representations. [Check the Wikipedia entry
https://en.wikipedia.org/wiki/Simplex.]

1.3. Aside: differentials. Let f : O Ñ Rn, where O is an open sub-set of Rm. The
function is differentiable at x̄ P O if there exists a linear mapping dfpx̄q P LpRm,Rnq such
that

fpx̄` hq ´ fpx̄q ´ dfpx̄qrhs “ ophq .

The matrix representing the linear operator dfpx̄q is called the Jacobian matrix of f ,
Jfpx̄q, whose elements are the partial derivatives

Jfpx̄q “
”

B

Bxj
fipx1, . . . , xnq

ı

i“1,...,n;j“1,...m

The derivative of the composite function f ˝ g at x is dpf ˝ gqpxq “ dfpgpxqq ˝ dgpxq.

1.4. Differentiability on the probability simplex. Let I Q θ ÞÑ λpθq be a curve in
the probability simplex which is differentiable in RΩ. The derivative

λ1pθq “ lim
hÑ0

h´1
pλpθ ` hq ´ λpθq

belongs to the subspace parallel to the simplex. If λpω̄; θ̄q “ 0, then the real differentiable
function θ ÞÑ λpω̄, θq has a minimum at θ “ θ̄, so that λ1pω̄, θ̄q “ 0 and λ1pθ̄q belong to
the space parallel to the face of the simplex characterised by λpω̄q “ 0.
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1.5. Aside: convex functions. If a convex set A P Rm is open, then every straight line
intersects A in an open interval or an empty interval. For example, the subset of the solid
probability simplex consisting of strictly positive probability functions is an open convex
set. The closure A of an open convex set A is a convex set. The difference AzA is the
boundary of the convex set. Let x be a point of the boundary. A unit vector u applied
at x enters A if there is a y P A such that u “ py ´ xq{ }y ´ x}. The set of all entering
vectors cannot contain two antipodal elements so that there is a unit vector w such that
xw, uy ă 0 for all entering unit vector. This argument leads to the proof of the following
Isolation Theorem: Let A be an open convex set in Rm and let x be in the border of A.
There exists a unit vector w such that xw, y ´ xy ă 0 for all y P A that is, the half-space
contains the convex set.1

A function φ defined on Rn with values in R “ R Y t`8u is convex if the epigraph
epi pφq “ tpx, tq |x P dom pφq , t P R, φpxq ď tu is a convex subset of Rn`1. We define
dom pφq to be the set where φ takes finite values. If φ is convex, then dom pφq is a
convex subset of Rn. If x1, x2 P dom pφq, then there exist px1, t1q, px2, t2q P epi pφq and
for all λ P r0, 1s it holds pp1 ´ λqx1 ` λx2, p1 ´ λqt1 ` λt2q P epi pφq. In particular,
φpp1´λqx1`λx2q ă `8. If φ is convex, then p1´λqφpx1q`λφpx2q ď φpp1´λqx1`λx2q

for all x1, x2 P Rn and λ P r0, 1s. If any of x1, x2 is not in dom pφq the inequality is trivially
satisfied. Otherwise, it is the same computation as above. Conversely, if φ : dom pφq Ñ R
and p1 ´ λqφpx1q ` λφpx2q ď φpp1 ´ λqx1 ` λx2q for all x1, x2 P dom pφq and λ P r0, 1s,
then the function extended with value `8 outside the domain is convex.

Let φ be convex, and define the strict epigraph be open convex set

tpx, tq |x P dom pφq , t P R, φpxq ă tu .

Assume that at a point px, φpxqq the entering unit vectors are not all horizontal. Then
the Isolation Theorem implies that there exist at least a supporting hyper-plane. In such a
case, φ on all such points φ is the point-wise maximum of the supporting affine functions.
In the differentiable case, the tangent plane is the unique supporting hyperplane. If
φ P C2pOq then the Hessian matrix is non-negative definite.

Let φ be convex and let φ be differentiable on an open convex set O. Then ∇φ : O Ñ Rn

is monotone i.e., x∇φpxq ´∇φpyq, x´ yy ě 0 for x, y P O. We can re-write the basic
inequality as

λ´1
pφpx` λpy ´ xqq ´ φpxqq ď φpyq ´ φpxq .

If λÑ 0.

x∇φpxq, y ´ xy ď φpyq ´ φpxq .

By adding the inequality with x and y exchanged we obtain the monotonicity.
Conversely, if φ is differentiable and ∇φ is monotone on an open convex set O, then φ

is convex on O. Write z “ p1´ λqx` λy and assume 0 ă λ ă 1 because otherwise there
is nothing to prove. observe that

φpzq ´ φpxq “

ż 1

0

x∇φpx` tpz ´ xqq, z ´ xy dt “
ż 1

0

x∇φpx` tpz ´ xqq ´∇φpzq, z ´ xy dt` x∇φpzq, z ´ xy ď

x∇φpzq, z ´ xy “ λ x∇φpzq, y ´ xy .

1See a full proof in [1, p 45-46].
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In fact, z´x and px` tpx´zqq´z are proportional with factor ´p1´ tq ď 0. In a similar
way,

φpyq ´ φpzq “

ż 1

0

x∇φpz ` tpy ´ zqq, y ´ zy dt “
ż 1

0

x∇φpz ` tpy ´ zqq ´∇φpzq, y ´ zy dt` x∇φpzq, y ´ zy ě

x∇φpzq, y ´ zy “ p1´ λq x∇φpzq, y ´ xy ,

as y ´ z and pz ` tpy ´ zqq ´ z are proportional with a factor t ě 0. We rearrange the
two inequalities as

φpp1´ λqx` λyq ď φpxq ` λ x∇φpzq, y ´ xy
φpp1´ λqx` λyq ď φpyq ` p1´ λq x∇φpzq, y ´ xy

and take the convex combination to conclude the proof.2

Example 3 (Examples of convex functions). Show that the following functions are convex
and compute the gradient mapping if it exists.

(1) Rn Q x ÞÑ
řn
j“1 |xj|

a
“ }x}aa, a ě 1.

(2) Rn Q x ÞÑ exp pxa, xyq, a P Rn.
(3) Rn Q x ÞÑ ´ log pxa, xyq, a P Rn.
(4) R` Q x ÞÑ x log x.

1.6. Inequalities for the expectation. If u1, . . . , un are real random variables, and u
denotes the corresponding random variable with values in Rn, then for each probability
function p the vector Ep rus “

ř

ωPΩ ppωqupωq is well defined. The operator Ep is linear
and affine, namely for vector random variables u, v, reals α, β, and constant b, it holds

Ep rαu` βv ` cs “ αEp rus ` β Ep rvs ` b .

The basic convexity inequality is Jensen Inequality. Let p be a probability function and
let u be a vector random variable. If φ is a convex function on C and C contains the
image of u, then Ep rφ ˝ us ď φ pEp rusq. Here are two proofs, both interesting. First,
observe that the convexity inequality can be easily generalised to any number of terms,

φ

˜

n
ÿ

j“1

λjxi

¸

ď

n
ÿ

j“1

φpxjq , λj ě 0 ,
n
ÿ

j“1

λj “ 1 ,

which is exactly the Jensen inequality written differently. Proof by recurrence. Second,
let x ÞÑ atx ` b be an affine function which is bounded by φ. Then at Ep rus ` b “
Ep ratu` bs ď Ep rφ ˝ us. Now take the supporting affine function at Ep rus that is,
choose a and b such that at Ep rus ` b “ φ pEp rusq.

The most common example of application is with φpxq “
řm
j“1 |xj|

a
“ }x}aa, a ě 1. It

follows that

Ep

«

n
ÿ

j“1

|uj|
a

ff

ě

n
ÿ

j“1

Ep r|uj|sa .

Another inequality of interest is the Hölder Inequality: For all probability function p,
all couple of random variables X and Y , and all couple of positive numbers a and b such

2This proof is taken from [6, p. 26]
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that 1{a` 1{b “ 1, it holds

Ep rXY s ď Ep r|X|as1{a Ep
”

|Y |b
ı1{b

Example 4 (A proof of the Hölder inequality). Here is a proof involving computations of
independent interest. From the convexity of x ÞÑ ex, that is

peuq1{a pevq1{b “ e
1
a
u` 1

b
v
ď

1

a
eu `

1

b
ev ,

we obtain

Ep
”

peuq1{a pevq1{b
ı

ď
1

a
Ep reus `

1

b
Ep revs .

Let U , V be strictly positive random variables and define u and v by eu “ Ua{Ep rUas

and ev “ V b{Ep
“

V b
‰

, respectively. Notice that now Ep reus “ Ep revs “ 1. The inequality
above becomes

Ep
”

pUa
{Ep rUa

sq
1{a

`

V b
{Ep

“

V b
‰˘1{b

ı

ď
1

a
Ep reus `

1

b
Ep revs “ 1 .

A little algebra produces the Hólder inequality for strictly positive random variable. Now
consider U` ε, V ` ε and the limit εÑ 0 to prove the inequality for non-negative random
variables. Finally, take U “ |X| and V “ |Y | and observe that XY ď |X| |Y | to conclude
the proof.3

Another classical inequality is the Minkovski Inequality: For all probability function p,
all couple of random variables X and Y , and a ě 1, it holds

Ep r|X ` Y |as ď Ep r|X|as ` Ep r|Y |as .

Minkovski inequality shows that LpΩq Q X ÞÑ Ep r|X|as1{a “ }X}p,a is a norm if p is

strictly positive. If p is not strictly positive, then it is a semi-norm.4

Example 5 (Proof of Minkovski inequality). The case a “ 1 has an immediate proof. If
a ą 1 use pX ` Y qa “ XpX ` Y qa´1 ` Y pX ` Y qa´1 and Hölder inequality. Notice that
1{a` 1{b “ 1 if and only if b “ a{pa´ 1q.

Example 6 (L2-convergence and Weak LLN). Consider the Bernoulli n-scheme and define

Sn “ X1` ¨ ¨ ¨ `Xn. Then Eθ rSn{ns “ θ and Eθ
”

`

Sn
n
´ θ

˘2
ı

“ 1
n
θp1´ θq Ñ 0 as nÑ 8.

Example 7 (Cramer inequality and Strong LLN). Let p be a probability function, X a
real random variable, c ą 0. For all t ą 0,

Pp pX ě cq “ Pp ptX ě ctq “ Pp
`

etX ě ect
˘

ď
1

ect
Ep

“

etX
‰

“ exp
`

´
`

ct´ logEp
“

etX
‰˘˘

.

The function κ : t ÞÑ logEp
“

etX
‰

is convex with

κ1ptq “
Ep

“

XetX
‰

Ep retXs
and

κ2ptq “
Ep

“

X2etX
‰

Ep
“

etX
‰

´ Ep
“

XetX
‰2

Ep retXs2
“

Ep
“

pX ´ Ep rXsq2etX
‰

Ep retXs
ą 0 .

3This proof is taken from [3, §3.2.16]
4It is interesting to compare this statement with the corresponding statement as seen in Measure

Theory
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To get the optimal inequality we look for

sup
tě0

ct´ κptq “ sup
tPR

ct´ κptq .

If t̂ is the solution of ct̂ “ κ1pt̂q, then

PppX ě cq ď e´pct̂´logEpret̂Xsq

In particular, if X is binomial, then

Ep
“

etX
‰

“

n
ÿ

k“0

etk
ˆ

n

k

˙

θkp1´ θqn´k “ pθet ` p1´ θqqn

so that

κptq “ n log
`

θet ` p1´ θq
˘

, κ1ptq “ n
θet

θet ` p1´ θq
.

The optimum value for the inequality is explicitly computable.5.

2. Exponential expression of the open simplex ∆˝pΩq

Every positive probability function is of the form ppωq “ eV pωq. This simple remark is
frequently used in many applications as it provides a way to avoid inequality contrains.
We start with some examples.

Example 8 (The Bernoulli model as an exponential family). The Bernoulli model

ppω; θq “ θT pωqp1´ θqn´T pωq

with θ Ps0, 1r, pX1pωq, . . . , Xnpωqq “ ω P Ω “ t0, 1un, Xjpωq “ xj, T pωq “
řn
j“1Xjpωq,

can be written as

ppω; θq “ exp

ˆ

log

ˆ

θ

1´ θ

˙

T pωq ` n log p1´ θq

˙

θ Ps0, 1r .

For each ω the function θ ÞÑ ppω; θq is called likelihood of ω.
The parameter θ Ps0, 1r is the value of a probability or expected value, θ “ PppXj “

1q “ Ep rXjs. The new parameter o “ θ{p1 ´ θq, θ “ o{p1 ` oq, represents the odds, and
o Ps0,`8r. WE use the parameter log-odds, α “ log

`

θ
1´θ

˘

, θ “ eα{p1 ` eαq, α P R so
that we can write the Bernoulli model in the form

ppω;αq “ exp pαT pωq ´ κpαqq , κpαq “ n log p1` eαq .

The function κ is strictly convex with

κ1pαq “ n
eα

1` eα
“ nθ “ Eppθq rT s ;

κ2pαq “ n
eα

p1` eαq2
“ nθp1´ θq “ Eppθq

“

pT ´ nθqq2
‰

;

κ3pαq “ n
eαp1´ eαq

p1` eαq3
“ θp1´ θq2 ´ θ2

p1´ θq .

The log-likelihood at ω is

` : α ÞÑ log ppω;αq “ αT pωq ´ κpαq .

5The relation with the Strong LLN appears when evaluating the dependence on n. To be discussed
later
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It is strictly concave with

d

dα
`pω;αq “ T pωq ´ κ1pαq “ T pωq ´ n

eα

1` eα
“ T pωq ´ Eppθq rT s ,

in particular, `1pω; 0`q “ T pωq and `p`8q “ ´8. The maximum obtains at θ̂pωq such

that T pωq “ θ̂pωq that is, θ̂pωq “ T pωq{n.

The random variable θ̂ is the maximum likelihood estimator of the parameter θ. This

estimator is unbiased because Eppθq
”

θ̂
ı

“ θ and it is weakly consistent because

Pppθq
´
ˇ

ˇ

ˇ
θ̂ ´ θ

ˇ

ˇ

ˇ
ě ε

¯

ď ε´2 Eppθq
„

´

θ̂ ´ θ
¯2


“ ε´2 θp1´ θq

n2
Ñ 0 if nÑ 8.

The behaviour of the standardized error i.e., the CLT will be discussed later.

The exercise above provides the simplest example of classical Statistics and the simplest
example of the expression of a parametrized probability function as an exponential family.
The next exercise shows the use of weight functions.

Example 9. Consider the binomial probability function

ppk; θq “

ˆ

n

k

˙

θkp1´ θqm´k , k P t0, 1, . . . , nu , θ Ps0, 1r .

Here, the binomial factor does not depend on the parameter. It is convenient to consider
the function k ÞÑ

`

n
k

˘

as a weight function on the sample space and write the exponential
expression as

ppθq “ exp

ˆ

log

ˆ

θ

1´ θ

˙

K ` n log p1´ θq

˙ˆ

n

K

˙

.

Now, the interesting factor is the density with respect to the binomial weight, eαK´κpαq,
α being the log-odds.

A similar model has been considered in Statistical Physics a long time before its use
in Statistics. In the next example, we use an un-normalised probability function e.i., a
function f : Ω Ñ R`. Given such a function, one computes the normalizing constant
Z “

ř

ωPΩ fpωq and p “ f{Z is a probability function. The set of all un-normalized
probability function is a pointed cone and the normalization is a mapping from the cone
to the probability simplex.

Example 10 (Gibbs distribution). If Ω is a finite set of states of a physical system, and
ω ÞÑ Upωq is a non-negative function whose value is the energy of the state ω, the
probability function

ppω; tq9fpωq “ exp

ˆ

´
Upωq

t

˙

, t ą 0 ,

provides a probability on the set of states Ω which is called Gibbs distribution. C.f. [4,
§28]. The parameter t represents the absolute temperature.

The normalising constant is

Zptq “
ÿ

ωPΩ

exp

ˆ

´
Upωq

t

˙

,

7



so that the Gibbs probability function is

ppω; tq “
exp

´

´
Upωq
t

¯

ř

ωPΩ exp
´

´
Upωq
t

¯ “ exp

ˆ

´
Upωq

t
´ logZptq

˙

.

One has

d

dt
logZptq “

ř

ωPΩ exp
´

´
Upωq
t

¯

Upωq
t2

Zptq
“

1

t2

ÿ

ωPΩ

Upωqppω; tq “
1

t2
Epptq rU s

and
d

dt
log ppω; tq “

1

t2
Upωq ´

1

t2
Epptq rU s .

Other equations similar to those we have obtained for the Bernoulli distribution hold.
This provides the basic formalism for this physical model. For example, the deviation of
the energy from its mean value is

U ´ Epptq rU s “ t2
d

dt
log pptq .

2.1. Positive probability functions. In general, if the probability function p : Ω is
positive, it is always possible to write it as ppuq “ exp pUpωq ´ κpUqq, where U is a
random variable and ψpUq is constant depending on U . In fact, if log ppωq “ Upωq´κpUq,
then U is identified up to a constant and, for any given U ,

1 “
ÿ

ωPΩ

ppωq “ e´κpUq
ÿ

ωPΩ

eUpωq so that, κpUq “ log

˜

ÿ

ωPΩ

eUpωq

¸

.

Example 11. Condider the binomial probability function ppkq “
`

n
k

˘

θkp1 ´ θqn´k, k “
0, . . . , n, θ Ps0, 1r, we can write

ppkq “

ˆ

n

k

˙

p1´ θqn
ˆ

θ

1´ θ

˙k

“ exp

ˆ

log

ˆ

n

k

˙

` k log

ˆ

θ

1´ θ

˙

` n log p1´ θq

˙

that is, Upkq “ log
`

n
k

˘

` k log
`

θ
1´θ

˘

and κpUq “ ´n log p1´ θq.

It is convenient to change the parameter: if α “ log
`

θ
1´θ

˘

, then θ “ eα

1`eα
and

ppkq “ exp

ˆ

αk ` log

ˆ

n

k

˙

´ n log p1` eαq

˙

.

In fact, Upkq “ αk ` log
`

n
k

˘

, hence

κpUq “ log

˜

n
ÿ

k“0

eUpkq

¸

“ log

˜

n
ÿ

k“0

ˆ

n

k

˙

αk

¸

“ n log p1` eαq .

Such a way to express probability functions and the related formalism was initiated in
Statistical Physics by J.W. Gibbs (1901).

The mapping U ÞÑ p “ eU´κpUq cannot be injective because the vector space of random
variables has dimension #Ω while the convex set of probability functions has dimension
#Ω´ 1. Precisely,

eUpωq´κpUq “ eV pωq´κpV q ñ Upωq ´ V pωq “ κpV q ´ κpUq .

The function eU is a generic positive function and the set of positive functions is a cone.
A base of this cone is the open probability simplex and the normalization is a projection
onto this basis.

8



There are many ways to add a one-dimensional constraint to obtain a 1-to-1 function.

2.2. Potentials in the space parallel to the simplex. For each positive probabil-
ity function there is a unique potential U such that

ř

ωPΩ Upωq “ 0. Assume p “
exp pU ´ κpUqq with

ř

ωPΩ Upωq “ 0. Then
ÿ

ωPΩ

log ppωq “
ÿ

ωPΩ

Upωq ´ κpωq “ NκpUq , N “ #Ω ,

that is, κpUq “ 1
N

ř

ωPΩ log ppωq. Conversely, given any positive probability function, we

can define U “ log p´ 1
N

ř

ωPΩ log ppωq so that,
ř

ω Upωq “ 0. Moreover,

p “ exp plog pq “ exp

˜

U `
1

N

ÿ

ωPΩ

log ppωq

¸

“ exp pU ´ κpUqq

with kpUq “ ´ 1
N

ř

ωPΩ log ppωq. In conclusion: Let B0 denote the vector space parallel to

the simplex. The mapping B0 Q U ÞÑ eU´kpUq with κpUq “ ´ 1
N

ř

ωPΩ eUpωq is 1-to-1. The
inverse of this mapping is

∆˝
pωq Q p ÞÑ log p´

1

N
log ppωq .

A similar, but more general and more useful computation, considers the case of an
exponential density with respect to a weight function.

2.3. Potential centered at the probability function. Consider now the mapping

∆˝
pΩq Q p ÞÑ V “ log p´ Ep rlog ps .

Notice that
´Ep rlog ps “ ´

ÿ

ωPΩ

ppωq log ppωq “ Hppq

is the entropy of p, that is in this case p “ eV`Hppq.

2.4. Non-negative potential. Consider the set U of all non-negative real functions
U : Ω such that minU “ 0. Notice the peculiar shape of such a sub-set on RΩ: it is a
pointed non-convex cone that is, if U P U then ρU P Y for all ρ ě 0 and moreover it is
contained in the half-space associate to B0.

The expression is unique, because of all the U ’s such that p “ eU´κpUq only one belongs
to U .

In this expression, if Ω0 “ tω P Ω |Upωq “ 0u and Ω` “ tω P Ω |Upωq ą 0u, then

κpUq “ log
ÿ

ωPΩ

eUpωq “ log

˜

#Ω0 `
ÿ

ωPΩ`

eUpωq

¸

and

ppωq “ eUpωq´κpUq “

$

’

’

&

’

’

%

1

#Ω0 `
ř

ωPΩ`
eUpωq

if ω P Ω0,

eUpωq

#Ω0 `
ř

ωPΩ`
eUpωq

if ω P Ω`,

The previous expression allows to compute limit cases e.g., limtÑ8 etU´kptUq.

Example 12 (Limit cases of the Gibbs distribution). If the energy in the Gibbs model is
zero at some states Ω0, it is possible to use the expression above to compute the limit of
the probabilities as tÑ 0 and tÑ 8.
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3. Independence and conditioning

When the sample space has a factorial structure, S “ S1ˆ¨ ¨ ¨Sn, we define the marginal
projections Xj : S Q x “ px1, . . . , xnq ÞÑ xj. If γ P ∆pSq we say that the probability
function γ provides the joint distribution of the marginal projection that is,

x ÞÑ Pγ pX1 “ x1, . . . , Xn “ xnq “ γpx1, . . . , xnq .

Given any I Ă t1, . . . , nu, the I-marginal joint distribution is

xI ÞÑ Pγ pXI “ xIq “
ÿ

x : XIpxq“xI

γpxq “ γIpxIq .

In particular, the marginal distributions are the probability functions

xj ÞÑ γjpxjq “ Pγ pXj “ xjq “
ÿ

x|Xjpxq“xj

γpxq .

In a slightly more general set-up, we have a sample space Ω, a probability function
p P ∆pΩq, and n random variables Yj : Ω Ñ Sj. The image of p under Y “ pY1, . . . , Ynq
is a probability function pY “ λ P ∆pSq, S “ S1 ˆ ¨ ¨ ¨ ˆ Sn, and the above discussion
applies.

For a generic real random variable Z : Ω we have Ep rZs “
ř

ωPΩ Zpωqppωq. The real
random variables of the form Z “ φpY q are said to be Y -measurable. In such a case, it
is easy to verify the fundamental change of variable equation

Ep rφpY qs “ EpY rφs .

3.1. 2 factors. In case of two factors, let us write X, Y for the two marginal projection
and µ, ν for the marginal probability function.

A transition function is a mapping

P : S “ S1 ˆ S2 Q px, yq ÞÑ P py|xq P r0, 1s

such that, for each fixed x, y ÞÑ P py|xq is a probability function. If µ is a probability
function on the first factor S1, then px, yq ÞÑ P py|xqµpxq is a joint probability function.
Conversely, given any joint probability function γ with margins µ and ν, there exists
transition functions P and Q such that

γpx, yq “ P py|xqµpxq “ Qpx|yqνpyq .

Notice that µpxq ‰ 0 implies P py|xq “ γpx, yq{µpxq. Otherwise, µpxq “ 0 implies
γpx, yq “ 0 for each y and P p.|xq is any probability function. Assume both the mar-
ginal probability functions µ and ν are both positive. Then

Qpx|yq “
P py|xqµpxq

νpyq

is called Bayes formula.
As for each x the function y ÞÑ P py|xq is a probability function, we can compute the

expectation of a real random variable f : §2 Ñ R with respect to the transition probability
function as EP p¨|xq rf s “

ř

yPΩ2
fpyqP py|xq.

More generally, if f : S Ñ R, the mapping

S Q px, yq ÞÑ EP p¨|xq rfpx, ¨qs

is a real random variable on Ω which depends on x only and is called conditional expec-
tation.
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3.2. General conditional expectation. In the case of generic random variables, we
have a sample space Ω with a probability function p and random variables X : Ω Ñ S1,
Y : Ω Ñ S2. Let us consider the image pXY and the representation

pXY px, yq “ P py|xqpXpxq “ Qpx|yqpY pyq .

pXY is the joint probability function; pX is the probability function of X and pY is the
probability function of Y ; P is the probability function of Y given X; Q is the probability
function of X given Y .

If one of the conditional probability functions is constant say, P py|xq “ P pyq, then
γpx, yq “ pXpxqpY pyq and we say that Y and Y are independent.

Let Z “ φpX, Y q be a real random variable in LpX, Y q. Then Ep rZs “ EpXY rφs
because of the change of variable formula. Consider the function

φ̂ : x ÞÑ EP p¨|xq rφpx, ¨qs “
ÿ

yPS2

φpx, yqP py|xq .

and define
Ep pφpX, Y q|Xq “ φ̂pXq

If X and Y are independent, then the conditional expectation is constant and equal to
the expectation.

The conditional expectation computed above is characterized by the following two defin-
ing properties.

(1) Ep pZ|Xq is a function of X; and
(2) Ep rZY s “ Ep rEp pZ|XqY s for all Y which is a function of X .

It follows that Ep pZφpXq|Xq “ φpXqEp pZ|xq.

Example 13. In the Bernoulli model with marginal projections Xj, j “ 1, . . . , n, show
that XI is independent of XJ , IXJ “ H. Compute the marginal and joint distribution of
Sn “

řn
j“1Xj and Tn “ inf tk “ 1, . . . , n |Xk “ 1u. Compute all the relevant conditional

quantities.

3.3. Using matrices and tables. A probability function γ on S1 ˆ S2 is commonly
represented as a matrix Γ “ rγpx, yqs P RS1ˆS2 . In this representation, the row vectors
µt “ Γ1 and ν “ 1tΓ represent the marginal probability functions as in

Γ1 “

»

–

γp1, 1q γp1, 2q γp1, 3q
γp2, 1q γp2, 2q γp2, 3q
γp3, 1q γp3, 2q γp3, 3q

fi

fl

»

–

1
1
1

fi

fl “

»

–

µp1q
µp2q
µp3q

fi

fl

Transition functions are commonly represented as matrices with elements P py|xq, x
being the row-index. When S “ S1 “ S2, the transition matrix is called Markov matrix
i.e., a Markov matrix is a square matrix P with non-negative elements such that P1 “ 1.
Notice that this relation provides an eigen-value and an eigen-vector of P . If the first
marginal probability function µ is represented as a row vector then the row vector ν “ µP
is the other marginal probability function of the joint distribution.

The probability matrix Γ, the marginal probability vectors µ and ν, and the two
transition matrices P and Q are related as matrices by the equations

µ “ 1tΓt, ν “ 1tΓ, Γ “ diag pµqP “ Qt diag pνq

for example,
»

–

γp1, 1q γp1, 2q γp1, 3q
γp2, 1q γp2, 2q γp2, 3q
γp3, 1q γp3, 2q γp3, 3q

fi

fl “

»

–

µp1q 0 0
0 µp2q 0
0 0 µp3q

fi

fl

»

–

P p1|1q P p2|1q P p3|1q
P p1|2q P p2|2q P p3|2q
P p1|3q P p2|3q P p3|3q

fi

fl

11



Example 14 (Reversibility). A probability function γ on S2 “ S ˆ S is reversible (or,
symmetric) if γpx, yq “ γpy, xq that is, if Γ “ Γt. When γ is reversible, then the two
margins are equal, µ “ 1tΓt “ 1tΓ “ ν. Moreover, diag µP “ diag µQ, so that P “ Q
when µ ą 0. If N “ #S, then a generic joint probability function belongs to the pN2´1q-
simplex ∆pS2q. The set of reversible probability function is the subset defined by the
`

N
2

˘

“ NpN´1q{2 symmetry constraints then has pN2´1q´NpN´1q{2 “ NpN`1q{2´1
degrees of freedom. It is a bounded polyhedron hence a polytope. It is interesting to find
its

`

N
2

˘

“ NpN ´ 1q{2 vertexes. Map all off-diagonal positions px, yq into the set tx, yu.

Consider αpcq, c P
`

S
2

˘

, such that αpcq ě 0,
ř

c αpcq ď 1. This provides a parametrization
of the off-diagonal elements of of Γ. Then split the remaining mass on the diagonal.

Example 15 (Earth-mover problem). A transition function P from S1 to S2 could be
seen as a rule to move a fraction P py|xq “ Px,y of the mass at x P S1 into the position
y P S2. In this way, a total mass µ on S1 is moved in a mass ν “ µP on S2. There
is a joint distribution γpx, yq “ P py|xqµpxq giving the mass from x that is moved to y.
The earth-mover has given initial µ and final ν and looks for a feasible transport plan P .
The set of feasible transport plans is convex and is better represented as a convex subset
of ∆pS1 ˆ S2q via the joint distribution. Assume the transport from x to y has a cost
cpx, yq for the earth-mover. The total cost of the transport plan is

ř

x,y cpx, yqP py|xqπpxq.
The constrained optimization problem has an elementary solution in some cases e.g.,
S1 “ S2 “ S, #S “ 3, and the cost is a distance.

3.4. n factors and Markov chains. The case were there is a finite number of random
variables does not present any special new feature.

Consider a finite set S and the sample space Ω “ Sn`1, Ω Q ω “ px0, x1, . . . , xnq, with
marginal projections Xjpωq “ xj. The sequence I “ p0, . . . , nq is thought of as a sequence
of times and the sequence ω “ px0, x1, . . . , xnq is a trajectory of something evolving in S.

Given a probability function π0 : S and a transition function P on S, we define the
joint probability function

γpx1, . . . , xnq “

˜

n
ź

j“1

P pxj|xj´1q

¸

π0px0q “ π0px0q

n
ź

j“1

Pxj´1,xj .

Notice the probabilistic notation (middle side) and the matrix notation (right hand side).
The structure pΩ “ Sn`1, γ, pXjq

n
j“0q is a (canonical) Markov chain with initial distri-

bution π0 and stationary transition probability P . This is a constructive definition. An
equivalent (non-canonical) definition shows the intrinsic property of such a structure:
pΩ,P, pXjq

n
j“0qq is a Markov chain with initial probability π0 and stationary transition

probability P if and only if

(1) X0 „ π0.
(2) For each k “ 1, . . . , n it holds

P pXk “ xk|Xk´1 “ xk´1, . . . X0 “ x0q “ P pxk|xk´1q .

The notation X0 „ π0 means that the image of the base probability with X0 has
probability function π0.The proof of equivalence is a simple algebraic check.
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The distribution of each Xk is, using the matrix notation for transitions,

πkpxkq “ Pγ pXk “ xkq “
ÿ

x0,...,xk´1

ÿ

xk`1,...,xn

π0px0q

n
ź

j“1

P pxj´1, xjq “

ÿ

x0,...,xk´1

π0px0q

k
ź

j“1

P pxj´1, xjq “
ÿ

x0

π0px0q
ÿ

x1,...,xk´1

k
ź

j“1

P pxj´1, xjq “

π0P
k
pxkq

An important special case appears when the initial probability function is invariant,
ř

x P py|xqπ0pxq “ π0, or π0 “ π0P . Note that π0 is a left eigen-value of P and πk “ π0.

Example 16 (Binary Markov chain). Let

P “

„

1´ α α
β 1´ β



α, β P r0, 1s

be the generic Markov matrix on the two elements set S “ t0, 1u. An invariant probability
function is π “

“

p 1´ p
‰

such that
#

p “ pp1´ αq ` p1´ pqβ

1´ p “ pα ` p1´ pqp1´ βq
.

The two equations are dependent because the rank of P ´ I is 1. It follows

ppα ` βq “ β and p1´ pqpα ` βq “ α .

If α`β “ 0 i.e., P “

„

1 0
0 1



, then all probability functions are invariant. In the following,

we assume α ` β ą 0. In such a case, the invariant probability function is

π “
”

β
α`β

α
α`β

ı

.

For example, the invariant probability of both P “

„

0 1
1 0



and P “

„

1{2 1{2
1{2 1{2



is

π “
“

1
2

1
2

‰

. Note that the first example produces a “deterministic” process while the
second produces and “independent” process.

The characteristic equation of P is

det pP ´ λIq “ det

„

p1´ αq ´ λ α
β p1´ βq ´ λ



“ λ2
´ p2´ α ´ βqλ` p1´ α ´ βq “ 0 .

One solution is λ1 “ 1, while the other is λ2 “ 1 ´ α ´ β. The first eigen-vector is a
vector

u1 “

„

u11

u21



such that

„

´α α
´β β

 „

u11

u21



“ 0

e.g., u1 “
“

1 1
‰˚

. The second eigen-vector is a vector

u2 “

„

u12

u22



such that

„

β α
β α

 „

u12

u22



“ 0

e.g., u2 “
“

´α β
‰˚

. It follows that

P “ U

„

1 0
0 1´ α ´ β



U´1 with U “
“

u1 u2

‰

“

„

1 ´α
1 β
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because detU “ α ` β ą 0. It follows that

P n
“ U

„

1 0
0 p1´ α ´ βqn



U´1 .

Assume α ` β ‰ 2, so that ´1 ă 1´ α ´ β ă 1. We have

lim
nÑ8

P n
“

U lim
nÑ8

„

1 0
0 p1´ α ´ βqn



U´1
“

1

α ` β

„

1 ´α
1 β

 „

1 0
0 0

 „

β α
´1 1



“

«

β
α`β

α
α`β

β
α`β

α
α`β

ff

“

„

π
π



.

In conclusion: if α ` β “ 0 all probability functions are invariant and there is no con-
vergence to the invariant probability; If α`β ą 0 there is a unique invariant probability.
If moreover α`β ‰ 2 there is convergence. Another interesting case happens when α “ 0
while β ą 0.

3.5. Aside: graphs. A relation on a set V is a subset E of V ˆ V and its indicator
function presented as a matrix is its adjacency matrix E. The couple pV, Eq is called a
graph with vertexes V and edges E . A graph is undirected if the relation is symmetric.
A path from x to y of length n is a sequence x “ x0, . . . , xn “ y such that pxi´1, xiq P E ,
i “ 1, . . . , n. A path is a cycle if x “ y. A graph is connected if for all x, y P V there
is a path from x to y. In a connected graph, the minimum length of a path connecting
two vertexes v and w is a distance. A tree is a connected graph without cycles. A rooted
tree is a tree with a distinguished vertex v0. In a rooted tree pV, E , v0q all vertexes are
classified according their distance from the root. A rooted directed tree is a rooted tree
where the relation is restricted in such a way that the distance from the root increases
in the direction of the edges. This directed relation allows to define the childs and the
parent of a vertex. The root has no parent. The leaves have no childs. A situation is a
non-leaf vertex. Outcome is another name for leaf.

In a rooted directed tree each vertex of depth k can be coded as v0v1 ¨ ¨ ¨ vk where vj
range in a set of codes for the k-layer. Such a tree is associated to a space of events as
follows. Let Ω be the set of all leaves. Then each situation is naturally associated with a
set of leaves. Notice that any vertex of the tree can be chosen as a root. Different root
correspond to different event trees which correspond to different “causal explanations” of
the leaves.

Example 17 (Probability tree). If interested, have a look to [2]. Each directed edge pv, wq
of a rooted tree can be decorated with a probability ppw|vq ą 0 in such a way that the sum
of probabilities on each floret is 1,

ř

wPCpvq ppw|vq “ 1. For each leaf ω there is a unique
path from the root and the product of all decorations provides a probability function
on the set of leaves. The decoration are conditional probabilities for the corresponding
descendant leaves. It is possible to consider dynamic models where individuals move
down the tree at different speeds and, when do move, choose a child according to the
assigned probabilities. All the construction is clarified on simple examples.

Example 18 (Conditional independence). The properties

P pA|B X Cq “ P pA|Bq ,
P pC|B X Aq “ P pC|Bq ,

P pAX C|Bq “ P pA|BqP pC|Bq ,
14



are equivalent. The property in the first two equations is called sufficiency and the
property in the last equation is called conditional independence.

Example 19. The Markov property is symmetric in the direction of time. If X0, . . . , Xn

is a MC, then the time-reversed process Yh “ Xn´h is a Markov process with transitions

P pYh`1 “ x|Yh “ yq “ P pXn´h´1 “ x|Xn´h “ yq “

P pXn´h´1 “ x,Xn´h “ yq

P pXn´h “ yq
“

P pXn´h “ y|Xn´h´1 “ xqP pXn´h´1 “ xq

P pXn´h “ yq
“

Px,yπn´h´ipxq

πn´hpyq
.

If moreover the MC is stationary that is πt “ π, then the time-reversed process is a
MC with the same invariant distribution and transitions

Qy,x “
πpxqPx,y
πpyq

.

Equivalently, we can say that the 2-dimensional distribution are given by

P pXs “ x,Xs`1 “ yq “ πpxqPx,y “ πpyqQy,x .

A stationary Markov chain is reversible if Qy,x “ Px,y. Equivalently, if π is a probability
function such that

πpxqPx,y “ πpyqPy,x ,

we sum the previous relation over x to get
ÿ

xPS

πpxqPx,y “ πpyq
ÿ

xPS

Py,x “ πpyq ,

so that π is indeed an invariant probability and the MC constructed from π and P is
reversible.

Given a Markov matrix P , if there exists a positive function κ : S such that κpxqPx,y “
κpyqPy,x then we can normalize κ. In such a case we have an immediate way to compute
the invariant probability.

Example 20. Let G “ pS, Eq be a graph. For each vertex x P S the degree of x, deg x, is
the number of edges from x. Let E be the adjacency matrix of G. The degree as a row
vector is E1. Define the Markov matrix

P “ diag pE1q´1E .

i.e., the transitions

Px,y “

#

1
deg x

if y is connected with x,

0 if y is not connected with x.

Observe that x is connected to y if, and only if, y is connected to x, hence

pdeg xqPx,y “ pxÑ yq “ py Ñ xq “ pdeg yqPy,x .

It follows that the invariant probability is

πpxq “
deg x

ř

yPS deg y
.

and the MC is reversible.
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Example 21 (Hastings-Metropolis). Consider the following problem: Given a Markov
matrix Q on a finite S and a probability function π on S, define the matrix

Px,y “

#

Qx,yαpx, yq if x ‰ y

Qx,x `
ř

z‰xQx,zp1´ αpx, zqq if x “ y
,

where 0 ď αpx, yq ď 1 Notice that Px,y ě 0 and
ÿ

yPS

Px,y “
ÿ

y‰x

Qx,yαpx, yq `Qx,x `
ÿ

z‰x

Qx,zp1´ αpx, zqq “ Qx,x `
ÿ

z‰x

Qx,z “ 1 .

The Markov matrix P is reversible with invariant probability π if

πpxqQx,yαpx, yq “ πpyqQy,xαpy, xq , x ‰ y .

One possible choice is

αpx, yq “ 1^
πpyqQy,x

πpxqQx,y

.
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