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Measurable space

Definition

• A family B of subsets of S is an field on S if it contains ∅ and S ,
and it is stable for the complements, finite unions, and finite
intersection.

• A family F of subsets of S is a σ-field on S if it is an field on S and
it is stable for denumerable unions and intersections.

• A measurable space is a couple (S ,F), where S is a set and F is a
σ-field on S .

• Given the family C of subsets of S , the σ-field generated by C is
σ(C) = ∩{A|C ⊂ A and A is a σ-field}.

• Examples: the field generated by a finite partition; the Borel σ-field
of R is generated by the open intervals, or by the closed intervals, or
by the intervals, or by the open sets, or by semi-infinite intervals.

§1.1 of D. Williams. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University
Press, Cambridge, 1991.



Measure space
Definition

• A measure µ of the measurable space (S ,F) is a mapping
µ : F → [0,+∞] such that µ(∅) = 0 and for each sequence (An)n∈N
of disjoint elements of F , µ(∪n∈NAn) =

∑∞
i=1 µ(An).

• A measure is finite if µ(S) < +∞; a measure is σ-finite if there is a
sequence (Sn)n∈N in F such that ∪n∈NSn = S and µ(Sn) < +∞ for
all n ∈ N.

• A probability measure is a finite measure such that µ(S) = 1; a
probability space is the triple (S ,F , µ), where µ is a probability
measure.

• Examples: probability measure on a partition; probability measure
on a denumerable set.

• Equivalently, a probability measure is finitely additive and
sequentially continuous at ∅

§1.3-5 of Williams



Product system aka π-system

Definition
Let S be a set. A π-system on S is a family I of subsets of S which is
stable under finite intersection.

• Examples: the family of all points of a finite set and the empty set;
the family of open intervals of R; the familily of closed intervals of
R; the family of cadlàg intervals of R; the family of convex (resp.
open convex, closed convex) subsets of R2; the family of open
(resp. closed) set in a topological space.

• If Ii is a π-system of Si , i = 1, . . . , n, then {×n
i=1Ii |Ii ∈ Ii} is a

π-system of ×n
i=1Si .

• The family of all real functions of the form α0 +
∑n

j=1 αj1Ii , n ∈ N,
αj ∈ R, j = 0, . . . , n is a vector space and it is stable for
multiplication.

§1.6 of Williams



Dynkin system aka d-system

Definition
Let S be a set. A d-system on S is a family D of subsets of S such that

1. S ∈ D

2. If A,B ∈ D and A ⊂ B, then B \ A ∈ D. (Notice that S \ A = Ac)

3. If (An)n∈N is an increasing sequence in D, then ∪n∈N ∈ D

• Given probabilities µi and i = 1, 2 on the measurable space (S ,F),
the family D = {A ∈ F|µ1(A) = µ2(A)} in a d-system.

• Given measurable spaces (Si ,Fi ), i = 1, 2, the product space
(S ,F) = (S1 × S2,F1 ⊗F2),
F1 ⊗F2 = σ {A1 × A2|A1 ∈ F1,A2 ∈ F2}, and x ∈ S1, the family
D = {A ∈ F1 ⊗F2|A ∩ {x} × S2 = {x} × Ax ,Ax ∈ F2} is a
d-system.

§A1.2 of Williams



Dynkin’s lemma

Theorem

1. A family of subsets of S is a σ-field if, and only if, it is both a
d-system and a π-system.

2. If I is a π-system, then d(I) = σ(I).

3. Any d-system that contains a π-system contains the σ-field
generated by the π-system.

Theorem
If two probability measures on the same measurable space agree on a
π-system I they are equal on σ(I).

§A1.3 of Williams



Probability space

Definition
A probability space is a triple (Ω,F ,P) of a sample space Ω (set of
possible worlds), a σ-field F on Ω, a probability measure P : F → [0, 1].
An element ω ∈ Ω is a sample point (world); an element A ∈ F is an
event; the value P (A) is the probability of the event A.

• Examples: a finite set, all its subsets, a probability function
p : Ω→ R>0 such that

∑
ω∈Ω p(ω) = 1; Z≥ with all its subsets,

and a probability function p : Z≥ → R>0 such that
∑∞

k=0 p(k) = 1;
the restriction of a probability space to a sub-σ-field; the product of
two probability spaces.

• Bernoulli trials. Let Ω = {0, 1}N and let
Fn =

{
A× {0, 1} × {0, 1} × · · ·

∣∣A ⊂ {0, 1}n}, F = σ(Fn : n ∈ N).
Given θ ∈ [0, 1], the function
pn(x1x2 · · · xn · · · ) = θ

∑n
i=1 xi (1− θ)n−

∑n
i=1 xi uniquely defines

probability spaces (Ω,Fn,Pn), n ∈ N, such that Pn+1|Fn
= Pn,

hence a probability measure P on F .

Ch. 2 of Williams



lim sup and lim inf

Definition

• Let (an)n∈N be a sequence of real numbers.

lim sup
n→∞

an = ∧m∈N ∨n≥m an (maximum limit)

lim inf
n→∞

an = ∨m∈N ∧n≥m an (minimum limit)

• Let (En)n∈N be a sequence of events in the measurable space (Ω,F).

lim sup
n→∞

En = ∩m∈N ∪n≥m En (En infinitely often)

lim inf
n→∞

En = ∪m∈N ∩n≥m En (En eventually)

A similar definition applies to sequences of functions. If (fn)n is a
sequence of non-negative functions, then the set of x ∈ S such that
limn fn(x) = 0 is equal to the set {lim supn fn = 0}.



Fatou lemma
Theorem

P
(

lim inf
n→∞

En

)
≤ lim inf

n→∞
P (En) ≤ lim sup

n→∞
P (En) ≤ P

(
lim sup
n→∞

En

)

• (lim supn En)c = lim infn E
c
n ; lim supn 1En = 1lim supn En .

• Proof of FL. Write ∪m ∩n≥m En = ∪mGm so that
Gm ↑ G = lim infn En. We have P (Gm) ≤ ∧n≥m P (En); monotone
continuity (increasing) implies P (Gm) ↑ P (G ) hence,
∨m P (Gm) = P (G ). The middle inequality is a property of lim inf
and lim sup. The least inequality follows from a similar proof using
continuity on decreasing sequences or, by taking the complements.

• BC1. Assume
∑∞

n=1 P (En) < +∞. We have for all m ∈ N that

P
(

lim sup
n

En

)
≤ P (∪n≥mEn) ≤

∞∑
n=m

P (En)→ 0 if m→∞

hence P (lim supn En) = 0.



Measurable function

Definition
Given measurable spaces (Si ,Si ), i = 1, 2, we say that the function
h : S1 → S2 is measurable, or is a random variable, if for all B ∈ S2 the
set h−1(B) = {s ∈ S1|h(s) ∈ B} belongs into S1.

Theorem

• Let C ⊂ S2 and σ(C ) = S2. If h−1 : C → S1, then h is measurable.

• Given measurable spaces (Si ,Si ), i = 1, 2, 3, if both h : S1 → S2,
g : S2 → S3 are measurable functions, then g ◦ f : S1 → S3 is a
measurable function.

• Given measurable spaces (Si ,Si ), i = 0, 1, 2 and hi : S0 → Sj ,
j = 1, 2, consider h = (h1, h2) : S0 → S1 × S2. with product space
(S1 × S2,S1 ⊗S2), Then both h1 and h2 are measurable if, and only
if, h is measurable.

• Ch. 3 of Ch. 2 of Williams



Image measure

Definition
Given measurable spaces (Si ,Si ), i = 1, 2, a measurable function
h : S1 → S2, and a measure µ1 on (S1,S1), then µ2 = µ1 ◦ h−1 is a
measure on (S2,S2). We write h#µ1 = µ2 ◦ h−1 and call it image
measure. If µ1 is a probability measure, we say that h#µ1 is the
distribution of the random variable h.

• Bernoulli scheme Let (Ω,F ,P) be the Bernoulli scheme, and define
Xt : Ω→ {0, 1} to be the t-projection, Xt(x1x2 · · · ) = xt . It is a
random variable with Bernoulli distribution B(θ). The random
variable Yn = X1 + · · ·+ Xn has distribution Bin(θ, n). The random
variable T = inf {k ∈ N|Xk = 1} has distribution Geo(θ).



Real random variable

Definition
Let (S ,S) be a measurable space. A real random variable is a real
function h : S → R with is measurable into (R,B).

Theorem

• h : S → R is a real random variable if, and only if, for all c ∈ R the
level set {s ∈ S} h(s) ≤ c is measurable. The same property holds
with ≤ replaced by < or ≥ or >. The condition can be taken as a
defintion of extended random variable i.e.
h : S → R = R ∪ {−∞,+∞}.

• If g , h : S → R are real random variables and Φ: R2 → R is
continuous, then Φ ◦ (g , h) is a real random variable.

• Let (hn)n∈N be a sequence of real random variables on (S ,S). Then
supn fn, infn fn, lim supn fn, lim infn fn are real random variable.



A monotone-class theorems

Theorem
Let H be a vector space of bounded real functions of a set S and assume
1 ∈ H. Assume

1. H is a monotone class i.e., if for each bounded increasing sequence
(fn)n ∈ N in H the function ∨nfn belong to H.

2. H contains the indicator functions of a π-system I.

Then, H contains all bounded measurable functions of (S , σ(I )).

• Application. Consider measurable spaces (Ωi ,Fi ), i = 1, 2. Define
Ω = Ω1 × Ω2 and I = {A1 × A2|A1 ∈ F1,A2 ∈ F2}. Then
F1 ⊗F2 = σ(I). Let H be the set of all bounded real funtions
f : Ω1 × Ω2 → R such that for each fixed x ∈ Ω1 the mapping
Ω2 3 y 7→ f (x , y) is F2-measurable and for each fixed y ∈ Ω2 the
mapping Ω1 3 x 7→ f (x , y) is F1-measurable.

• §3.14 and §A3.1 of Williams



Simple functions

Let (S ,F) be a measurable space.

Definition
A measurable real function, f : S → R, f −1 : B → F , is simple if it takes
a finite number of values; equivalently, it is of the form f =

∑m
k=1 ak1Ak

,
ak ∈ R, Ak ∈ F , k = 1, . . . ,m, m ∈ N. The algebra with unity of all
simple functions is denoted by S; the cone of all non-negative simple
function is denoted by S+.

• Both S and S+ are closed for ∨ and ∧; f = f + − f −, f ∈ S.

• If f is measurable and non-negative, there exist an incresasing
sequence (fn)n∈N in S+ such that limn→∞ fn(s) = f (s), s ∈ S .

• If f is measurable and bounded, there exist an sequence (fn)n∈N in
S such that limn→∞ fn = f uniformely.

Ch. 5 of Williams



Integral of a non-negative function
Let (S ,F , µ) be a measure space.

Definition

• If f ∈ S, f =
∑m

k=1 ak1Ak
, we define its integral to be∫

f dµ =
m∑

k=1

akµ(Ak) where 0 · ∞ =∞ · 0 = 0

• If f : S → [0,+∞] is measurable, namely f ∈ L+, we define its
integral to be∫

f dµ = sup

{∫
h dµ

∣∣∣∣h ∈ S+, h ≤ f

}

• The integral is linear and monotone on
S1 =

{
f ∈ S

∣∣∫ f + dµ,
∫
f − dµ ≤ ∞

}
. The integral is convex and

monotone on L+.

• If f ∈ L+ and
∫
f dµ = 0, then µ {f > 0} = 0.



Monotone-Convergence Theorem

Theorem (MON)

let (fn)n∈N be a non-decreasing sequence in L+. Then the pointwise limit
f = limn→∞ fn belongs to L+ and limn→∞

∫
fn dµ =

∫
f dµ.

• A sequence of simple functions converging to f is always available.

• If α, β ∈ R>0, f , g ∈ L+, then∫
(αf + βg) dµ =

∫
αf dµ+

∫
βg dµ

• Exercise: If µ(S) = 1, then
∫
f dµ =

∫∞
0
µ {f > u} du.

Proof of MON: Appendix A5 of Williams



Fatou Lemmas

Theorem (FATOU)

Let (fn)n∈N be a sequence in L+.

1.
∫

(lim infn→∞ fn) dµ ≤ lim infn→∞
∫
fn dµ.

2. If, moreover, fn ≤ g , n ∈ N, and
∫
g dµ <∞, then∫

(lim supn→∞ fn) dµ ≥ lim supn→∞
∫
fn dµ.

• Exercise: Prove 1. by observing that lim sup is the limit of an
increasing sequence.

• Exercise: If (fn)n∈N is a decreasing sequence in L+ and∫
f1 dµ <∞, then

∫
(limn→∞ fn) dµ = limn→∞

∫
fn dµ.

• Exercise: If (fn)n∈N is a sequence in L+ and fn ≤ g , n ∈ N,∫
g dµ <∞, then

∫
(limn→∞ fn) dµ = limn→∞

∫
fn dµ.



Integrability

Definition

• Let L1 be the vector space of measurable real functions such that∫
|f | dµ =

∫
f + dµ+

∫
f − dµ <∞

• Define the integral to be the linear mapping

L1 3 f 7→
∫

f dµ =

∫
f + dµ−

∫
f − dµ ∈ R

• Exercise. Revise L1-convergence and Dominated Convergence
Theorem in Ch 5 of Williams



Expectation

• Let E: L∞(S ,S)→ R be such that

• E (1) = 1.
• E is linear and positive (hence monotone).
• E is continuous on non-increasing sequence converging to 0.

• Every such E defines a probability measure when restricted to
indicators, P (A) = E (1A) and E (f ) =

∫
f d P

• A similar observation holds for a E: L+(S ,S).

• If f ∈ L(S ,L), as f = f+ − f− and |f | = f+ + f−, if E (|f |) <∞
then E (f+) ,E (f−) <∞. In such a case, we say that
f ∈ L1(S ,S,P) and define E (f ) = E (f+)− E (f−).

• E: L1(S ,S,P)→ R is positive, linear, normalized, continuous for
the bounded pointwise convergence.

• Exercise: carefully check everything!



Densities

Let be given a measure space (S ,F , µ) and a measurable non-negative
mapping p : S → R such that

∫
p dµ <∞.

The set function

p · µ : F → R>0, A 7→
∫

1Ap dµ

is a bounded measure. In fact: p · µ(∅) =
∫

0 dµ = 0; given a sequence
(An)n∈N of disjoint events, then MON implies

p · µ(∪n∈NAn) =

∫
1∪n∈NAnp dµ =

∫ ∑
n∈N

1An dµ =

∑
n∈N

∫
1An dµ =

∑
n∈N

p · µ(An)

Exercise: If f : S → R is measurable and fp ∈ L1(S ,F , µ), then
f ∈ L1(S ,F , p · µ) and

∫
f d(p · µ) =

∫
fp dµ. [Hint: try first simple

functions, then use MON]



Inequalities I

• Expectation is a positive operator, hence it preserves the order.
Most common application is a family of inequalities whose simplest
form is Markov inequality: If x ≥ 0 and a > 0, then 1[a,+∞[ ≤ a−1x .
It follows that for each non-negative random variable X we have
P (X ≥ a) ≤ a−1 E (X ).

• The previous inequality can be optimised to get, for example, the
exponential Markov inequality. Observe that for all t > 0 it holds
{X ≥ a} =

{
etX ≥ eta

}
. It follows that

P (X ≥ a) ≤ e−ta E
(
etX
)

= exp
(
−
(
ta− logE

(
etX
)))

.

If I (a) = supt>0

(
ta− logE

(
etX
))

, then logP (X ≥ a) ≤ −I (a).

• Jensen inequality: Let Φ: R→ R be convex with proper domain D.
Assume X is an integrable random variable such that Φ(X ) is
integrable. Then Φ (E (X )) ≤ E (Φ ◦ X ). In fact, for each xo ∈ D
there is an affine function such that Φ(x0) + b(xo)(x − x0) ≤ Φ(x),
x ∈ R. It follows that Φ(x0) + b(xo)(E (X )− x0) ≤ E (Φ ◦ X ). In
particular, Jensen inequality follows if x0 = E (X ).



Inequalities II
• Fenchel’s inequality: Given the convex function Φ, there exists a

convex function Ψ such that Ψ(y) = supx (xy − Φ(x)). In
particular, the inequality xy ≤ Φ(x) + Ψ(y) holds for all x , y . It
follows that E (XY ) ≤ E (Φ ◦ X ) + E (Ψ ◦ Y ) if all terms are well
defined.

• An important example of Fenchel inequality follows from
xy ≤ 1

α |x |
α + 1

β |y |
β , where α, β > 1 and α−1 + β−1 = 1. The

integral inequality is E (XY ) ≤ 1
α E (|X |α) + 1

β E
(
|Y |β

)
.

• For x ∈ R, q > 0 and have xq ≤ ex − 1 + q log q. If f is a random
variable and q is a probability density w.r.t. µ, then∫
fq dµ ≤

∫
ef dµ− 1 +

∫
q log q dµ.

• Lebesgue space: For each α ≥ 1, define

Lα = {X ∈ L|E (|X |α) <∞} .

Define
X 7→ (E (|X |α))

1/α
= ‖X‖α

.



Inequalities III

• Hölder inequality. Apply Fenchel inequality to f = X/ ‖X‖α and
g = Y / ‖Y ‖β . It follows

E (fg) = E

(
X

‖X‖α
Y

‖Y ‖β

)
≤ 1

α
+

1

β
= 1.

It follows that E (XY ) ≤ ‖X‖α ‖Y ‖β .

• Minkowski inequality. Apply Hölder inequality to

E (|X + Y |α) = E
(
|X + Y | |X + Y |α−1

)
≤

E
(
|X | |X + Y |α−1

)
+ E

(
|Y | |X + Y |α−1

)
to get ‖X + Y ‖α ≤ ‖X‖α + ‖Y ‖α.



Change of variable formula

Let be given a measure space (S ,F , µ), a measurable space (X,G) and a
measurable mapping φ : S → X, p−1 : G → F . Let φ#µ = µ ◦ φ−1 be the
push-forward measure.

• If h ∈ S(X,G) i.e. h =
∑n

k=1 bk1Bk
, bk ∈ R, Bk ∈ G, k = 1, . . . , n.

Then∫
h dφ#µ =

n∑
k=1

bkφ#µ(Bk) =
n∑

k=1

bkµ[φ−1(Bk)] =

n∑
k=1

bk

∫
1Bk
◦ φ dµ =

∫
h ◦ φ dµ

• If f ∈ L+, then MON implies
∫
f dφ#µ =

∫
f ◦ φ dµ

• If f : X→ R is measurable and f ◦ φ ∈ L1(S ,F , µ) then
f ∈ L1(X,G, φ#µ) and

∫
f dφ#µ =

∫
f ◦ φ dµ.



Product measure I
Definition
Given measure spaces (Si ,Fi , µi ), i = 1, . . . , n, n = 2, 3, . . . , the product
measure space is

(S ,F , µ) = ⊗n
i=1(Si ,Fi , µi ) = (×n

i=1Si ,⊗n
i=1Fi ,⊗n

i=1µi ),

where
F = ⊗n

i=1Fi = σ {×n
i=1Ai |Ai ∈ Fi , i = 1, . . . , n}

and µ = ⊗n
i=1µi is the unique measure on (×n

i=1Si ,⊗n
i=1Fi ) such that

µ(×n
i=1Ai ) =

n∏
i=1

µi (Ai ), Ai ∈ Fi , i = 1, . . . , n.

• Let Xi : S 7→ Si , i = 1, . . . , n, be the projections. Then
⊗n

i=1Fi = σ {Xi |i = 1, . . . , n}.
• Examples: Counting measure on N2, Lebesgue measure on R2, the

finite Bernoulli scheme.

• Product measure of probability measures is a probability measure.



Product measure II
Recall all measures are σ-finite. Assume n = 2.

Sections
If C ∈= F = F1 ⊗F2, then for each x1 ∈ S1 the set
{x2 ∈ S2|(x1, x2) ∈ C} belongs to F2.

Proof.
Let O be the family of all subsets of S for which the proposition is true.
O is a σ-algebra that contains all the measurable rectangles, hence
F ⊂ O.

Partial integration

The mapping S1 : x1 7→ µ2 {x2 ∈ S2|(x1, x2) ∈ C} is non-negative and
F1-measurable.

Proof.
If C ∈ F then the function is well defined. The set of all C ∈ F such
that the function is measurable contains measurable rectangles, is a
π-system, and is a d-system.



Product measure III
Product measure: existence
The set function µ : F 3 C 7→

∫
µ2 {x2 ∈ S2|(x1, x2) ∈ C} µ1(dx − 1) is

a measure such that µ(A1 × A2) = µ1(A1)µ2(A2) on measurable
rectangles. Hence, µ = µ1 ⊗ µ2.

Proof.
The integral exists because the integrand is non-negative. µ(∅) = 0; if
(Cn)n∈N is a sequence in F of disjoint events, then for all x1 ∈ S1 we have

µ2 {x2 ∈ S2|(x1, x2) ∈ ∪n∈NCn} = µ2 (∪n∈N {x2 ∈ S2|(x1, x2) ∈ Cn}) =∑
n∈N

µ2 {x2 ∈ S2|(x1, x2) ∈ Cn}

MON implies

µ (∪n∈NCn) =

∫ ∑
n∈N

µ2 {x2 ∈ S2|(x1, x2) ∈ Cn} µ1(dx1) =

∑
n∈N

∫
µ2 {x2 ∈ S2|(x1, x2) ∈ Cn} µ1(dx1) =

∑
n∈N

µ(Cn)



Product measure IV

• Consider n = 3. The product measure space

⊗3
i=1(Si ,Fi , µi ) = (×3

i=1Si ,⊗3
i=1Fi ,⊗3

i=1µi )

is identified with

(S1 × S2,F1 ⊗F2, µ1 ⊗ µ2)⊗ (S3,F3, (µ1 ⊗ µ2)⊗ µ3)

One has to check that

(F1 ⊗F2)⊗F3 = F1 ⊗F2 ⊗F3

• The n =∞ case requires Charateodory. See the Bernoulli scheme
example.



Fubini theorem I

Section
Let f : S1 × S2 → R be F1 ⊗F2 measurable. For all x1 ∈ S1 the function
fx1 : x2 7→ f (x1, x2) is F2-measurable.

Proof.
For each y ∈ R, consider the level set
C = {(x1, x2)|f (x1, x2) ≤ y} ∈ F1 ⊗F2. The set {(x2)|f x1(x2) ≤ y} is
the x1-section of C .

Theorem (Non-negative integrand)

Let f : S1 × S2 → R be F1 ⊗F2-measurable and non-negative. Then the
mapping S1 3 x1 7→

∫
f (x1, x2) µ2(dx2) is F1-measurable and∫

f dµ1 ⊗ µ2 =

∫ (∫
f (x1, x2) µ2(dx2)

)
µ1(dx1)



Fubini theorem II

Theorem (Integrable integrand)

Let f : S1 × S2 → R be µ1 ⊗ µ2-integrable. Then the mapping
S1 3 x1 7→

∫
f (x1, x2) µ2(dx2) is µ1-integrable and∫
f dµ1 ⊗ µ2 =

∫ (∫
f (x1, x2) µ2(dx2)

)
µ1(dx1)

Proof: Non-negative integrand.

Choose an increasing sequence of simple non-negative functions
converging to f and use MON.

Proof: Integrable integrand.

Decompose f = f + − f − and use the previous form of the theorem.



Independence

Definition
Let (Ω,F , µ) be a probability space.

1. The sub-σ-algebras F1, . . . ,Fn are independent if Ai ∈ Fi ,
i = 1, . . . , n, implies µ(A1 ∩ · · · ∩ An) = µ(A1) · · ·µ(An).

2. The random variables Xi : Ω→ Si , X
−1
i : Gi → F , i = 1, . . . , n, are

independent, if

(X1, . . . ,Xn)#µ = (X1)#µ⊗ · · · ⊗ (Xn)#µ

If Fi = σ(Xi ), the 1. and 2. are equivalent. If Ai = X−1
i (Bi ),

i = 1, . . . , n,

µ(A1 ∩ · · · ∩ An) = µ(X−1
1 (B1) ∩ · · · ∩ X−1

n (Bn)) =

µ((X1, . . . ,Xn)−1(B1 × · · · × Bn)) = (X1, . . . ,Xn)#µ(B1 × · · · × Bn) =

(X1)#µ⊗ · · · ⊗ (Xn)#µ(B1 × · · · × Bn) = (X1)#µ(B1) · · · (Xn)#µ(Bn) =

µ(X−1
1 (B1)) · · ·µ(X−1

n (Bn)) = µ(A1) · · ·µ(An)


