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Measurable space
Definition

e A family B of subsets of S is an field on S if it contains () and S,
and it is stable for the complements, finite unions, and finite
intersection.

® A family F of subsets of S is a o-field on S if it is an field on S and
it is stable for denumerable unions and intersections.

® A measurable space is a couple (S, F), where S is a set and F is a
o-field on S.

® Given the family C of subsets of S, the o-field generated by C is
o(C) =n{A|C C Aand Ais a o-field}.

® Examples: the field generated by a finite partition; the Borel o-field
of R is generated by the open intervals, or by the closed intervals, or
by the intervals, or by the open sets, or by semi-infinite intervals.

§1.1 of D. Williams. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University
Press, Cambridge, 1991.



Measure space
Definition

® A measure p of the measurable space (S, F) is a mapping
p: F — [0, 400] such that u(0) = 0 and for each sequence (A;)nen
of disjoint elements of F, u(UnenAn) = Yoy 1(An)-

® A measure is finite if ©(S) < 4o00; a measure is o-finite if there is a
sequence (S,)nen in F such that UpenS, = S and p(S,) < +oo for
all ne N.

® A probability measure is a finite measure such that p(S) =1; a
probability space is the triple (S, F, 1), where p is a probability
measure.

® Examples: probability measure on a partition; probability measure
on a denumerable set.

® Equivalently, a probability measure is finitely additive and
sequentially continuous at ()

§1.3-5 of Williams



Product system aka m-system

Definition
Let S be a set. A m-system on S is a family Z of subsets of S which is
stable under finite intersection.

® Examples: the family of all points of a finite set and the empty set;
the family of open intervals of R; the familily of closed intervals of
R; the family of cadlag intervals of R; the family of convex (resp.
open convex, closed convex) subsets of R?; the family of open
(resp. closed) set in a topological space.

® If Z; is a m-system of S;, i =1,...,n, then {x?_,[i|; € Z;} is a
mw-system of x7_;5;.

® The family of all real functions of the form aqg + Z}’Zl ajl,, neN,
aj€R, j=0,...,nis a vector space and it is stable for
multiplication.

§1.6 of Williams



Dynkin system aka d-system

Definition

Let S be a set. A d-system on S is a family D of subsets of S such that
1. 5D
2. If A, B€ D and AC B, then B\ A€ D. (Notice that S\ A= A°)

3. If (Ap)nen is an increasing sequence in D, then U,en € D

® Given probabilities p; and i = 1,2 on the measurable space (S, F),
the family D = {A € F|u1(A) = u2(A)} in a d-system.

® Given measurable spaces (S;, F;), i = 1,2, the product space
(S,F) = (51 X 52,]:1 ®./r2),
F1® Fr =0 {A; x Ay|A1 € F1, A € Fo}, and x € Sy, the family
D={Ac FLo F|AN{x} x S = {x} x A, A, € B} is a
d-system.

§A1.2 of Williams



Dynkin's lemma

Theorem

1. A family of subsets of S is a o-field if, and only if, it is both a
d-system and a mw-system.
2. IfT is a w-system, then d(Z) = o(ZI).

3. Any d-system that contains a w-system contains the o-field
generated by the m-system.

Theorem
If two probability measures on the same measurable space agree on a
m-system I they are equal on o(Z).

§A1.3 of Williams



Probability space

Definition

A probability space is a triple (2, F,P) of a sample space Q (set of
possible worlds), a o-field F on Q, a probability measure P: F — [0, 1].
An element w € Q is a sample point (world); an element A € F is an
event; the value P (A) is the probability of the event A.

® Examples: a finite set, all its subsets, a probability function
p: Q — Ry such that 3 . p(w) = 1; Z> with all its subsets,
and a probability function p: Z> — Rsg such that Y%, p(k) = 1;
the restriction of a probability space to a sub-o-field; the product of
two probability spaces.

e Bernoulli trials. Let © = {0,1}" and let
Fo={Ax{0,1} x {0,1} x ---|AC {0,1}"}, F = o(F»: n € N).
Given 6 € [0, 1], the function
Pn(X1X2 - Xp - -+ ) = 2151 — )"~ X% uniquely defines
probability spaces (2, F,,P,), n € N, such that ]P’,,H|f" =P,
hence a probability measure P on F.

Ch. 2 of Williams



limsup and liminf

Definition
® Let (an)nen be a sequence of real numbers.

limsupa, = Amen Vo>m @, (maximum limit)
n— oo -

liminfa, = Vmen An>m an  (minimum limit)
n— oo -

® Let (Ep)nen be a sequence of events in the measurable space (9, F).

limsup E;, = Nmen Un>m En  (E, infinitely often)

n— oo

liminf E, = Umen Np>m En  (E, eventually)

n— oo

A similar definition applies to sequences of functions. If (f,), is a
sequence of non-negative functions, then the set of x € S such that
lim, f,(x) = 0 is equal to the set {limsup, f, = 0}.



Fatou lemma
Theorem

P (lim inf E,,) < liminfP(E,) < limsupP (E,) < P (Iimsup E,,)

n— o0 n— o0 n—o0 n—o0o

® (limsup, E,)¢ = liminf, ES; limsup, 1, = liimsup, E,-

® Proof of FL. Write Uy Np>m En = Um G so that
Gm 1 G =liminf, E,. We have P(Gn,) < Ap>m P (E,); monotone
continuity (increasing) implies P (G,,) 1 P(G) hence,
VmP(Gn) =P (G). The middle inequality is a property of liminf
and limsup. The least inequality follows from a similar proof using
continuity on decreasing sequences or, by taking the complements.

® BCl. Assume Y, P(E,) < +oo. We have for all m € N that

P (Iimsup En> <SP (UnzmEn) < Y P(E)) —»0 if m— oo

n—=—m

hence P (limsup, E,) = 0.



Measurable function

Definition

Given measurable spaces (S;,S;), i = 1,2, we say that the function

h: S; — S, is measurable, or is a random variable, if for all B € S, the
set h1(B) = {s € S1|h(s) € B} belongs into Si.

Theorem

® [etCC Sy ando(C)=S8,. Ifh™:C — Sy, then h is measurable.

® Given measurable spaces (S;,S;), i = 1,2,3, if both h: 5; — S,
g: So — S3 are measurable functions, then gof: S — S3 is a
measurable function.

® Given measurable spaces (S;,S;), i =0,1,2 and h;: So — S},
Jj=1,2, consider h = (hy, h2): So — S1 X Sp. with product space
(51 % S2,81 ®S85), Then both hy and hy are measurable if, and only
if, h is measurable.

® Ch. 3 of Ch. 2 of Williams



Image measure

Definition

Given measurable spaces (S;,S;), i = 1,2, a measurable function
h: S; — S;, and a measure 3 on (S1,S81), then pp = uyohtisa
measure on (S52,S,). We write hypg = pip o h=1 and call it image
measure. If u; is a probability measure, we say that hy iy is the
distribution of the random variable h.

e Bernoulli scheme Let (Q, F,P) be the Bernoulli scheme, and define
Xe: Q — {0,1} to be the t-projection, Xi(x1x2-++) = x¢. Itisa
random variable with Bernoulli distribution B(¢). The random
variable Y, = Xi + - - - + X, has distribution Bin(6#, n). The random
variable T = inf {k € N|Xy = 1} has distribution Geo(6).



Real random variable

Definition
Let (S,S) be a measurable space. A real random variable is a real
function h: S — R with is measurable into (R, B).

Theorem

® h:S — R is a real random variable if, and only if, for all c € R the
level set {s € S} h(s) < c is measurable. The same property holds
with < replaced by < or > or >. The condition can be taken as a
defintion of extended random variable i.e.
h: S —-R=RU{—0c0,+c0}.

® Ifg,h: S — R are real random variables and ®: R> — R is
continuous, then ® o (g, h) is a real random variable.

® Let (hy)nen be a sequence of real random variables on (S,S). Then
sup,, fn, inf, £y, limsup, f,, liminf, f, are real random variable.



A monotone-class theorems

Theorem

Let H be a vector space of bounded real functions of a set S and assume
1 € H. Assume

1. H is a monotone class i.e., if for each bounded increasing sequence
(fa)n € N in H the function \ ,f, belong to H.

2. H contains the indicator functions of a m-system L.

Then, H contains all bounded measurable functions of (S, c(l)).

® Application. Consider measurable spaces (Q;, F;), i = 1,2. Define
Q=Q xQand T = {Al X A2|A1 € F1, A € .7:2} Then
F1® Fp = 0(Z). Let H be the set of all bounded real funtions
f: Q1 x £ — R such that for each fixed x € Q; the mapping
Qy 2y f(x,y) is Fo-measurable and for each fixed y € Q, the
mapping Q; 3 x — f(x,y) is Fi-measurable.

® §3.14 and §A3.1 of Williams



Simple functions

Let (S, F) be a measurable space.

Definition

A measurable real function, f: S = R, f~1: B — F, is simple if it takes
a finite number of values; equivalently, it is of the form f = ka:1 akla,,
ak €R, Ak € F, k=1,...,m, mé&N. The algebra with unity of all
simple functions is denoted by S; the cone of all non-negative simple
function is denoted by S .

® Both S and Sy areclosed for Vand A; f=ft —f~, feS.

® |f f is measurable and non-negative, there exist an incresasing
sequence (fp)nen in Sy such that lim,_o fo(s) = f(s), s € S.

e If f is measurable and bounded, there exist an sequence (f,)pen in
S such that lim,_, o f, = f uniformely.

Ch. 5 of Williams



Integral of a non-negative function
Let (S, F, 1) be a measure space.

Definition
o IffesS, f= ZT:I akla,, we define its integral to be
/fd,u:Zaku(Ak) where 0-co=00-0=0
k=1

® If f: S — [0,+00] is measurable, namely f € L, we define its
integral to be

/fdu—sup{/hdu'h68+,h§f}

® The integral is linear and monotone on
St={feS|[f"du, [f du<oo}. The integral is convex and
monotone on L.

e Iffelyand [f du=0, then p{f >0} =0.



Monotone-Convergence Theorem

Theorem (MON)

let (fy)nen be a non-decreasing sequence in L. Then the pointwise limit
f =lim,_ f, belongs to L, and lim,_ ff,, dp = f fdu.

® A sequence of simple functions converging to f is always available.

° Ifa,0€Rso, f,g €Ly, then
/(af+ﬁg) du:/af du+/5g du

* Exercise: If (S) =1, then [f du= [;° pu{f > u} du.

Proof of MON: Appendix A5 of Williams



Fatou Lemmas

Theorem (FATOU)
Let (f,)nen be a sequence in L.
L [(liminfoo ) dp <liminf, oo [ £, dp.

2. If, moreover, f, < g, n€N, and [ g du < oo, then
J (limsup,_, o fn) dp > limsup,_, . [ f, dpu.

® Exercise: Prove 1. by observing that lim sup is the limit of an
increasing sequence.

® Exercise: If (f,)nen is a decreasing sequence in £ and
[ fidu < oo, then [(limpoo fn) dp=limpoo [ dp.

® Exercise: If (f,)nen is a sequence in £, and f, < g, n €N,
J & du < oo, then [ (limpo0 f) dpp = limyoe [ dp.



Integrability

Definition

® Let £! be the vector space of measurable real functions such that

/\f| du:/f+du+/f7du<oo

® Define the integral to be the linear mapping

£19fn—>/fd,u:/f+du—/f*d,ueﬂ€

® Exercise. Revise ['-convergence and Dominated Convergence
Theorem in Ch 5 of Williams



Expectation

Let E: £>(S5,S) — R be such that

e E(1)=1.
® E is linear and positive (hence monotone).
® E is continuous on non-increasing sequence converging to 0.

Every such E defines a probability measure when restricted to
indicators, P(A) =E(14) and E(f) = [ dP

A similar observation holds for a E: £,(S,S).

If fel(S,L),asf=Ff—f and|f|=F+1, ifE(f]) <oo
then E(f.),E(f_) < co. In such a case, we say that
f € LY(S,S,P) and define E(f) = E(f,) — E(f).

E: Cl(S,S,]P’) — R is positive, linear, normalized, continuous for
the bounded pointwise convergence.

Exercise: carefully check everything!



Densities
Let be given a measure space (S, F, u) and a measurable non-negative

mapping p: S — R such that [ p du < .
The set function

p-p: F— Rso, AH/IApdu

is a bounded measure. In fact: p- pu(0) = [0 du = 0; given a sequence
(Ap)nen of disjoint events, then MON implies

P 1(UnenAs) = /1uneNAnP dp = /ZlAn dp =

neN
Z/lAn dp=> p-uA)
neN neN

Exercise: If f: S — R is measurable and fp € L1(S, F, 1), then
feLlyS,F,p-p)and [fd(p-p)=[fp du. [Hint: try first simple
functions, then use MON]



Inequalities |

® Expectation is a positive operator, hence it preserves the order.
Most common application is a family of inequalities whose simplest
form is Markov inequality: If x > 0 and a > 0, then 1[3’4_00[ < a lx.
It follows that for each non-negative random variable X we have
P(X >a) <alE(X).

® The previous inequality can be optimised to get, for example, the
exponential Markov inequality. Observe that for all t > 0 it holds
{X > a} = {eX > e} It follows that

P(X > a) <e PE () =exp (— (ta— logE (e¥))) .

If 1(a) = sup,~ (ta — log E (eX)), then log P (X > a) < —/(a).

® Jensen inequality: Let ®: R — R be convex with proper domain D.
Assume X is an integrable random variable such that ®(X) is
integrable. Then ¢ (E (X)) < E(® o X). In fact, for each x, € D
there is an affine function such that ®(xp) + b(x,)(x — x0) < ®(x),
x € R. It follows that ®(xp) + b(x,)(E (X) — x0) < E (P o X). In
particular, Jensen inequality follows if xg = E (X).



Inequalities |l

Fenchel's inequality: Given the convex function ®, there exists a
convex function W such that W(y) = sup, (xy — ®(x)). In
particular, the inequality xy < ®(x) 4+ W(y) holds for all x,y. It
follows that E(XY) <E(® o X)+ E (VoY) if all terms are well
defined.

An important example of Fenchel inequality follows from
xy < é [x|* + % |y|ﬁ, where o, 3 >1and a1+ 371 =1. The

integral inequality is E(XY) < LE(|X|*) + 3 E (\ Y|B).

For x € R, ¢ > 0 and have xq < e*— 1+ gloggq. If f is a random
variable and g is a probability density w.r.t. p, then

[fadu< [ef du—1+ [qlogq dp.
Lebesgue space: For each o > 1, define

LY ={X € LIE(|X]") < oo} .

Define y
X = (E(X]"N7T = Xl



Inequalities |l

® Holder inequality. Apply Fenchel inequality to f = X/ [|X]|, and
g=Y/|Ylls It follows

X Y 1 1
E(fg) =E| ——o— | <=+2=1
R <xa||vﬁ> .

It follows that E (XY) < ||X][,, | YHﬁ.
® Minkowski inequality. Apply Holder inequality to

E(X+ Y1) =E(IX+ Y|IX+Y]"™) <

E (XX + V") + E(IYIIX + Y1)

to get [|X + Y|, < [IX[l, + 1Y]la-



Change of variable formula

Let be given a measure space (S, F, i), a measurable space (X,G) and a
measurable mapping ¢: S = X, p71: G — F. Let ppp = po ¢! be the
push-forward measure.

e If he S(X,G) ie. hzzzzlbklgk, b eR, BregG, k=1,...,n
Then

[ o= 3" byu(Be) = Zbkuw

k=1
Zbk/lgkoqﬁ du:/hoq‘) du
k=1

° If f € L, then MON implies [ f dpyp= [fo¢ du

® If f: X — R is measurable and f o ¢ € LY(S, F, 1) then
fel'(X,G,¢up)and [fdoppp= [fogdu



Product measure |
Definition
Given measure spaces (S;, Fi, i), i =1,...,n, n=2,3,..., the product
measure space is

(57‘/—:’ /j/) = ®7:1(S/)f}aui) = (X7:15i7®7:1]:/,®,"1:1l$i),
where
F=QLFi=c{x_,AlAi € Fi,i=1,...,n}
and p = ®7_;p; is the unique measure on (x7_;S;, ®"_; F;) such that

llA H/’[’I /7 AiE]:/,Ilzl,...,n

® let X;: S— S;,i=1,...,n, be the projections. Then
@ Fi=0{X|i=1,...,n}.

e Examples: Counting measure on N2, Lebesgue measure on R?, the
finite Bernoulli scheme.

® Product measure of probability measures is a probability measure.



Product measure Il
Recall all measures are o-finite. Assume n = 2.

Sections
If C e=F = F1 ® F>, then for each x; € S; the set
{x2 € S3|(x1,x2) € C} belongs to F.

Proof.

Let O be the family of all subsets of S for which the proposition is true.
O is a o-algebra that contains all the measurable rectangles, hence
FcCO. O

Partial integration

The mapping Si: x1 — p2 {x2 € S3|(x1,x2) € C} is non-negative and
JFi-measurable.

Proof.

If C € F then the function is well defined. The set of all C € F such
that the function is measurable contains measurable rectangles, is a
m-system, and is a d-system. O



Product measure |l

Product measure: existence

The set function p: F 3 C — [ o {x2 € S|(x1,x) € C} pa(dx —1)is
a measure such that p(A; x Az) = p1(A1)u2(A2) on measurable
rectangles. Hence, p = p1 ® po.

Proof.
The integral exists because the integrand is non-negative. () = 0; if
(Ch)nen is a sequence in F of disjoint events, then for all x; € S; we have

K2 {X2 € 52‘(X17X2) S UnGNCn} = K2 (UnEN {XZ S 52|(X15X2) S Cn}) =
Z,ug {x2 € S|(x1,%x) € C,}

neN
MON implies

1 (UnenGp) = /Zuz {x2 € S2|(x1,%2) € o} pa(dx) =

neN

>~ [ 12 € Sl € b pldra) = > (G

neN neN



Product measure IV

® Consider n = 3. The product measure space
@31 (S, Fiy i) = (X3y Si, @3 Fr, @7y i)
is identified with
(S1 X S2, F1 @ Fa, pu1 @ p2) @ (83, F3, (111 @ pr2) ® p3)
One has to check that

(FAR)QF=FQFheF;

® The n = oo case requires Charateodory. See the Bernoulli scheme
example.



Fubini theorem |

Section
Let f: 51 x So — R be F1 ® F» measurable. For all x; € 5; the function
o X2 — f(x1,x2) is Fo-measurable.

Proof.

For each y € R, consider the level set

C={(x,%)|f(x,x) <y} € F1®F. Theset {(x)|fxi(x) <y}is
the x;-section of C. O

Theorem (Non-negative integrand)

Let f: 51 x S5 — R be F; ® Fo-measurable and non-negative. Then the
mapping S1 3 x1 — [ f(x1, %) pa(dxz) is F1-measurable and

[ dmen= [ ([ oas) o)) mie)



Fubini theorem I

Theorem (Integrable integrand)

Let f: 51 X S5 — R be u1 ® up-integrable. Then the mapping
S12 x1 = [f(x1,%) po(dx2) is py-integrable and

/f dpui ® 2 _/</ f(x1, x2) ,uz(dX2)> pa(dx)

Proof: Non-negative integrand.

Choose an increasing sequence of simple non-negative functions
converging to f and use MON.

Proof: Integrable integrand.

Decompose f = f™ — f~ and use the previous form of the theorem.



Independence
Definition
Let (2, F, ) be a probability space.

1. The sub-c-algebras Fi,...,F, are independent if A; € F;,
i=1,...,n, implies (A1 N---NAp) = u(Ar1) - - - u(An).

2. The random variables X;: Q — S;, X, *: G; — F, i=1,...,n, are
independent, if

(Xiy oo X))t = (X)) ® - ® (Xn) gt

If F; —a( ;). the 1. and 2. are equivalent. If A; = X"1(B;),
i=1,...,

p(ALN N A) = (X (B) NN X (By) =
(X, X)) Y By x -+ x By)) = (Xl,.. Xn)pp(Br % -+ x By) =
(X)) @ - @ (Xp)pp(Br x -+ x By) = (Xu)p(Bu) -- (X)#u( n) =
p(X;H(B)) - (X M (Ba)) = pu(Ar) - - p(An)



