Probability 2019 Measure Theory

Giovanni Pistone

www.giannidiorestino.it

Version March 25, 2019

Measurable space

Definition

- A family *B* of subsets of *S* is an field on *S* if it contains Ø and *S*, and it is stable for the complements, finite unions, and finite intersection.
- A family \mathcal{F} of subsets of S is a σ -field on S if it is an field on S and it is stable for denumerable unions and intersections.
- A measurable space is a couple (S, \mathcal{F}) , where S is a set and \mathcal{F} is a σ -field on S.
- Given the family C of subsets of S, the σ-field generated by C is σ(C) = ∩ {A|C ⊂ A and A is a σ-field}.
- Examples: the field generated by a finite partition; the Borel σ-field of ℝ is generated by the open intervals, or by the closed intervals, or by the intervals, or by the open sets, or by semi-infinite intervals.

§1.1 of D. Williams. *Probability with martingales.* Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.

Measure space

Definition

- A measure μ of the measurable space (S, F) is a mapping
 μ: F → [0, +∞] such that μ(∅) = 0 and for each sequence (A_n)_{n∈ℕ}
 of disjoint elements of F, μ(∪_{n∈ℕ}A_n) = ∑_{i=1}[∞] μ(A_n).
- A measure is finite if µ(S) < +∞; a measure is σ-finite if there is a sequence (S_n)_{n∈ℕ} in F such that ∪_{n∈ℕ}S_n = S and µ(S_n) < +∞ for all n ∈ ℕ.
- A probability measure is a finite measure such that μ(S) = 1; a probability space is the triple (S, F, μ), where μ is a probability measure.
- Examples: probability measure on a partition; probability measure on a denumerable set.
- Equivalently, a probability measure is finitely additive and sequentially continuous at \emptyset

Product system aka π -system

Definition

Let S be a set. A π -system on S is a family \mathcal{I} of subsets of S which is stable under finite intersection.

- Examples: the family of all points of a finite set and the empty set; the family of open intervals of R; the familily of closed intervals of R; the family of cadlàg intervals of R; the family of convex (resp. open convex, closed convex) subsets of R²; the family of open (resp. closed) set in a topological space.
- If \mathcal{I}_i is a π -system of S_i , i = 1, ..., n, then $\{\times_{i=1}^n I_i | I_i \in \mathcal{I}_i\}$ is a π -system of $\times_{i=1}^n S_i$.
- The family of all real functions of the form α₀ + ∑_{j=1}ⁿ α_j1_{I_i}, n ∈ N, α_j ∈ ℝ, j = 0,..., n is a vector space and it is stable for multiplication.

Dynkin system aka d-system

Definition

Let S be a set. A *d*-system on S is a family \mathcal{D} of subsets of S such that

- 1. $S \in D$
- 2. If $A, B \in \mathcal{D}$ and $A \subset B$, then $B \setminus A \in \mathcal{D}$. (Notice that $S \setminus A = A^c$)
- 3. If $(A_n)_{n \in \mathbb{N}}$ is an increasing sequence in \mathcal{D} , then $\cup_{n \in \mathbb{N}} \in \mathcal{D}$
- Given probabilities μ_i and i = 1, 2 on the measurable space (S, \mathcal{F}) , the family $\mathcal{D} = \{A \in \mathcal{F} | \mu_1(A) = \mu_2(A)\}$ in a *d*-system.
- Given measurable spaces (S_i, \mathcal{F}_i) , i = 1, 2, the product space $(S, \mathcal{F}) = (S_1 \times S_2, \mathcal{F}_1 \otimes \mathcal{F}_2)$, $\mathcal{F}_1 \otimes \mathcal{F}_2 = \sigma \{A_1 \times A_2 | A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\}$, and $x \in S_1$, the family $\mathcal{D} = \{A \in \mathcal{F}_1 \otimes \mathcal{F}_2 | A \cap \{x\} \times S_2 = \{x\} \times A_x, A_x \in \mathcal{F}_2\}$ is a *d*-system.

Dynkin's lemma

Theorem

- 1. A family of subsets of S is a σ -field if, and only if, it is both a *d*-system and a π -system.
- 2. If \mathcal{I} is a π -system, then $d(\mathcal{I}) = \sigma(\mathcal{I})$.
- 3. Any *d*-system that contains a π-system contains the *σ*-field generated by the π-system.

Theorem

If two probability measures on the same measurable space agree on a π -system \mathcal{I} they are equal on $\sigma(\mathcal{I})$.

§A1.3 of Williams

Probability space

Definition

A probability space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$ of a sample space Ω (set of possible worlds), a σ -field \mathcal{F} on Ω , a probability measure $\mathbb{P} \colon \mathcal{F} \to [0, 1]$. An element $\omega \in \Omega$ is a sample point (world); an element $A \in \mathcal{F}$ is an event; the value $\mathbb{P}(A)$ is the probability of the event A.

- Examples: a finite set, all its subsets, a probability function
 p: Ω → ℝ_{>0} such that Σ_{ω∈Ω} p(ω) = 1; ℤ_≥ with all its subsets,
 and a probability function p: ℤ_≥ → ℝ_{>0} such that Σ[∞]_{k=0} p(k) = 1;
 the restriction of a probability space to a sub-σ-field; the product of
 two probability spaces.
- Bernoulli trials. Let $\Omega = \{0,1\}^{\mathbb{N}}$ and let $\mathcal{F}_n = \{A \times \{0,1\} \times \{0,1\} \times \cdots \mid A \subset \{0,1\}^n\}, \ \mathcal{F} = \sigma(\mathcal{F}_n : n \in \mathbb{N}).$ Given $\theta \in [0,1]$, the function $p_n(x_1x_2\cdots x_n\cdots) = \theta \sum_{i=1}^n x_i (1-\theta)^{n-\sum_{i=1}^n x_i}$ uniquely defines probability spaces $(\Omega, \mathcal{F}_n, \mathbb{P}_n), n \in \mathbb{N}$, such that $\mathbb{P}_{n+1}|_{\mathcal{F}_n} = \mathbb{P}_n$, hence a probability measure \mathbb{P} on \mathcal{F} .

lim sup and lim inf

Definition

• Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of real numbers.

$$\begin{split} &\limsup_{n \to \infty} a_n = \wedge_{m \in \mathbb{N}} \vee_{n \ge m} a_n \quad (\text{maximum limit}) \\ &\lim_{n \to \infty} \inf a_n = \vee_{m \in \mathbb{N}} \wedge_{n \ge m} a_n \quad (\text{minimum limit}) \end{split}$$

Let (E_n)_{n∈ℕ} be a sequence of events in the measurable space (Ω, F).

$$\begin{split} \limsup_{n \to \infty} E_n &= \cap_{m \in \mathbb{N}} \cup_{n \ge m} E_n \quad (E_n \text{ infinitely often} \\ \liminf_{n \to \infty} E_n &= \cup_{m \in \mathbb{N}} \cap_{n \ge m} E_n \quad (E_n \text{ eventually}) \end{split}$$

A similar definition applies to sequences of functions. If $(f_n)_n$ is a sequence of non-negative functions, then the set of $x \in S$ such that $\lim_n f_n(x) = 0$ is equal to the set $\{\limsup_n f_n = 0\}$.

Fatou lemma

Theorem

$$\mathbb{P}\left(\liminf_{n\to\infty} E_n\right) \leq \liminf_{n\to\infty} \mathbb{P}\left(E_n\right) \leq \limsup_{n\to\infty} \mathbb{P}\left(E_n\right) \leq \mathbb{P}\left(\limsup_{n\to\infty} E_n\right)$$

- $(\limsup_{n} E_{n})^{c} = \liminf_{n} E_{n}^{c}; \limsup_{n} \mathbf{1}_{E_{n}} = \mathbf{1}_{\limsup_{n} E_{n}}.$
- Proof of FL. Write ∪_m ∩_{n≥m} E_n = ∪_mG_m so that G_m ↑ G = lim inf_n E_n. We have P(G_m) ≤ ∧_{n≥m} P(E_n); monotone continuity (increasing) implies P(G_m) ↑ P(G) hence, ∨_m P(G_m) = P(G). The middle inequality is a property of lim inf and lim sup. The least inequality follows from a similar proof using continuity on decreasing sequences or, by taking the complements.
- BC1. Assume $\sum_{n=1}^{\infty} \mathbb{P}(E_n) < +\infty$. We have for all $m \in \mathbb{N}$ that

$$\mathbb{P}\left(\limsup_{n} E_{n}\right) \leq \mathbb{P}\left(\cup_{n \geq m} E_{n}\right) \leq \sum_{n=m}^{\infty} \mathbb{P}\left(E_{n}\right) \to 0 \quad \text{if } m \to \infty$$

hence $\mathbb{P}(\limsup_{n} E_n) = 0.$

Measurable function

Definition

Given measurable spaces (S_i, S_i) , i = 1, 2, we say that the function $h: S_1 \to S_2$ is measurable, or is a random variable, if for all $B \in S_2$ the set $h^{-1}(B) = \{s \in S_1 | h(s) \in B\}$ belongs into S_1 .

Theorem

- Let $C \subset S_2$ and $\sigma(C) = S_2$. If $h^{-1}: C \to S_1$, then h is measurable.
- Given measurable spaces (S_i, S_i), i = 1, 2, 3, if both h: S₁ → S₂, g: S₂ → S₃ are measurable functions, then g ∘ f : S₁ → S₃ is a measurable function.
- Given measurable spaces (S_i, S_i) , i = 0, 1, 2 and $h_i: S_0 \to S_j$, j = 1, 2, consider $h = (h_1, h_2): S_0 \to S_1 \times S_2$. with product space $(S_1 \times S_2, S_1 \otimes S_2)$, Then both h_1 and h_2 are measurable if, and only if, h is measurable.

Image measure

Definition

Given measurable spaces (S_i, S_i) , i = 1, 2, a measurable function $h: S_1 \to S_2$, and a measure μ_1 on (S_1, S_1) , then $\mu_2 = \mu_1 \circ h^{-1}$ is a measure on (S_2, S_2) . We write $h_{\#}\mu_1 = \mu_2 \circ h^{-1}$ and call it image measure. If μ_1 is a probability measure, we say that $h_{\#}\mu_1$ is the distribution of the random variable h.

• Bernoulli scheme Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the Bernoulli scheme, and define $X_t : \Omega \to \{0, 1\}$ to be the *t*-projection, $X_t(x_1x_2\cdots) = x_t$. It is a random variable with Bernoulli distribution $B(\theta)$. The random variable $Y_n = X_1 + \cdots + X_n$ has distribution $Bin(\theta, n)$. The random variable $T = \inf \{k \in \mathbb{N} | X_k = 1\}$ has distribution $Geo(\theta)$.

Real random variable

Definition

Let (S, S) be a measurable space. A real random variable is a real function $h: S \to \mathbb{R}$ with is measurable into (\mathbb{R}, B) .

Theorem

- h: S → ℝ is a real random variable if, and only if, for all c ∈ ℝ the level set {s ∈ S} h(s) ≤ c is measurable. The same property holds with ≤ replaced by < or ≥ or >. The condition can be taken as a definition of extended random variable i.e. h: S → ℝ = ℝ ∪ {-∞, +∞}.
- If g, h: S → ℝ are real random variables and Φ: ℝ² → ℝ is continuous, then Φ ∘ (g, h) is a real random variable.
- Let (h_n)_{n∈N} be a sequence of real random variables on (S,S). Then sup_n f_n, inf_n f_n, lim sup_n f_n, lim inf_n f_n are real random variable.

A monotone-class theorems

Theorem

Let ${\mathcal H}$ be a vector space of bounded real functions of a set S and assume $1\in {\mathcal H}.$ Assume

- 1. \mathcal{H} is a monotone class i.e., if for each bounded increasing sequence $(f_n)_n \in \mathbb{N}$ in \mathcal{H} the function $\vee_n f_n$ belong to \mathcal{H} .
- 2. \mathcal{H} contains the indicator functions of a π -system \mathcal{I} .

Then, \mathcal{H} contains all bounded measurable functions of $(S, \sigma(I))$.

- Application. Consider measurable spaces $(\Omega_i, \mathcal{F}_i)$, i = 1, 2. Define $\Omega = \Omega_1 \times \Omega_2$ and $\mathcal{I} = \{A_1 \times A_2 | A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\}$. Then $\mathcal{F}_1 \otimes \mathcal{F}_2 = \sigma(\mathcal{I})$. Let \mathcal{H} be the set of all bounded real functions $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ such that for each fixed $x \in \Omega_1$ the mapping $\Omega_2 \ni y \mapsto f(x, y)$ is \mathcal{F}_2 -measurable and for each fixed $y \in \Omega_2$ the mapping $\Omega_1 \ni x \mapsto f(x, y)$ is \mathcal{F}_1 -measurable.
- §3.14 and §A3.1 of Williams

Simple functions

Let (S, \mathcal{F}) be a measurable space.

Definition

A measurable real function, $f: S \to \mathbb{R}$, $f^{-1}: \mathcal{B} \to \mathcal{F}$, is simple if it takes a finite number of values; equivalently, it is of the form $f = \sum_{k=1}^{m} a_k \mathbf{1}_{A_k}$, $a_k \in \mathbb{R}$, $A_k \in \mathcal{F}$, k = 1, ..., m, $m \in \mathbb{N}$. The algebra with unity of all simple functions is denoted by S; the cone of all non-negative simple function is denoted by S_+ .

- Both S and S_+ are closed for \lor and \land ; $f = f^+ f^-$, $f \in S$.
- If f is measurable and non-negative, there exist an increasing sequence $(f_n)_{n \in \mathbb{N}}$ in S_+ such that $\lim_{n \to \infty} f_n(s) = f(s)$, $s \in S$.
- If f is measurable and bounded, there exist an sequence $(f_n)_{n \in \mathbb{N}}$ in S such that $\lim_{n \to \infty} f_n = f$ uniformely.

Ch. 5 of Williams

Integral of a non-negative function Let (S, \mathcal{F}, μ) be a measure space.

Definition

• If $f \in \mathcal{S}$, $f = \sum_{k=1}^{m} a_k \mathbf{1}_{A_k}$, we define its integral to be

$$\int f \ d\mu = \sum_{k=1}^{m} a_k \mu(A_k) \quad \text{where } 0 \cdot \infty = \infty \cdot 0 = 0$$

If f: S → [0, +∞] is measurable, namely f ∈ L₊, we define its integral to be

$$\int f \, d\mu = \sup \left\{ \int h \, d\mu \middle| h \in \mathcal{S}_+, h \leq f
ight\}$$

The integral is linear and monotone on
 S¹ = {f ∈ S | ∫ f⁺ dµ, ∫ f⁻ dµ ≤ ∞}. The integral is convex and monotone on L₊.

• If
$$f \in \mathcal{L}_+$$
 and $\int f \ d\mu = 0$, then $\mu \{f > 0\} = 0$.

.)

Monotone-Convergence Theorem

Theorem (MON)

let $(f_n)_{n \in \mathbb{N}}$ be a non-decreasing sequence in \mathcal{L}_+ . Then the pointwise limit $f = \lim_{n \to \infty} f_n$ belongs to \mathcal{L}_+ and $\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$.

- A sequence of simple functions converging to f is always available.
- If $\alpha, \beta \in \mathbb{R}_{>0}$, $f, g \in \mathcal{L}_+$, then

$$\int (\alpha f + \beta g) \ d\mu = \int \alpha f \ d\mu + \int \beta g \ d\mu$$

• Exercise: If $\mu(S) = 1$, then $\int f \ d\mu = \int_0^\infty \mu \{f > u\} \ du$.

Proof of MON: Appendix A5 of Williams

Fatou Lemmas

Theorem (FATOU)

Let $(f_n)_{n \in \mathbb{N}}$ be a sequence in \mathcal{L}_+ .

- 1. $\int (\liminf_{n\to\infty} f_n) d\mu \leq \liminf_{n\to\infty} \int f_n d\mu$.
- 2. If, moreover, $f_n \leq g$, $n \in \mathbb{N}$, and $\int g \ d\mu < \infty$, then $\int (\limsup_{n \to \infty} f_n) \ d\mu \geq \limsup_{n \to \infty} \int f_n \ d\mu$.
 - Exercise: Prove 1. by observing that lim sup is the limit of an increasing sequence.
 - Exercise: If $(f_n)_{n \in \mathbb{N}}$ is a decreasing sequence in \mathcal{L}_+ and $\int f_1 \ d\mu < \infty$, then $\int (\lim_{n \to \infty} f_n) \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu$.
 - Exercise: If $(f_n)_{n \in \mathbb{N}}$ is a sequence in \mathcal{L}_+ and $f_n \leq g$, $n \in \mathbb{N}$, $\int g \ d\mu < \infty$, then $\int (\lim_{n \to \infty} f_n) \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu$.

Integrability

Definition

• Let \mathcal{L}^1 be the vector space of measurable real functions such that

$$\int |f| \ d\mu = \int f^+ \ d\mu + \int f^- \ d\mu < \infty$$

Define the integral to be the linear mapping

$$\mathcal{L}^1
i f \mapsto \int f \ d\mu = \int f^+ \ d\mu - \int f^- \ d\mu \in \mathbb{R}$$

• Exercise. Revise L¹-convergence and Dominated Convergence Theorem in Ch 5 of Williams

Expectation

- Let $\mathsf{E} \colon \mathcal{L}^\infty(\mathcal{S},\mathcal{S}) o \mathbb{R}$ be such that
 - $\mathbb{E}(1) = 1.$
 - E is linear and positive (hence monotone).
 - E is continuous on non-increasing sequence converging to 0.
- Every such E defines a probability measure when restricted to indicators, $\mathbb{P}(A) = \mathbb{E}(\mathbf{1}_A)$ and $\mathbb{E}(f) = \int f \ d \mathbb{P}$
- A similar observation holds for a E: $\mathcal{L}_+(S, S)$.
- If $f \in \mathcal{L}(S, \mathcal{L})$, as $f = f_+ f_-$ and $|f| = f_+ + f_-$, if $\mathbb{E}(|f|) < \infty$ then $\mathbb{E}(f_+), \mathbb{E}(f_-) < \infty$. In such a case, we say that $f \in \mathcal{L}^1(S, S, \mathbb{P})$ and define $\mathbb{E}(f) = \mathbb{E}(f_+) - \mathbb{E}(f_-)$.
- E: L¹(S, S, P) → R is positive, linear, normalized, continuous for the bounded pointwise convergence.
- Exercise: carefully check everything!

Densities

Let be given a measure space (S, \mathcal{F}, μ) and a measurable non-negative mapping $p: S \to \mathbb{R}$ such that $\int p \ d\mu < \infty$. The set function

$$p\cdot \mu\colon \mathcal{F} o \mathbb{R}_{>0}, \hspace{1em} A\mapsto \int \mathbf{1}_{A} p \hspace{1em} d\mu$$

is a bounded measure. In fact: $p \cdot \mu(\emptyset) = \int 0 \ d\mu = 0$; given a sequence $(A_n)_{n \in \mathbb{N}}$ of disjoint events, then MON implies

$$p \cdot \mu(\bigcup_{n \in \mathbb{N}} A_n) = \int \mathbf{1}_{\bigcup_{n \in \mathbb{N}} A_n} p \ d\mu = \int \sum_{n \in \mathbb{N}} \mathbf{1}_{A_n} \ d\mu = \sum_{n \in \mathbb{N}} \int \mathbf{1}_{A_n} \ d\mu = \sum_{n \in \mathbb{N}} p \cdot \mu(A_n)$$

Exercise: If $f: S \to \mathbb{R}$ is measurable and $fp \in \mathcal{L}^1(S, \mathcal{F}, \mu)$, then $f \in \mathcal{L}^1(S, \mathcal{F}, p \cdot \mu)$ and $\int f \ d(p \cdot \mu) = \int fp \ d\mu$. [Hint: try first simple functions, then use MON]

Inequalities I

- Expectation is a positive operator, hence it preserves the order. Most common application is a family of inequalities whose simplest form is Markov inequality: If x ≥ 0 and a > 0, then 1_{[a,+∞[} ≤ a⁻¹x. It follows that for each non-negative random variable X we have P(X ≥ a) ≤ a⁻¹ E(X).
- The previous inequality can be optimised to get, for example, the exponential Markov inequality. Observe that for all *t* > 0 it holds {*X* ≥ *a*} = {e^{tX} ≥ e^{ta}}. It follows that

$$\mathbb{P}\left(X \geq a\right) \leq e^{-ta} \mathbb{E}\left(e^{tX}\right) = \exp\left(-\left(ta - \log \mathbb{E}\left(e^{tX}\right)\right)\right).$$

If $I(a) = \sup_{t>0} (ta - \log \mathbb{E}(e^{tX}))$, then $\log \mathbb{P}(X \ge a) \le -I(a)$.

• Jensen inequality: Let $\Phi : \mathbb{R} \to \overline{\mathbb{R}}$ be convex with proper domain D. Assume X is an integrable random variable such that $\Phi(X)$ is integrable. Then $\Phi(\mathbb{E}(X)) \leq \mathbb{E}(\Phi \circ X)$. In fact, for each $x_o \in D$ there is an affine function such that $\Phi(x_0) + b(x_o)(x - x_0) \leq \Phi(x)$, $x \in \mathbb{R}$. It follows that $\Phi(x_0) + b(x_o)(\mathbb{E}(X) - x_0) \leq \mathbb{E}(\Phi \circ X)$. In particular, Jensen inequality follows if $x_0 = \mathbb{E}(X)$.

Inequalities II

- Fenchel's inequality: Given the convex function Φ, there exists a convex function Ψ such that Ψ(y) = sup_x (xy Φ(x)). In particular, the inequality xy ≤ Φ(x) + Ψ(y) holds for all x, y. It follows that E (XY) ≤ E (Φ ∘ X) + E (Ψ ∘ Y) if all terms are well defined.
- An important example of Fenchel inequality follows from $xy \leq \frac{1}{\alpha} |x|^{\alpha} + \frac{1}{\beta} |y|^{\beta}$, where $\alpha, \beta > 1$ and $\alpha^{-1} + \beta^{-1} = 1$. The integral inequality is $\mathbb{E}(XY) \leq \frac{1}{\alpha} \mathbb{E}(|X|^{\alpha}) + \frac{1}{\beta} \mathbb{E}(|Y|^{\beta})$.
- For $x \in \mathbb{R}$, q > 0 and have $xq \le e^x 1 + q \log q$. If f is a random variable and q is a probability density w.r.t. μ , then $\int fq \ d\mu \le \int e^f \ d\mu 1 + \int q \log q \ d\mu$.
- Lebesgue space: For each $\alpha \ge 1$, define

$$\mathcal{L}^{lpha} = \{X \in \mathcal{L} | \mathbb{E} \left(\left| X
ight|^{lpha}
ight) < \infty \} \;\;.$$

Define

.

$$X\mapsto \left(\mathbb{E}\left(\left|X
ight|^{lpha}
ight)
ight)^{1/lpha}=\left\|X
ight\|_{lpha}$$

Inequalities III

• Hölder inequality. Apply Fenchel inequality to $f = X / ||X||_{\alpha}$ and $g = Y / ||Y||_{\beta}$. It follows

$$\mathbb{E}\left(\mathit{fg}
ight) = \mathbb{E}\left(rac{X}{\left\| X
ight\|_{lpha}} rac{Y}{\left\| Y
ight\|_{eta}}
ight) \leq rac{1}{lpha} + rac{1}{eta} = 1.$$

It follows that $\mathbb{E}(XY) \leq \|X\|_{\alpha} \|Y\|_{\beta}$.

Minkowski inequality. Apply Hölder inequality to

$$\begin{split} \mathbb{E}\left(\left|X+Y\right|^{\alpha}\right) &= \mathbb{E}\left(\left|X+Y\right|\left|X+Y\right|^{\alpha-1}\right) \leq \\ & \mathbb{E}\left(\left|X\right|\left|X+Y\right|^{\alpha-1}\right) + \mathbb{E}\left(\left|Y\right|\left|X+Y\right|^{\alpha-1}\right) \end{split}$$

to get $\left\|X+Y\right\|_{\alpha} \leq \left\|X\right\|_{\alpha} + \left\|Y\right\|_{\alpha}.$

Change of variable formula

Let be given a measure space (S, \mathcal{F}, μ) , a measurable space $(\mathbb{X}, \mathcal{G})$ and a measurable mapping $\phi: S \to \mathbb{X}$, $p^{-1}: \mathcal{G} \to \mathcal{F}$. Let $\phi_{\#}\mu = \mu \circ \phi^{-1}$ be the push-forward measure.

• If $h \in \mathcal{S}(\mathbb{X}, \mathcal{G})$ i.e. $h = \sum_{k=1}^{n} b_k \mathbf{1}_{B_k}$, $b_k \in \mathbb{R}$, $B_k \in \mathcal{G}$, k = 1, ..., n. Then

$$\int h \ d\phi_{\#}\mu = \sum_{k=1}^{n} b_k \phi_{\#}\mu(B_k) = \sum_{k=1}^{n} b_k \mu[\phi^{-1}(B_k)] =$$
$$\sum_{k=1}^{n} b_k \int \mathbf{1}_{B_k} \circ \phi \ d\mu = \int h \circ \phi \ d\mu$$

- If $f \in \mathcal{L}_+$, then MON implies $\int f \ d\phi_{\#}\mu = \int f \circ \phi \ d\mu$
- If $f : \mathbb{X} \to \mathbb{R}$ is measurable and $f \circ \phi \in \mathcal{L}^1(S, \mathcal{F}, \mu)$ then $f \in \mathcal{L}^1(\mathbb{X}, \mathcal{G}, \phi_{\#}\mu)$ and $\int f \ d\phi_{\#}\mu = \int f \circ \phi \ d\mu$.

Product measure I

Definition

Given measure spaces $(S_i, \mathcal{F}_i, \mu_i)$, i = 1, ..., n, n = 2, 3, ..., the product measure space is

$$(S, \mathcal{F}, \mu) = \otimes_{i=1}^{n} (S_i, \mathcal{F}_i, \mu_i) = (\times_{i=1}^{n} S_i, \otimes_{i=1}^{n} \mathcal{F}_i, \otimes_{i=1}^{n} \mu_i),$$

where

$$\mathcal{F} = \otimes_{i=1}^{n} \mathcal{F}_{i} = \sigma \left\{ \times_{i=1}^{n} A_{i} | A_{i} \in \mathcal{F}_{i}, i = 1, \dots, n \right\}$$

and $\mu = \otimes_{i=1}^n \mu_i$ is the unique measure on $(\times_{i=1}^n S_i, \otimes_{i=1}^n \mathcal{F}_i)$ such that

$$\mu(\times_{i=1}^n A_i) = \prod_{i=1}^n \mu_i(A_i), \quad A_i \in \mathcal{F}_i, i = 1, \ldots, n.$$

- Let $X_i: S \mapsto S_i$, i = 1, ..., n, be the projections. Then $\bigotimes_{i=1}^{n} \mathcal{F}_i = \sigma \{X_i | i = 1, ..., n\}.$
- Examples: Counting measure on $\mathbb{N}^2,$ Lebesgue measure on $\mathbb{R}^2,$ the finite Bernoulli scheme.
- Product measure of probability measures is a probability measure.

Product measure II

Recall all measures are σ -finite. Assume n = 2.

Sections

If $C \in = \mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$, then for each $x_1 \in S_1$ the set $\{x_2 \in S_2 | (x_1, x_2) \in C\}$ belongs to \mathcal{F}_2 .

Proof.

Let \mathcal{O} be the family of all subsets of S for which the proposition is true. \mathcal{O} is a σ -algebra that contains all the measurable rectangles, hence $\mathcal{F} \subset \mathcal{O}$.

Partial integration

The mapping $S_1: x_1 \mapsto \mu_2 \{x_2 \in S_2 | (x_1, x_2) \in C\}$ is non-negative and \mathcal{F}_1 -measurable.

Proof.

If $C \in \mathcal{F}$ then the function is well defined. The set of all $C \in \mathcal{F}$ such that the function is measurable contains measurable rectangles, is a π -system, and is a *d*-system.

Product measure III

Product measure: existence

The set function $\mu: \mathcal{F} \ni C \mapsto \int \mu_2 \{x_2 \in S_2 | (x_1, x_2) \in C\} \ \mu_1(dx - 1)$ is a measure such that $\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$ on measurable rectangles. Hence, $\mu = \mu_1 \otimes \mu_2$.

Proof.

The integral exists because the integrand is non-negative. $\mu(\emptyset) = 0$; if $(C_n)_{n \in \mathbb{N}}$ is a sequence in \mathcal{F} of disjoint events, then for all $x_1 \in S_1$ we have

$$\mu_2 \{ x_2 \in S_2 | (x_1, x_2) \in \bigcup_{n \in \mathbb{N}} C_n \} = \mu_2 \left(\bigcup_{n \in \mathbb{N}} \{ x_2 \in S_2 | (x_1, x_2) \in C_n \} \right) = \sum_{n \in \mathbb{N}} \mu_2 \{ x_2 \in S_2 | (x_1, x_2) \in C_n \}$$

MON implies

$$\begin{split} \mu\left(\cup_{n\in\mathbb{N}}C_n\right) &= \int \sum_{n\in\mathbb{N}} \mu_2\left\{x_2\in S_2 | (x_1,x_2)\in C_n\right\} \ \mu_1(dx_1) = \\ &\sum_{n\in\mathbb{N}} \int \mu_2\left\{x_2\in S_2 | (x_1,x_2)\in C_n\right\} \ \mu_1(dx_1) = \sum_{n\in\mathbb{N}} \mu(C_n) \end{split}$$

Product measure IV

• Consider n = 3. The product measure space

$$\otimes_{i=1}^{3}(S_{i},\mathcal{F}_{i},\mu_{i})=(\times_{i=1}^{3}S_{i},\otimes_{i=1}^{3}\mathcal{F}_{i},\otimes_{i=1}^{3}\mu_{i})$$

is identified with

$$(S_1 imes S_2, \mathcal{F}_1 \otimes \mathcal{F}_2, \mu_1 \otimes \mu_2) \otimes (S_3, \mathcal{F}_3, (\mu_1 \otimes \mu_2) \otimes \mu_3)$$

One has to check that

$$(\mathcal{F}_1\otimes\mathcal{F}_2)\otimes\mathcal{F}_3=\mathcal{F}_1\otimes\mathcal{F}_2\otimes\mathcal{F}_3$$

• The $n = \infty$ case requires Charateodory. See the Bernoulli scheme example.

Fubini theorem I

Section

Let $f: S_1 \times S_2 \to \mathbb{R}$ be $\mathcal{F}_1 \otimes \mathcal{F}_2$ measurable. For all $x_1 \in S_1$ the function $f_{x_1}: x_2 \mapsto f(x_1, x_2)$ is \mathcal{F}_2 -measurable.

Proof.

For each $y \in \mathbb{R}$, consider the level set $C = \{(x_1, x_2) | f(x_1, x_2) \le y\} \in \mathcal{F}_1 \otimes \mathcal{F}_2$. The set $\{(x_2) | fx_1(x_2) \le y\}$ is the x_1 -section of C.

Theorem (Non-negative integrand)

Let $f: S_1 \times S_2 \to \mathbb{R}$ be $\mathcal{F}_1 \otimes \mathcal{F}_2$ -measurable and non-negative. Then the mapping $S_1 \ni x_1 \mapsto \int f(x_1, x_2) \ \mu_2(dx_2)$ is \mathcal{F}_1 -measurable and

$$\int f \ d\mu_1 \otimes \mu_2 = \int \left(\int f(x_1, x_2) \ \mu_2(dx_2) \right) \ \mu_1(dx_1)$$

Fubini theorem II

Theorem (Integrable integrand)

Let $f: S_1 \times S_2 \to \mathbb{R}$ be $\mu_1 \otimes \mu_2$ -integrable. Then the mapping $S_1 \ni x_1 \mapsto \int f(x_1, x_2) \ \mu_2(dx_2)$ is μ_1 -integrable and

$$\int f \ d\mu_1 \otimes \mu_2 = \int \left(\int f(x_1, x_2) \ \mu_2(dx_2) \right) \ \mu_1(dx_1)$$

Proof: Non-negative integrand.

Choose an increasing sequence of simple non-negative functions converging to f and use MON.

Proof: Integrable integrand.

Decompose $f = f^+ - f^-$ and use the previous form of the theorem.

Independence

Definition

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space.

- 1. The sub- σ -algebras $\mathcal{F}_1, \ldots, \mathcal{F}_n$ are independent if $A_i \in \mathcal{F}_i$, $i = 1, \ldots, n$, implies $\mu(A_1 \cap \cdots \cap A_n) = \mu(A_1) \cdots \mu(A_n)$.
- 2. The random variables $X_i: \Omega \to S_i, X_i^{-1}: \mathcal{G}_i \to \mathcal{F}, i = 1, ..., n$, are independent, if

$$(X_1,\ldots,X_n)_{\#}\mu = (X_1)_{\#}\mu \otimes \cdots \otimes (X_n)_{\#}\mu$$

If $\mathcal{F}_i = \sigma(X_i)$, the 1. and 2. are equivalent. If $A_i = X_i^{-1}(B_i)$, $i = 1, \ldots, n$,

 $\mu(A_{1} \cap \dots \cap A_{n}) = \mu(X_{1}^{-1}(B_{1}) \cap \dots \cap X_{n}^{-1}(B_{n})) = \\ \mu((X_{1}, \dots, X_{n})^{-1}(B_{1} \times \dots \times B_{n})) = (X_{1}, \dots, X_{n})_{\#}\mu(B_{1} \times \dots \times B_{n}) = \\ (X_{1})_{\#}\mu \otimes \dots \otimes (X_{n})_{\#}\mu(B_{1} \times \dots \times B_{n}) = (X_{1})_{\#}\mu(B_{1}) \cdots (X_{n})_{\#}\mu(B_{n}) = \\ \mu(X_{1}^{-1}(B_{1})) \cdots \mu(X_{n}^{-1}(B_{n})) = \mu(A_{1}) \cdots \mu(A_{n})$