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The present handout covers generalities on independence and conditioning, Central
Limit Theorem (IID case), multivariate Gaussian distributions and the relevant matrix
theory. A classical reference on Gaussian random variables is [1] (many reprints available).
A modern advanced reference for positive definite matrices is [2].

1. Introduction

Exercise 1 (Gaussian distribution). The standard Gaussian distribution is the probability

measure ν with density fνpxq “ p2πq
´1{2e´x

2{2. We have Fνpxq “ p2πq
´1{2

şx

´8
e´u

2{2 du
with no closed form expression.

(1) Check that fν is indeed a density.
(2) Compute the moments νn “

ş

xn νpdxq, n P N. [Use p1νpxq “ ´xpνpxq.]
(3) Compute the moment generating function Mνptq “

ş

etx νpdxq. Check that

M
pnq
ν p0q “ νn.

(4) Compute the characteristic function Φνptq “
ş

e
?
´1tx νpdxq.

(5) Compute the first two derivatives of the cumulant generating function κνptq “
logMνptq.

(6) Compute the density of X “ aZ ` b with a, b P R and Z „ pν . These are the
general Gaussian random variables.

(7) Compute the density of Z ` b with respect to the distribution of Z.
(8) Compute δψ such that

ż

φ1pxqψpxqνpdxq “

ż

φpxqδψpxq νpdxq
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for all φ, ψ P C1 such that the integrals are well defined.
(9) Compute Hn “ δn1, n P N.

See recap on product measures and independence the slides Probability 2019: measure
Theory or any textbook.

Exercise 2 (Independent Gaussian random variables). (1) Show that the Lebesgue mea-
sure on s0, 1r2 is the product measasure of two Lebesgue measure on s0, 1r.

(2) Use the previous remark to construct two independent Gaussian random variables.
(3) If Y1, Y2 are independent standard Gaussian random variables, compute the dis-

tribution of Y “ pY1 ` Y2q{
?

2.
(4) If Y1, Y2, Y3 are independent standard Gaussian random variables, compute the

distribution of Y “ Y1 ` Y2 ` Y3.

2. Central Limit Theorem

The Central Limit Theorem CLT is a weak convergence result about the distribution
of standardized sums of independent random variables. It is usually stated assuming
the existence of an infinite sequence of Independent Identically Distributed IID random
variables.

There are many possible statement with variate assumptions. Possibly, the simplest
statement is the following: Let pXnqnPN be an IID sequence such that E pX1q “ 0 and

E pX2
1 q “ 1. The sequence

´

X1`¨¨¨`Xn?
n

¯

nPN
converges weakly to the standard Gaussian

distribution i.e., for all φ P Cb

lim
nÑ8

E
ˆ

φ

ˆ

X1 ` ¨ ¨ ¨ `Xn
?
n

˙˙

“
1
?

2π

ż

φpzqe´z
2{2 dz .

Exercise 3 (Proof of the CLT). (1) Show that C3
bpRq separates points.

(2) If φ P C3
b, then the first Taylor approximation is

φpyq ´ φpxq ´ φ1pxqpy ´ xq “

ż y

x

φ2ptqpy ´ tq dt

so that

Rpx, yq “ φpyq ´ φpxq ´ φ1pxqpy ´ xq ´
1

2
φ2pxqpy ´ xq2 “

ż y

x

py ´ tqpφ2ptq ´ φ2pxqq dt .

We have the bound

|Rpx, yq| ď
1

2
}φ2 ´ φ2pxq}

8
py ´ xq2 “ C1 |y ´ x|

2 .

The second Taylor approximation is

Rpx, yq “ φpyq ´ φpxq ´ φ1pxqpy ´ xq ´
1

2
φ2pxqpy ´ xq2 “

1

2

ż y

x

φ3ptqpy ´ tq2 dt

and we have the bound

|Rpx, yq| ď
1

3!
}φ3}

8
|y ´ x|3 “ C2 |y ´ x|

3 .

Putting together the two bounds, |Rpx, yq| ď CLpy´ xq with C “ C1_C2 and
Lpzq “ |z|2 ^ |z|3.
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(3) From the previous computations,

φpy ` zq ´ φpx` zq “ pφpy ` zq ´ φpzqq ´ pφpx` zq ´ φpzqq “
ˆ

φ1pzqy `
1

2
Φ2pzqy2

`Rpz, y ` zq

˙

´

ˆ

φ1pzqx`
1

2
Φ2pzqx2

`Rpz, y ` xq

˙

“

φ1pzqpy ´ xq `
1

2
φ2pzqpy2

´ x2
q ` pRpz, y ` zq ´Rpx, x` zqq ,

and |Rpz, y ` zq ´Rpx, x` zq| ď CpLpxq ` Lpyqq.
(4) For each n P N let Z1, . . . , Zn be a independent standard Gaussian random vari-

ables and assume X1, . . . , Xn, Z1, . . . , Zn are independent. Write

φ

ˆ

X1 ` ¨ ¨ ¨ `Xn
?
n

˙

´ φ

ˆ

Z1 ` ¨ ¨ ¨ ` Zn
?
n

˙

“

φ

ˆ

X1 ` ¨ ¨ ¨ `Xn
?
n

˙

´ φ

ˆ

Z1 `X2 ¨ ¨ ¨ `Xn
?
n

˙

`

φ

ˆ

Z1 `X2 ` ¨ ¨ ¨ `Xn
?
n

˙

´ φ

ˆ

Z1 ` Z2 `X3 ¨ ¨ ¨ `Xn
?
n

˙

` . . .

(5) A typical term has expected value bounded as follows:
ˇ

ˇ

ˇ

ˇ

E
ˆ

Φ

ˆ

X1
?
n
` ¨ ¨ ¨ `

Xk
?
n
`
Zk`1
?
n
` ¨ ¨ ¨ `

Zn
?
n

˙

´ Φ

ˆ

¨ ¨ ¨ `
Zk
?
n
` ¨ ¨ ¨

˙˙ˇ

ˇ

ˇ

ˇ

ď

C E
ˆ

L

ˆ

Xk
?
n

˙

` L

ˆ

Zk
?
n

˙˙

“ C E
ˆ

L

ˆ

X1
?
n

˙

` L

ˆ

Z1
?
n

˙˙

.

The sum is bounded by

nC E
ˆ

L

ˆ

X1
?
n

˙

` L

ˆ

Z1
?
n

˙˙

“ nC E

˜

ˇ

ˇ

ˇ

ˇ

X1
?
n

ˇ

ˇ

ˇ

ˇ

2

^

ˇ

ˇ

ˇ

ˇ

X1
?
n

ˇ

ˇ

ˇ

ˇ

3

`

ˇ

ˇ

ˇ

ˇ

Z1
?
n

ˇ

ˇ

ˇ

ˇ

2

^

ˇ

ˇ

ˇ

ˇ

Z1
?
n

ˇ

ˇ

ˇ

ˇ

3
¸

“

C E

˜

ˇ

ˇ

ˇ

ˇ

X1
?
n

ˇ

ˇ

ˇ

ˇ

2

^

ˇ

ˇ

ˇ

ˇ

X1
?
n

ˇ

ˇ

ˇ

ˇ

3

`

ˇ

ˇ

ˇ

ˇ

Z1
?
n

ˇ

ˇ

ˇ

ˇ

2

^

ˇ

ˇ

ˇ

ˇ

Z1
?
n

ˇ

ˇ

ˇ

ˇ

3
¸

“ C E

˜

|X1|
2
^
|X1|

3

?
n
` |Z1|

2
^
|Z1|

3

?
n

¸

which converges to zero by dominated convergence.
(6) The convergence holds for all φ P C3

b. Show that it holds for all φ P Cb.

3. Standard Gaussian Distribution

3.1. Recap: Determinant and area. Let A “ ra1 ¨ ¨ ¨ ans be a nˆn generic real matrix
identified with the n-tuple of its columns. Consider a mapping ∆: ra1 ¨ ¨ ¨ ans ÞÑ ∆A which
is

(1) multi-linear,
(2) alternating (if two columns are equal then the value is zero),
(3) normalized (∆I “ 1).

The first and second condition imply for example

0 “ ∆rpa1 ` a2q pa1 ` a2q ¨ ¨ ¨ s “

∆ra1 a1 ¨ ¨ ¨ s `∆ra1 a2 ¨ ¨ ¨ s `∆ra2 a1 ¨ ¨ ¨ s `∆ra2 a2 ¨ ¨ ¨ s “

∆ra1 a2 ¨ ¨ ¨ s `∆ra2 a1 ¨ ¨ ¨ s
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that is, the exchange of two columns changes the sign of ∆. Conversely, this property
inplies the nullity if equal columns.

The operator ∆ is characterized by the three conditions above as it is shown by rep-
resenting each column is the standard basis and ∆A “ det pAq. A matrix such that
det pAq “ 0 is said to be singular.

Let A, B be non-singular matrices. consider the mapping

rb1 ¨ ¨ ¨ bns ÞÑ pdet pAqq´1 det pArb1 ¨ ¨ ¨ bnsq “ÞÑ pdet pAqq´1 det prAb1 ¨ ¨ ¨Abnsq

All conditions above are verified hence det pABq “ det pAq det pBq. In particular, det pA´1q “

pdet pAqq´1.
Gauss-Jordan elimination An elementary matrix is a permutation matrix or, a matrix of the

form rae1 e2 ¨ ¨ ¨ ens, a ‰ 0, or the matrix rpe1 ` e2q e2 ¨ ¨ ¨ ens. Every matrix is the product of
elementary matrix. In fact, every matrix can be reduced to the diagonal form re1 ¨ ¨ ¨ ek 0s by
left and right multiplication by elementary matrices. k is the rank of the matrix.

Linear change-of-variables Let T : Rn Ñ Rn be linear and invertible. For each Borel set A the
set T´1pAq is Borel and the image measure of the Lebesgue measure m is A ÞÑ mpT´1pAqq “
T#mpAq, so that

ş

gpyq T#mpdxq “
ş

gpT pxqq dx. Let us show that T#m is translation invariant.
In fact

T#mpA` yq “ mpT´1pA` yqq “ mpT´1pAq ` T´1yq “ mpT´1pAqq “ T#mpAq .

It follows that T#m is proportional to m, mpT´1pAqq9mpAq.
Let us show that the proportionality constant is | det pT q |´1, that is,

ż

gpT pxqq dx “ |det pT q |´1

ż

gpyq dy .

Let us write the proportionality constant ∆pT q. Note that mppST q´1pAqq “ mpT´1S´1pAqq “

∆pT qmpS´1pAqq “ ∆pT q∆pSqmpAq that is, ∆pST q “ ∆pT q∆pSq. If T is a permutation matrix,

then ∆pT q “ 1 “ | det pT q |´1; If T “ rαe1 ¨ ¨ ¨ ens, then ∆pT q “ |α|´1 “ | det pT q |´1; If

T “ rpe1` e2q e2 ¨ ¨ ¨ ens the same result follows. As all matrices are a product of such matrices,

the result is proved.

3.2. Change of variable formula in Rd. Let A,B Ă Rd be open and φ be a diffeomer-
phism from A onto B. Let Jφ : A Ñ Mat pdˆ dq be the Jacobian mapping of φ and

Jφ´1 : B Ñ Mat pdˆ dq the Jacobian mapping of φ´1, so that Jφ´1 “ pJφ ˝ φ´1q
´1

. For
each non-negative f : B Ñ Rn,

ż

B
fpyq dy “

ż

A
f ˝ φpxq |det pJφpxqq| dx

Exercise 4. A “s0, 2πrˆs0,`8r, B “ R2
˚ “ R2z tpx, yq P R2|x ě 0, y “ 0u, φpθ, ρq “

pρ cos θ, ρ sin θq.

Jφpθ, ρq “

„

´ρ sin θ cos θ
ρ cos θ sin θ



, det pJφpθ, ρqq “ ´ρ

ĳ

R2
˚

e´px
2`y2q{2 dxdy “

ĳ

s0,2πrˆs0,`8r

e´pρ
2 cos2 θ`ρ2 sin2 θq{2 ρ dθdρ “

ĳ

s0,2πrˆs0,`8r

e´ρ
2{2 ρ dθdρ “ 2π
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1. (Image of an absolutely continous measure)Let pS,F , µq be measure space, p : S Ñ Rą0

a probability density, pX,Gq a measurable space, φ : S Ñ X a measurable function. If φ
has a measurable inverse, then the image measure is characterised by

ż

f dφ#pp ¨ µq “

ż

pf ˝ φqp dµ “

ż

pf ˝ φqpp ˝ φ´1
˝ φq dµ “

ż

fp ˝ φ´1 dφ#µ

hence φ#pp ¨ µq “ pp ˝ φ
´1q ¨ µ. Eq. (3.2) applied to f ˝ φ and the diffeomorphism φ´1

gives
ż

B
f dpφ#`q “

ż

A
f ˝ φpxq dx “

ż

B
f ˝ φ ˝ φ´1

pyq
ˇ

ˇdet
`

Jφ´1
pyq

˘
ˇ

ˇ dy “

ż

B
fpyq

ˇ

ˇdet
`

Jφ´1
pyq

˘
ˇ

ˇ dy “

ż

B
fpyq

ˇ

ˇdet
`

Jφ ˝ φ´1
pyq

˘
ˇ

ˇ

´1
dy

This shows that the image of the Lebesgue measure ` under a diffeomorphism is

φ#` “
ˇ

ˇdet
`

Jφ´1
˘
ˇ

ˇ ¨ ` “
ˇ

ˇdet
`

Jφ ˝ φ´1
˘
ˇ

ˇ

´1
¨ `

Exercise 5. A “s0, 1rˆs0, 1r, B “ R2
˚, φpu, vq “ p

?
´2 log u cosp2πvq,

?
´2 log u sinp2πvqq,

Jφpu, vq “

»

—

–

´
1

2
p´2 log uq´1{2 2

u
cosp2πvq ´2π

?
´2 log u sinp2πvq

´
1

2
p´2 log uq´1{2 2

u
sinp2πvq 2π

?
´2 log u cosp2πvq

fi

ffi

fl

,

det pJφpu, vqq “ ´
2π

u
, det

`

Jφ ˝ φ´1
px, yq

˘

“
2π

epx2`y2q{2
.

The image of the uniform probability measure on s0, 1r2 under φ is p2πq´1e´px
2`y2q{2 dxdy.

2 (Marginalization). The previous argument does not apply when Φ is not 1-to-1. We
will show in the chapter on conditioning that in such a case

Φ#pp ¨ µq “ p̂ ¨ Φ#pµq

where p̂ is the conditional expectation of p with respect to Φ.
However, there are two common and simple cases namely, the finite state space case

and the marginalisation. Assume µ “ µ1 b µ2 on S “ S1 ˆ S2 and consider the marginal
projection Φ: px1, x2q ÞÑ x1. Then Φ´1pA1q “ A1 ˆ S2 and µpΦ´1pA1qq “ µpA1 ˆ S2q “

µ1pA1q hence, Φ#pµq “ µ1. Let p be a density on S with respect to µ. For each positive
f : S1 we have
ż

f dΦ#pp ¨ µq “

ż

f ˝ Φ dpp ¨ µq “

ĳ

fpx1qppx1, x2q µpdx1, dx2q “

ż

fpx1q

ˆ
ż

ppx1, x2q µ2pdx2q

˙

µ1pdx1q

so that

Φ#pp ¨ µq “ p1px1q ¨ µ1, p1px1q “

ż

ppx1, x2q µ2pdx2q

For example, if ppx1, x2q “ p2πq
´1e´px

2
1`x

2
2q{2, then

ż

ppx1, x2q dx2 “ p2πq
´1{2e´x

2
1{2

ż

p2πq´1{2e´x
2
2{2 dx2 “ cp2πq´1{2e´x

2
1{2

with c “
ş

p2πq´1{2e´x
2
2{2 dx2 “ 1 as the further integration with respect to dx1 shows.

Notice that the argument applies to all ppx1, x2q “ cfpx1qfpx2q.
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3. The real random variable Z is standard Gaussian, Z „ N1 p0, 1q, if its distribution ν
has density

R Q z ÞÑ γpzq “ p2πq´
1
2 exp

ˆ

´
1

2
z2

˙

with respect to the Lebesgue measure. It is in fact a density, see above the computation
of its two-fold product.

Exercise 6. All moments µpnq “
ş

znγpzq dz exists. As zγpzq “ ´γ1pzq, integration
by parts produces a recurrent relation for the moments. [Hint: Write

ş

znγpzq dz “
ş

zn´1zγpzq dz “
ş

zn´1p´γ1pzqq dz and perform an integration by parts]

Exercise 7. If f : R Ñ R absolutely continuous i.e., fpzq “ fp0q `
şz

0
f 1puq du, with

ş

|f 1puq| γpuq du ă `8 then
ş

|zfpzq| γpzq dz ă `8. In fact,

ż

|zfpzq| γpzq dz “

ż

ˇ

ˇ

ˇ

ˇ

z

ˆ

fp0`

ż z

0

f 1puq du

˙
ˇ

ˇ

ˇ

ˇ

γpzq dz ď

|fp0q|

ż

|z| γpzq dz `

ż

ˇ

ˇ

ˇ

ˇ

z

ż z

0

f 1puq du

ˇ

ˇ

ˇ

ˇ

γpzq dz .

The first term in the RHS equals
a

2{π |fp0q|, while in the second term we have for z ě 0,
ˇ

ˇ

ˇ

ˇ

ż z

0

f 1puq du

ˇ

ˇ

ˇ

ˇ

ď

ż

p0 ď u ď zq |f 1puq| du .

We have
ż

ˇ

ˇ

ˇ

ˇ

z

ż z

0

f 1puq du

ˇ

ˇ

ˇ

ˇ

γpzq dz ď

ż

|z|

ˆ
ż

p0 ď u ď zq |f 1puq| du

˙

γpzq dz “

ż

|f 1puq|

ż 8

u

zγpzq dz du “

ż

|f 1puq|

ż 8

u

p´γ1pzqq dz du “

ż

|f 1puq| γpuq du ă 8 .

A similar argument applies to the case z ď 0. This implies
ż

zfpzqγpzq dz “

ż

fpzqp´γ1pzqq dz “

ż

f 1pzq γpzqdz .

Exercise 8. The Stein operator is δfpzq “ zfpzq ´ f 1pzq. We have
ż

fpzqg1pzqγpzq dz “

ż

δfpzqgpzqγpzqdz

We define the Hermite polynomials to be Hnpzq “ δn1. For example, H1pzq “ z, H2pzq “
z2 ´ 1, H3pzq “ z3 ´ 3z. Hermite polynomials are orthogonal with respect to γ,

ż

HnpzqHmpzqγpzq dz “ 0 if n ą m .

4. Let Z „ N1 p0, 1q, Y “ b` aZ, a, b P R. Then E pXq “ b, E pX2q “ a2` b2, Var pXq “
a2. If a ‰ 0, then φpzq “ b ` az is a diffeomorphism with inverse φ´1pxq “ a´1px ´ bq,
hence the density of X is

γpa´1
px´ bqq |a|´1

“ p2πa2
q
´1{2 exp

ˆ

1

2a2
px´ bq2

˙

6



If a “ 0 then the distribution of X “ b is the Dirac measure at b. We say that X is
Gaussian with mean b and variance a2, X „ N1 pb, a

2q. Viceversa, if X „ N1 pµ, σ
2q and

σ2 ‰ 1, then Z “ σ´1pX ´ µq „ N1 p0, 1q.

5. The characteristic function of a probability measure µ is

pµptq “

ż

eitx µpdxq “

ż

cosptxq µpdxq ` i

ż

sinptxq µpdxq, i “
?
´1

If two probability measure have the same characteristic function, then they are equal.

Exercise 9. For the standard Gaussian probability measure we have

pγptq “

ż

cosptzq γpzqdz “ e´
t2

2 .

In fact, by derivation under the integral

d

dt
pγptq “ ´

ż

z sinptzq γpzqdz “

ż

sinptzqγ1pzq dz “ ´tγptq

and pγp0q “ 1. The characteristic function of X „ N1 pµ, σ
2q is

E
`

eitX
˘

“ E
`

eitpµ`σZq
˘

“ eitµ E
´

eipσ
tqZ

¯

“ e´tµ`
1
2
σ2t2

Exercise 10. The characteristic function pµ of the probability measure µ on R is non-
negative definite. Take t1, . . . , tn in R with n “ 1, 2, . . . . The matrix

T “ rpµpti ´ tjqs
n
i,j“1 “

„
ż

eipti´tjqx µpdxq

n

i,j“1

is Hermitian, that is the transposed matrix is equal to the conjugate matrix equivalently,
T is equal to its adjoint T ˚. An Hermitian matrix T is non-negative definite if for all
complex vector ζ P Cn it holds ζ˚Tζ ě 0. In our case

ζ˚
„
ż

eipti´tjqx µpdxq



ζ “
n
ÿ

i.j“1

ż

ζiζje
ipti´tjqx µpdxq “

n
ÿ

i.j“1

ż

ζie
itixζjeitjx µpdxq “

ż

›

›

›

›

›

n
ÿ

i“1

ζie
itix

›

›

›

›

›

2

µpdxq ě 0 .

Exercise 11. let X „ N1 pb, σ
2q and f : R Ñ R continuous and bounded. Show that

limσÑ0 E pfpXqq “ fpbq.

Exercise 12. Let X be a real random variable with density p with respect to the Lebesgue
measure, and let Z „ N1 p0, 1q. Assume X and Z are independent i.e., the joint random
variable pX,Zq has density pbγ with respect to the Lebesgue measure of 2. Compute the
density of X `Z. [Hint: make a change of variable px, zq ÞÑ px` z, zq then marginalize.]

6. The product of absolutely continuous probability measures is

pp1 ¨ µ1q b pp2 ¨ µ2q “ pp1 b p2q ¨ µ1 b µ2

The Rd-valued random variable Z “ pZ1, . . . , Zdq is multivariate standard Gaussian,
Z „ Nn p0d, Idq if its components are IID N1 p0, 1q. We write νd “ νbd to denote the
d-fold product measure. The distribution νd “ γbd of Z „ Nn p0, Iq has the product
density

Rn
Q z ÞÑ γpzq “

n
ź

j“1

φpzjq “ p2πq
´n

2 exp

ˆ

´
1

2
}z}2

˙

7



Exercise 13. The moment generating function t ÞÑ E pexp pt ¨ Zqq P Rą is

Rn
Q t ÞÑMZptq “

n
ź

j“1

exp

ˆ

1

2
t2i

˙

“ exp

ˆ

1

2
}t}2

˙

MZ is everywhere strictly convex and analytic.

Exercise 14. The characteristic function ζ ÞÑ pγnpζq “ E
`

exp
`?
´1ζ ¨ Z

˘˘

is

Rn
Q ζ ÞÑ pγnpζq “

2
ź

j“1

exp

ˆ

´
1

2
ζ2
i

˙

“ exp

ˆ

´
1

2
}ζ}2

˙

pγn is non-negative definite.

4. Recap: Positive Definite Matrices

7. We collect here a few useful properties of matrices. ˚ denotes transposition.

(1) Denote by Mat pmˆ nq the vector space ofmˆn real matrices. We have Mat pmˆ 1q Ø
Rm. Let Mat pnˆ nq be the vector space of nˆn real matrices, GL pnq the group
of invertible matrices, Sym pnq the vector space of real symmetric matrices.

(2) Given A P Mat pnˆ nq, a real eigen-value of A is a real number λ such that A´λI
is singular i.e., det pA´ λIq “ 0. If λ is an eigen-value of A, u an eigen-vector of
A associated to λ if Au “ λu.

(3) By identifying each matrix A P Mat pmˆ nq with its vectorized form vecpAq P
Rmn, the vector space Mat pmˆ nq is an Euclidean space for the scalar product
xA,By “ vecpAq˚ vecpBq “ Tr pAB˚q. The general linear group GL pnq is an open
subset of Mat pnˆ nq.

(4) A square matrix whose columns form an orthonormal system, S “ rs1 ¨ ¨ ¨ sns,
s˚i sj “ pi “ jq, has determinant ˘1. The property is characterised by S˚ “ S´1.
The set of such matrices is the orthogonal group Opnq.

(5) Each symmetric matrix A P Sym pnq has n real eigen-values λi, i “ 1, . . . , n and
correspondingly an orthonormal basis of eigen-vectors ui, i “ 1, . . . , n.

(6) Let A P Mat pmˆ nq and let r ą 0 be its rank i.e., the dimension of the space
generated by its columns, equivalently by its rows. There exist matrices S P

Mat pmˆ rq, T P Mat pnˆ rq, and a positive diagonal r ˆ r matrix Λ, such that
S˚S “ T ˚T “ Ir, and A “ SΛ1{2T ˚. The matrix SS˚ is the orthogonal projection
onto imageA. In fact imageSS˚ “ imageA, SS˚A “ A, and SS˚ is a projection.
Similarly, TT ˚ is the ortogonal projection unto imageA˚.

(7) A symmetric matrix A P Sym pnq is positive definite, A P Sym`
pnq, respectively

strictly positive definite, A P Sym``
pnq, if x P Rn ‰ 0 implies x1Ax ě 0,

respectively ą 0. Sym`
pnq is a closed pointed cone of Sym pnq, whose interior is

Sym``
pnq. A positive definite matrix is strictly positive definite if it is invertible.

(8) A symmetric matrix A is positive definite, respectively strictly positive definite,
if, and only if, all eigen-values are non-negative, respectively positive.

(9) A symmetric matrix B is positive definite if, and only if, A “ B1B for some
B PMn. Moreover, A P GLn if, and only if, B P GLn.

(10) A symmetric matrix A is positive definite if, and only if A “ B2 and B is positive

definite. We write B “ A
1
2 and call B the positive square root of A.

Exercise 15. If you are not familiar with the previous items, try the following exercise.
8



Consider the matrices

Rpθq “

„

cos θ ´ sin θ
sin θ cos θ



, θ P R .

Check that Rpθq˚Rpθq “ I, detRpθq “ 1, and Rpθ1qRpθ2q “ Rpθ1 ` θ2q. Compute the
matrix

Σpθq “ Rpθq

„

λ1 0
0 λ2



Rpθq˚ , λ1, λ2 ě 0 .

Chech that det Σpθq “ λ1λ2, Σpθq˚ “ Σpθq, the eigenvalues of Σpθq are λ1, λ2, and
ΣpθqRpθq “ Rpθq diag pλ1, λ2q. Compute

Apθq “ Rpθq

«

λ
1{2
1 0

0 λ
1{2
2

ff

Rpθq˚ , λ1, λ2 ě 0 .

Check that ApθqApθq˚ “ ApθqApθq “ Σpθq.

Exercise 16. Let A P Opnq and Z „ Nn p0, Iq. Check that AZ „ Nn p0, Iq. let
B P Mat pnˆ rq, r ă n, and assume that the columns are orthonormal. Check that
BZ Nr p0, Iq. [Hint: complete B to an orthogonal matrix by adding columns, rB|Cs P
Opnq and use the marginalization.]

Exercise 17. Let Z „ N1 p0, 1q, A “

„

1
1



P Mat p2ˆ 1q. Check that AZ has no density

with respect to the Lebesgue measure.

Exercise 18. Let Z „ N2 p0, Iq, A “
“

1 1
‰

P Mat p1ˆ 2q. Compute the density od AZ.

5. General Gaussian Distribution

Proposition 1.

(1) Definition Let Z „ Nn p0, Iq, A P Mat pmˆ nq, b P Rm, Σ “ AA˚. Then
Y “ b`AZ has a distribution that depends on Σ and b only. The distribution of
Y is called Gaussian with mean b and variance Σ, Nm pb,Σq.

(2) Statility If Y „ Nm pb,Σq, B P Mat pr ˆmq, c P Rr, then c`BY „ Nr pc`Bb,BΣB˚q.
(3) Existence Given any non-negative definite Σ P Sym`

pnq and any vector b P Rn,
the Gaussian distribution Nn pb,Σq exists.

(4) Density If Σ P Sym``
pnq e.g., Σ P Sym`

pnq and moreover det pΣq ‰ 0, then
the Gaussian distribution Nm pb,Σq, has a density with respect to the Lebesgue
measure on Rn given by given by

pY pyq “ p2πq
´m

2 det pΣq´
1
2 exp

ˆ

´
1

2
py ´ bqTΣ´1

py ´ bq

˙

.

(5) No density If the rank of Σ is r ă m, then the distribution of Nm pb,Σq is
supported by the image of Σ. In particular it has no density w.r.t. the Lebesgue
measure on Rn.

(6) Characteristic function Y „ Nm pb,Σq if, and only if, the characteristic func-
tion is

Rm
Q t ÞÑ exp

ˆ

´
1

2
t˚Σt` ib˚t

˙

Proof.
9



(1) Assume b1, b2 P Rm, Ai P Mat pmˆ niq, Yi “ bi`AiZi, Zi „ Nni
p0, Iq, i “ 1, 2. If

b1 ‰ b2 then the expected values of Y1 and Y2 are different, hence the distribution
is different. Assume b1 “ b2 “ b, and consider the distribution of Yi ´ b “ AiZi,

i “ 1, 2. We can write Ai “ SiΛ
1{2
i T ˚i , which in turn implies implies Σ “ SiΛS

˚
i ,

but Σ “ SΛS˚, hence S1 “ S2 “ S and Λ1 “ Λ2 “ Λ (a part the order).
We are reduced to the case Yi ´ b “ SΛT ˚i Zi, Ti P Mat pni ˆ rq with both with
orthonormal columns. The conclusion follows from T ˚1 Z1 „ T ˚2 Z2.

(2) Y „ Nm pb,Σq means Y “ b` AZ with Z Nn p0, Iq and AA˚ “ Σ. It follows

c`BY “ c`Bpb` AZq “ pc`Bbq ` pBAqZ ,

wth pBAqpBAq˚ “ BAA˚B˚ “ BΣB˚.
(3) Take Y “ b` Σ1{2Z, Z „ Nn p0, Iq.
(4) Use the change of variable formula in Y “ b` AZ with A “ Σ1{2 to get

pY pyq “
ˇ

ˇdet
`

A´1
˘ˇ

ˇ pZpA
´1
py ´ bqq .

The express each term with Σ.
(5) use the decomposition Σ “ SΛS˚ and note that some elements on the diagonal

of Λ are zero.
(6) The “if” part is a computation, the “only if” part requires the injection property

of characteristic function.

�

Exercise 19 (Linear interpolation of the Brownian motion). Let Zn, n “ 1, 2 . . . be IID
N1 p0, 1q. Given 0 ă σ ! 1, define recursively the times t0 “ 0 and tn`1 “ tn ` σ2.
Let T “ ttn|n “ 0, 1, . . .u. Define recursively Bp0q “ 0, Bptn`1q “ Bptnq ` σZn. As
Bptnq “

řn
i“1 σZi “ σ

řn
i“1 Zi, then Var pBptnqq “ σ2 Var p

řn
i“1 Ziq “ nσ2 “ tn. For each

t P Rą0zT , define Bptq by linear interpolation i.e.,

Bptq “
tn`1 ´ t

tn`1 ´ tn
Bptnq `

t´ tn
tn`1 ´ tn

Bptn`1q , t P rtn, tn`1s .

Compute the variance of Bptq and the density of Bptq.

6. Independence of Jointly Gaussian Random Variables

Proposition 2. Consider a partitioned Gaussian vector

Y “

„

Y1

Y2



„ Nn1`n2

ˆ„

b1

b2



,

„

Σ11 Σ12

Σ21 Σ22

˙

.

Let ri “ Rank pΣiiq, Σii “ SiΛiS
˚
i with Si P Mat pni ˆ riq, S˚i S “ Iri, and Λi P

diag`` priq, i “ 1, 2.

(1) The blocks Y1, Y2 are independent, Y1 KK Y2, if, and only if, Σ12 “ 0, hence
Σ21 “ Σ˚12 “ 0. More precisely, if, and only if, there exist two independent
standard Gaussian Zi „ Nri p0, Iq and matrices Ai P Mat pni ˆ riq, i “ 1, 2, such
that

„

Y1

Y2



„

„

A1 0
0 A1

 „

Z1

Z2



.

10



(2) (The following property is sometimes called Schur complement lemma.) Write
Σ`22 “ S2Λ´1

2 S˚2 . Then,
„

I ´Σ12Σ`22

0 I

 „

Σ11 Σ12

Σ21 Σ22

 „

I 0
´Σ`22Σ21 I



“

„

Σ11 ´ Σ12Σ`22Σ21 0
Σ21 Σ22

 „

I 0
´Σ`22Σ21 I



“

„

Σ11 ´ Σ12Σ`22Σ21 0
0 Σ22



,

hence the last matrix is non-negative definite. The Shur complement of the parti-
tioned covariance matrix Σ is

Σ1|2 “ Σ11 ´ Σ12Σ`22Σ21 P Sym`
pn1q .

(3) Assume det pΣq ‰ 0. Then both det
`

Σ1|2

˘

‰ 0 and det pΣq22 ‰ 0. If we define the
partitioned concentration to be

K “ Σ´1
“

„

K11 K12

K21 K22



,

then K11 “ Σ´1
1|2 and K´1

11 K12 “ ´Σ12Σ´1
22 .

Exercise 20. Let Σ P Sym`
pnq and let r “ Rank pΣq. We know that Σ “ SΛS˚ with

S P Mat pnˆ rq, S˚S “ Ir, λ P diag`` prq. Let us define Σ` “ SΛ´1S˚. Then it follows
by simple computation that Σ`Σ “ ΣΣ` “ SS˚. Also, ΣΣ`Σ “ Σ and Σ`ΣΣ` “ Σ`. If
Y „ Nn p0,Σq, then Y “ SS˚Y . In fact, Y ´ SS˚Y “ pI ´ SS˚qY is a Guassian random
variable with variance pI ´ SS˚qSΛS˚pI ´ SS˚q “ 0 because pI ´ SS˚qS “ S ´ SS˚S “
S ´ S “ 0.

Proof. (1) If the blocks are independent, they are uncorrelated. Conversely, if Σii “

SiΛiS
˚
i , i “ 1, 2, define Ai “ SiΛ

1{2
i to get

„

A1 0
0 A2

 „

A1 0
0 A2

˚

“ Σ .

(2) Computations using Ex. 20.
(3) From the computation above we see that the Schur complement is positive definite

and that

det

ˆ„

Σ11 Σ12

Σ21 Σ22

˙

“ det
`

Σ1|2

˘

det pΣ22q .

It follows that det pΣq ‰ 0 implies both det
`

Σ1|2

˘

‰ 0 and det pΣ22q ‰ 0. The
condition

„

K11 K12

K21 K22

 „

Σ11 Σ12

Σ21 Σ22



“

„

I 0
0 I



is equivalent to

I “K11Σ11 `K12Σ21

0 “K11Σ12 `K12Σ22

...

Right-multiply the second equation by Σ´1
22 and substitute in the first one, to get

K11Σ1|2 “ I, hence K´1
11 “ Σ1|2. The other equality follows by left-multiplying

the second equation by K´1
11 .

11
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Exercise 21 (Whitening). Let Y „ Nn pb,Σq. Assume Σ has rank r and decomposition
Σ “ SΛS˚, S˚S “ Ir, λ P diag`` prq. Then Z “ Λ´1{2S˚pY ´ bq ia a white noise,
Z „ Nr pO, Iq. Moreover, b` SΛ1{2Z “ Y . In fact,

Y ´ pb` SΛ1{2Zq “ pY ´ bq ´ SΛ1{2Λ´1{2S˚pY ´ bq “ pI ´ SS˚qpY ´ bq “ 0 .

Conditioning is one among the core concepts in reasoning about uncertainty in Proba-
bility, in Statistics, in Economics, in Machine Learning. See the textbook by D. Williams
[4, Ch. 9] and E. Çınlar [3, Ch. IV].

7. Conditional expectation

Exercise 22. Let X be a measurable function from pΩ,Fq to pS,Sq. Let G be the σ-
algebra generated by X i.e., G “ X´1S. Every G-measurable real random variable Y
is of the form Y “ f ˝ X, where f is a real random variablle on pS,Sq. [Hint: If Y
is simple, Y “

řn
j“1 yj1Bj

, with Bj P G, then Bj “ X´1pAjq, Aj P S. It follows that

Y “
řn
j“1 yj1X´1pAjq “

řn
j“1 yj1Aj

˝X, hence f “
řn
j“1 yj1Aj

. If X is non-negative, take

an increasing sequence of simple random variable . . . ]

Definition 1. Let pΩ,F , µq be a probability space, X a real random variable with finite

expectation, Eµ r|X|s ă `8, G a sub-σ-algebra of F . A random variable pX is a version
of the conditional expectation of X given G if, and only if,

(1) pX is integrable and G-measurable;
(2) for all bounded and G-measurable random variable it holds

Eµ
”

G pX
ı

“ Eµ rGXs .

The sub-µ in the notation is there to remember that the conditional expectation de-
pends on the probability. The conditions (1) and (2) in the definition provide actual
equations to compute the conditional expectation, as the following examples show.

Exercise 23 (Examples). (1) If G “ tH,Ωu, then Eµ pX|Gq “ Eµ rXs.
(2) If G “ F , then Eµ pX|Gq “ X.
(3) Let tA1, . . . , Anu be a measurable partition of Ω and let G “ σpA1, . . . , Anq.

Assume µpAjq ‰ 0, j “ 1, . . . , n. It holds

Eµ pX|Gq “
n
ÿ

j“1

ş

Aj
X dµ

µpAjq
1Aj

“

n
ÿ

j“1

Eµ pX|Ajq1Aj
.

Exercise 24. If X is a real random variable with a positive density p, let G be the σ-
algebra generated by |X|. That is, the absolute value only, not the sign, is observed.
In this case the conditional expectation of X given G “ σp|X|q, breafly, given |X|, is a

random variable of the form pX “ f̂p|X|q (condition (1)) such that E
´

pXG
¯

“ E pXGq
for all G “ gp|X|q, g bounded (condition (2)). As a density is given, we write the defining
equation

ż

f̂p|x|qgp|x|qppxq dx “

ż

xgp|x|qppxq dx .

[Hint: To compute f̂ , split
ş

“
ş0

´8
`
ş`8

0
and change the variable x Ñ ´x in the first

integral to get
ż `8

0

f̂p|x|qgp|x|qpppxq ` pp´xqq dx “

ż `8

0

gp|x|qpxppxq ´ xpp´xqq dx ,

12



hence

f̂p|x|qpppxq ` pp´xqq “ xppxq ´ xpp´xq .

Finally, notice that xppxq´xpp´xq
ppxq`pp´xq

is symmetric.]

Exercise 25. Let S1, S2 be independent and exponential with mean 1. The joint density
is pS1,S2px1, x2q “ e´px1`x2qpx1, x2 ą 0q. We want to compute the conditional expectation

of S1 given S1 ` S2. We need to find f̂ such that for all bounded g we have

8
ĳ

0

f̂px1 ` x2qgpx1 ` x2qe
´px1`x2q dx1dx2 “

8
ĳ

0

x1gpx1 ` x2qe
´px1`x2q dx1dx2 .

[Hint. Let us make the transformation y “ x1 ` x2, z “ x1. The inverse transformation
is x1 “ z, x2 “ y ´ z with determinant ´1. We have

px1, x2 ą 0q “ pz ą 0qpy ´ z ą 0q “ p0 ă z ă yq

then the equation becomes
ĳ

t0ăzăyu

f̂pyqgpyqe´y dydz “

ĳ

t0ăzăyu

zgpyqe´y dzdy .

Computing the dz integrals on both sides we get
ż 8

0

f̂pyqgpyqye´y dy “

ż 8

0

gpyq
y2

2
e´y dy ,

hence f̂pyq “ y
2
.]

Exercise 26. Let Z “ pZ1, Z2q „ N2 p0, Iq and define X “ Z1, Y “ Z1 ` Z2, G “ σpY q.

To compute a version of E pX|Gq we look for a function f̂ such that f̂pY q satisfies

E pXgpY qq “ E
´

f̂pY qgpY q
¯

for all bounded g .

[Hint: As
„

X
Y



“

„

Z1

Z1 ` Z2



“

„

1 0
1 1

 „

Z1

Z2



we have pX, Y q „ N2

ˆ

0,

„

1 1
1 2

˙

and Y „ N1 p0, 2q. We have det

ˆ„

1 1
1 2

˙

“ 1 and
„

1 1
1 2

´1

“

„

2 ´1
´1 1



so that the density of pX, Y q

pX,Y px, yq “ p2πq
´1 exp

ˆ

´
1

2
p2x2

´ 2xy ` y2
q

˙

.

We want
ĳ

xgpyq p2πq´1 exp

ˆ

´
1

2
p2x2

´ 2xy ` y2
q

˙

dx dy “

ż

f̂pyqgpyq p2π ¨ 2q´1{2 exp

ˆ

´
1

2 ¨ 2
y2

˙

dy

13



Let us perform first the dx integration in the RHS:
ż

x exp

ˆ

´
1

2
p2x2

´ 2xy ` y2
q

˙

dx “

ż

x exp

ˆ

´

ˆ

x2
´ xy `

1

2
y2

˙˙

dx “

ż

x exp

˜

´

ˆ

x´
1

2
y

˙2

´
1

4
y2

¸

dx “

exp

ˆ

´
1

4
y2

˙
ż

π1{2x π´1{2 exp

˜

´

ˆ

x´
1

2
y

˙2
¸

dx “

π1{2

2
y exp

ˆ

´
1

4
y2

˙

.

The defining equality becomes
ż

gpyq p2πq´1π
1{2

2
y exp

ˆ

´
1

4
y2

˙

dy “

ż

fpyqgpyq p2π ¨ 2q´1{2 exp

ˆ

´
1

2 ¨ 2
y2

˙

dy

so that, g being generic, f̂pyq “ y{2. (We are going to see below a simpler and more
principled way to do this computation.)]

8. As the equation Eµ
”

Gp pX ´Xq
ı

“ 0, G P L8pGq, is linear in G and continuous under

bounded pointwise convergence, it is enough to check it for random variables of the for
1C , C P C, C π-system generating G. [Monotone-Class Theorem [4, ¶3.14].]

9 (Almost sure equivalence). If pX1, pX2, are two versions of the conditional expectation of

X, then Eµ
”

Gp pX1 ´ pX2q

ı

“ 0 i.e. pX1 “ pX2 µ-almost-surely. [Take G “ sign
´

pX1 ´ pX2

¯

to get Eµ
”
ˇ

ˇ

ˇ

pX1 ´ pX2

ˇ

ˇ

ˇ

ı

“ 0.] More generally, if X1 “ X2 µ-almost-surely, then pX1 “ pX2

µ-almost-surely. We write Eµ pX|Gq to denote the µ-class of versions and, with abuse

of notation, pX “ Eµ pX|Gq. If L1pF , µq is the vector space of classes µ-equivalent real
random variables, there exists a mapping

L1
pF , µq Q X ÞÑ Eµ pX|Gq P L1

pG, µq .

10 (Existence). The fact that the previous mapping is actually defined on all of L1pF , µq,
is discussed in [4, ¶9.5]. We skip this discussion, together with a related issue namely,
the notion of µ-complete σ-algebra. Many proofs of existence are actually available, ei-
ther based on some result of Functional Analysis (existence of orthogonal projection), or
based on results from advanced Measure Theory such as the Radon-Nikodým Theorem
(see below). Here, we are mainly focused on either computing a version of the conditional
expectation of a given random variable, or checking that a random variable is a version
of the conditional expectation of some random variable. We have defined the conditional
expectation for integrable random variables. It is possible to define the conditional ex-
pectation for positive random variables, see the comments below about properties of the
conditional expectation.

11 (Properties of the conditional expectation). All random variables are defined on the
probability space pΩ,F , µq and G is a sub-σ-algebra of F

(1) Normalization. Eµ p1|Gq “ 1.

(2) G-Linearity. If Eµ pX|Gq “ pX and Eµ pY |Gq “ pY , then Eµ pAX `BY |Gq “
A pX `BpY µ-almost-surely if A,B P L8pGq.
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(3) Positivity. If X ě 0 and Eµ pX|Gq “ pX, then pX ě 0. Linearity and positiv-
ity together imply monotonicity. [Hint: take G “ 1t pXď0u in the characteristic

property]
(4) Normalization, linearity and monotonicity together imply Jensen inequality. As-

sume Φ: RÑ R and assume both X and ΦpXq are integrable. Let x ÞÑ a` bx ď

Φpxq. Then a ` bEµ pX|Gq ď Eµ pΦpXq|Gq. Chose a version pX “ Eµ pX|Gq Be-
cause of the convexity, for each ω P Ω, there exists coefficients apωq, bpωq such that

apωq ` bpωq pXpωq “ Φp pXpωqq. We have shown that ΦpEµ pX|Gqq ď Eµ pΦpXq|Gq.
In particular, Eµ p|X||Gqα ď Eµ p|X|

α
|Gq if α ě 1.

(5) Monotone convergence. If 0 ď Xn Ò X and pXn “ Eµ pXn|Gq, n P N, then random

variable pX defined by pXn Ò pX is such that Eµ
”

G pX
ı

“ Eµ rGXs if 0 ď G P L8pGq.
It follows immediatly from the monotone convergence for the expectation [Notice
that here we are assuming each Xn to be ’integrable so that the conditional
expectation is defined. This is not necessary if we define conditional expectation
for non-negative random variable as it was for che expectation. We do not consider
this generalization in this notes.] If moreover X happens to be integrable, then
pX “ Eµ pX|Gq.

(6) Fatou lemma. If 0 ď Xn and pXn “ Eµ pXn|Gq, n P N, then ^měnXm ď Xm if m ě

n, so that Eµ p^měnXm|Gq ď ^měn Eµ pXm|Gq. From the monotone convergence it
follows Eµ rGplim infnÑ8Xnqs ď Eµ rGplim infnÑ8 Eµ pXn|Gqqs if G P L8pGq and
G ě 0. If lim infnÑ8Xn is integrable, then we can write Eµ plim infnÑ8Xn|Gq ď
lim infnÑ8 Eµ pXn|Gq.

(7) Dominated convergence. If in the Fatou lemma we assume that the sequence
pXnqnPN is dominated by the integrable random variable Y , by considering the
non-negative sequence pY ´XnqnPN we can obtain the inequality

Eµ

´

lim inf
nÑ8

Xn

ˇ

ˇ

ˇ
G
¯

ď lim inf
nÑ8

Eµ pXn|Gq ď lim sup
nÑ8

Eµ pXn|Gq ď Eµ

ˆ

lim sup
nÑ8

Xn

ˇ

ˇ

ˇ

ˇ

G
˙

.

If the sequence is convergent, then lim infnÑ8Xn “ limnÑ8Xn “ lim supnÑ8Xn

hence lim infnÑ8 Eµ pXn|Gq “ lim supnÑ8 Eµ pXn|Gq and the sequence of condi-
tional expectations is convergent to the expectation of the limit. The condition of
positivity can be dropped by decomposing the positive and negative part of the
sequence and the limit.

12 (Image of a density). On the measurable space pΩ,Fq, consider the probability mea-
sure µ and the probability density p. If Φ is measurable from pΩ,Fq to pS,Sq, consider the
image of the probability measure p ¨µ under Φ. The image ν “ Φ#pp ¨µq is characterized
by

ż

S

gpyq νpdyq “

ż

Ω

g ˝ Φpxq ppxqµpdxq, g P L8pS,Sq .

Now, g ˝ Φ is the generic bounded σpΦq-measurable random variable, then
ż

Ω

g ˝ Φpxq ppxqµpdxq “

ż

Ω

g ˝ Φpxq pp ˝ Φpxqµpdxq ,

where pp ˝ Φ is a version of the µ-conditional-expectation of p given σpΦq. Now apply
again the definition of image to the RHS to get

ż

S

gpyq Φ#pp ¨ µqpdyq “

ż

S

gpyqpppyqΦ#pµqpdyq .

15



We have found the density of the image measure.

13 (Projection property). Let H be a sub-σ-field of G. It is easy to check that

Eµ pEµ pX|Gq|Hq “ Eµ pX|Hq .

In particular, the conditional expectation operator X ÞÑ Eµ pX|Fq is a projection opera-
tor on L1pF , µq. In terms of Functional Analysis, one could say that it is the transposed
operator of the injection operator L8pGq Ñ L8pFq.

14 (Orthogonal projection). The conditioning operator is an orthogonal projection. As-

sume Y in L2pΩ,F , µq that is, E pY 2q ă 8. If pY “ E pY |Gq, then pY P L2pΩ,G, µq
and

E
´

pY ´ pY qZ
¯

“ 0 , z P L2
pΩ,G, µq .

This property should not be confused with linear regression. Let be given Y P L2 and
letX1, . . . , Xm P L

2 be explanatory variables. We want a vector θ “ pθ0, θ1, . . . , θdq P Rd`1

such that

quadratic error “ E

¨

˝

˜

Y ´ θ0 ´

d
ÿ

j“1

θjXj

¸2
˛

‚

be minimum. As a function of θ the quadratic error is a convex function then the
minimum is obtained by imposing the gradient to be zero.

Exercise 27. Check all detail of the previous paragraph.

15 (Conditional expectation of a real function of a r.v.). Let pS,Sq be a measurable
space, Y : Ω Ñ S a measurable mapping, and Y “ σpY q “ Y ´1pSq. A real random
variable is Y-measurable if, and only if, it is of the form φ ˝ Y , where φ is a real random
variable on pS,Sq. In this situation, the definition of conditional expectaion is rephrased
as follows. A version of the conditional expectation of X given σpY q is a µ-integrable real

random variable of the form pφµ,X ˝ Y such that for all bounded measurable φ : S Ñ R
it holds Eµ

”

φpY qpφµ,XpY q
ı

“ Eµ rφpY qXs. Notice that we could write this in terms

of the joint distribution of the random variables X and Y as
ş

φpyqpφµ,Xpyq µY pdyq “
ş

φpyqx µX,Y pdxdyq. An imprecise, but widely used, notation is φµ,Xpyq “ Eµ pX|Y “ yq,
which is called the expected value of X, given Y “ y.

16 (Special cases). (1) If XKKY then Eµ pX|σpY qq “ Eµ rXs. in fact,
ż

φpyqx µX,Y pdxdyq “

ż

φpyq

ˆ
ż

x µXpdxq

˙

µY pdyq .

(2) If XKKY then Eµ pfpX, Y q|σpY qq “
ş

fpx, Y q µXpdxq. In this case we have
ż

φpyqfpx, yq µX b µY pdxdyq “

ż

φpyq

ˆ
ż

fpx, yq µXpdxq

˙

µY pdyq .

(3) Let X, Y , be random variables in Rm such that pX ´ Y qKKY . Then

Eµ pfpY q|σpY qq “ Eµ pfppX ´ Y q ` Y q|σpY qq “

ż

fps, Y q µpX´Y qpdsq .

Cf. the Gaussian case below.
16



(4) If µX,Y pdx, dyq “ pX,Y ¨ νX b νY , then µY “
`ş

ppx, yq νXpdxq
˘

¨ νY pdyq and the
characteristic equality becomes

ż

φpyqφXpyq

ˆ
ż

ppx, yq νXpdxq

˙

¨ νY pdyq “

ż

φpyq

ˆ
ż

x pX,Y νXpdxq

˙

νY pdyq ,

hence we can take

pφXpyq “

ż

x pX|Y px|yq νXpdxq, pX|Y px|yq “
pX,Y px, yq

pXpxq
.

8. Conditional distribution

17 (Transition probability measure). Given a product measurable space pΩ1ˆΩ2,F1bF2q

a transition is a mapping µ1|2 : F1 ˆ Ω2 such that

(1) for each x2 P Ω2 tha mapping F1 Q A1 ÞÑ µ1|2pA1|x2q is a probability measure on
pΩ1,F1q and

(2) for each A1 P F1 the mapping Ω2 Q x2 ÞÑ µ1|2pA1|x2q is F2-measurable.

18 (Integration of probability measures). Given a transition µ1|2 on pΩ1 ˆ Ω2,F1 b F2q

and a probability measure µ2 on pΩ2,F2q, there exists a unique probability measure
µ “

ş

µ1|2 dµ2 on the product measurable space such that for each positive or µ-integrable
function f : Ω2 ˆ Ω2 Q px1, x2q ÞÑ fpx1, x2q it holds

ż

f dµ “

ż
ˆ
ż

fpx1, x2q µ1|2pdx1|x2q

˙

µ2pdx2q .

The measure µ is characterised on functions of the form fpx1, x2q “ f1px1qf2px2q by
ż

f1f2 dµ “

ż
ˆ
ż

f1px1q µ1|2pdx1|x2q

˙

f2px2q µ2pdx2q .

[The proof is a simple variation of the argument for Fubini theorem.]

19 (Transition densities). A simple case occurs when the transition has the form

µ1|2pA1|x2q “

ż

A1

p1|2px1|x2q ν1pdxq, A1 P F1, x2 P Ω2

where px1, x2q ÞÑ p1|2px1|x2q is measurable on the product space pΩ1,Ω2,F1 b F2q and
x1 ÞÑ p1|2px!|x2q is a ν1-probability density for each x2 P Ω2. In such a case,
ż
ˆ
ż

f1px1q µ1|2pdx1|x2q

˙

f2px2q µ2pdx2q “

ż
ˆ
ż

f1px1qp1|2px1|x2qν1pdx1q

˙

f2px2q µ2pdx2q “

ĳ

f1px1qf2px2qp1|2px1|x2q ν1pdx1qµ2pdx2q ,

that is, µ “ p1|2 ¨ν1bµ2. If moreover the second measure has itself a density, µ2 “ p2 ¨ν2,
then µ “ pp1|2 b p2q ¨ ν1 b ν2

Exercise 28 (Examples).

(1) Let X be a real random variable with positive density p. The conditional distri-
bution of X given |X| is

(2) Let T1, T2 be independent and Expp1q. Then the distribution of T1 given T1`T2 “

t is uniform on s0, tr.
17



(3) If pY1, Y2q „ Nn1`n2 p0,Σq, det Σ ‰ 0, find the conditional distribution of Y1 given
Y2.

(4) If Y1, Y2 are independent and N1 p0, 1q, find the distribution of pY1, Y2q given Y 2
1 `

Y 2
2 .

20 (Regular version of the conditional expectation). With the notations above, denoting

with X1, X2 the coordinate projection, the random variable pfpX2q “
ş

fpx1, X2q µ1|2pdx1|X2q

is a version of the conditional expectation Eµ pfpX1, X2q|σpX2qq, namely a regular ver-
sion. In fact,

Eµ rfpX1, X2qgpX2qs “

ż
ˆ
ż

fpx1, x2q µ1|2pdx1|x2q

˙

gpx2q µ2pdx2q “ Eµ
”

pfpX2qgpX2q

ı

.

9. Conditioning of jointly Gaussian vectors

Exercise 29. Recall that for each Σ P Sym`
pnq there exists an orthogonal U P Opnq

and a non-negative diagonal Λ “ diag pλ1, . . . , λnq such that Σ “ UΛU˚. By discarding
the zero eigen-values, we can write Σ “ SDS˚ with S P Mat pnˆ rq, S˚S “ Ir, and D
positive diagonal, where r is the rank of Σ. If D “ diag pλ1, . . . , λrq, we define D´1 “

diag
`

λ´1
1 , . . . , λ´1

r

˘

and Σ` “ SD´1S˚. It follows that

Σ`Σ “ SD´1S˚SDS˚ “ SS˚ and ΣΣ˚ “ SDS˚SD´1S˚ “ SS˚ .

We have Π “ SS˚ P Sym`
pnq and Π2 “ Π. The matrix Π is the orthogonal projector

onto the image of Σ. In fact, for all x P Rn,

Πx “ SS˚x “ SDS˚SD´1S˚x “ ΣSD´1S˚x .

Moreover, for each x, y P Rn

px´ Πxq ¨ pΣyq “

px´ Πxq˚pΣyq “ rpI ´ SS˚qxs˚pSDS˚yq “ x˚pI ´ SS˚qSDS˚y “

x˚pSDS˚ ´ SS˚SDS˚q “ 0

Proposition 3.

(1) The Gaussian random vector with components

rY1 “ Y1 ´ pb1 ` L12pY2 ´ b2qq , L12 “ Σ12Σ`22

rY2 “ Y2 ´ b2

is such that E
´

rY1

¯

“ 0, Var
´

rY1

¯

“ Σ11 ´ Σ12Σ`22Σ21, and rY1 KK rY2. It follows

E pY1|Y2q “ b1 ` L12pY2 ´ b2q

(2) The conditional distribution of Y1 given Y2 “ y2 is Gaussian with

Y1|pY2 “ y2q „ Nn1 pb1 ` L12py2 ´ b2q,Σ11 ´ L12Σ21q

(3) The conditional density of Y1 given Y2 “ y2 in terms of the partitioned concentra-
tion is

pY1|Y2py1|y2q “ p2πq
´

n1
2 det

`

K1|2

˘
1
2 ˆ

exp

ˆ

´
1

2
py1 ´ b1 ´K

´1
11 K12py2 ´ b2qq

TK11py1 ´ b1 ´K
´1
11 K12py2 ´ b2qq

˙

18



Proof. (1) We have
„

rY1

rY2



“

„

I ´Σ12Σ`22

0 I

 „

Y1 ´ b1

Y2 ´ b2



„ Nn1`n2

ˆ

0,

„

Σ1|2 0
0 Σ22

˙

It follows

E pY1|Y2q “ E
´

rY1 ` b1 ` L12pY2 ´ b2q

ˇ

ˇ

ˇ
Y2

¯

“ E
´

rY1

¯

` b1 ` L12pY2 ´ b2q

(2) The conditional distribution of Y1 given Y2 is a transition probability µY1|Y2 : BpRn1qˆ

Rn2 such that for all bounded f : Rn1

E pfpY1q|Y2q “

ż

fpy1q µY1|Y2pdy1|Y2q.

We have

E pfpY1q|Y2q “ E
´

fprY1 ` E pY1|Y2qq

ˇ

ˇ

ˇ
Y2

¯

“

ż

fpx` E pY1|Y2qq γpdx; 0,Σ1|2q

where γpdx; 0,Σ1|2q is the measure of Nn1

`

0,Σ1|2

˘

. We obtain the statement by

considering the effect on the distribution Nn1

`

0,Σ1|2

˘

of the translation x ÞÑ
x` pb1 ` L12py2 ´ b2qq.

(3) A further application of the Schur complement gives
„

Σ11 Σ12

Σ21 Σ22



“

„

I Σ12Σ´1
22

0 I

 „

Σ1|2 0
0 Σ22

 „

I 0
Σ´1

22 Σ21 I



whose inverse is
„

K11 K12

K21 K22



“

„

I 0
´Σ´1

22 Σ21 I

 „

Σ´1
1|2 0

0 Σ´1
22

 „

I ´Σ12Σ´1
22

0 I



“

„

Σ´1
1|2 0

´Σ´1
22 Σ21Σ´1

1|2 Σ´1
22

 „

I ´Σ12Σ´1
22

0 I



“

„

Σ´1
1|2 ´Σ´1

1|2Σ12Σ´1
22

´Σ´1
22 Σ21Σ´1

1|2 Σ´1
22 Σ21Σ´1

1|2Σ12Σ´1
22 ` Σ´1

22



In particular, we have K11 “ Σ´1
1|2 and K´1

11 K12 “ ´Σ12Σ´1
22 , hence

Y1|pY2 “ y2q „ Nn1

`

b1 ´K
´1K12py2 ´ b2q, K

´1
11

˘

so that the exponent of the Gaussian density has the factor

py1 ´ b1 `K
´1
11 K12py2 ´ b2qq

TK11py1 ´ b1 `K
´1
11 K12py2 ´ b2qq

�
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