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The present handout covers generalities on independence and conditioning, Central
Limit Theorem (IID case), multivariate Gaussian distributions and the relevant matrix
theory. A classical reference on Gaussian random variables is [1] (many reprints available).
A modern advanced reference for positive definite matrices is [2].

1. INTRODUCTION

FEzercise 1 (Gaussian distribution). The standard Gaussian distribution is the probability
measure v with density f,(z) = (27) "2e~*"/2. We have F,(z) = (27) 2" e "2 du
with no closed form expression.
(1) Check that f, is indeed a density.
(2) Compute the moments v,, = (2" v(dx), n € N. [Use py( ) = —xp,(x).]
(3) Compute the moment generating function M, (t) = (e v(dz). Check that
MEP(0) = v,.
(4) Compute the characteristic function ®,(t) = {eV=1" v(dx).
(5) Compute the first two derivatives of the cumulant generating function k,(t) =
log M, (t).
(6) Compute the density of X = aZ + b with a,b € R and Z ~ p,. These are the
general Gaussian random variables.
(7) Compute the density of Z + b with respect to the distribution of Z.
(8) Compute 67 such that

f ¢ (@)(x)(dz) = qu(x)éw(x) v(dx)
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for all ¢, 1) € C! such that the integrals are well defined.
(9) Compute H,, = "1, n e N.

See recap on product measures and independence the slides Probability 2019: measure
Theory or any textbook.

FEzercise 2 (Independent Gaussian random variables). (1) Show that the Lebesgue mea-
sure on |0, 1[? is the product measasure of two Lebesgue measure on 0, 1[.
(2) Use the previous remark to construct two independent Gaussian random variables.
(3) If Y1,Y; are independent standard Gaussian random variables, compute the dis-
tribution of Y = (Y; + Y3)/v/2.
(4) If Y1,Y5,Ys are independent standard Gaussian random variables, compute the
distribution of Y = Y] + Y, + Y.

2. CENTRAL LIMIT THEOREM

The Central Limit Theorem CLT is a weak convergence result about the distribution
of standardized sums of independent random variables. It is usually stated assuming
the existence of an infinite sequence of Independent Identically Distributed IID random
variables.

There are many possible statement with variate assumptions. Possibly, the simplest
statement is the following: Let (X, )nen be an IID sequence such that E(X;) = 0 and

E(X?) = 1. The sequence (%) converges weakly to the standard Gaussian
neN
distribution i.e., for all ¢ € C

s () - foor e

Ezercise 3 (Proof of the CLT). (1) Show that C2(R) separates points.
(2) If ¢ € C2, then the first Taylor approximation is

oy) — o) — & (2)(y — o) = f WO - 1) dt

so that
R(z,) = 6(y) — 0(x) — 9 () — ) ~ 3¢/ ()(y — 2)? =
[[w-owo - .

T

We have the bound
1
Bz, y)l < 5 |¢" — ¢"(2)], (y — 2)* = Ci ly — = .

The second Taylor approximation is

Rla.y) = 6ly) — 6(a) ~ $@)y — ) — 3@y -2 = 5 | "0y - 02 at

and we have the bound
1
|R(z,y)| < 3l 16", ly — 2’ = Caly — af .

Putting together the two bounds, |R(z,y)| < CL(y — z) with C = C; v C and
L(z) = |2 A I2["
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(3) From the previous computations,

Oy +2) = oz +2) = (dy +2) —d(2)) — Bz + 2) — ¢(2)) =

(cb'(z)y + %(I)”( )y* + R(z,y + = ) (¢’ q>” 2)2® + R(z,y + x)) _
)

Sy ) + 50" (N~ 7)) + (R(zy +2) — R(r,a +2)) |

and |R(z,y + z) — R(z,z + 2)| < C(L(x) + L(y)).

(4) For each n e N let Zy,...,Z, be a independent standard Gaussian random vari-

ables and assume Xy,..., X, Z1,..., Z, are independent. Write
5 Xi+-+ X, 4 Zyv+ -+ Zy\
Vn Vn -
X1+ + X, 21+ Xe -+ X,
() e ()

¢(Zl+X2+---+Xn)_¢(Zl+Zz+X3---+Xn)+m

NG

(5) A typical term has expected value bounded as follows:

oo BB ) o k)

NG

(e () () -em (e () ()

The sum is bounded by

en(s ()1 (2) -

0E<X1 xP |z |4

2 Xl
/\ —
N

Z [
\F

Zy
ﬁ

).

N I e B N I
which converges to zero by dominated convergence.

(6) The convergence holds for all ¢ € C2. Show that it holds for all ¢ € C},.

3. STANDARD GAUSSIAN DISTRIBUTION

)

X Z
):CE<|X1|2 ‘\}' +1Z4) A ‘\/1%

3.1. Recap: Determinant and area. Let A = [a; - - a,] be a n xn generic real matrix
identified with the n-tuple of its columns. Consider a mapping A: [a; - - - a,,| — AA which

is
(1) multi-linear,
(2) alternating (if two columns are equal then the value is zero),
(3) normalized (Al = 1).

The first and second condition imply for example

0= Af(a1 +as) (a1 +az) -] =
Alay ay---]+Alay ag--- ]+ Alag ay -] + Alag ag--- | =

A[a1 CLQ"']"FA[(IQ ay -

]



that is, the exchange of two columns changes the sign of A. Conversely, this property
inplies the nullity if equal columns.

The operator A is characterized by the three conditions above as it is shown by rep-
resenting each column is the standard basis and AA = det(A). A matrix such that
det (A) = 0 is said to be singular.

Let A, B be non-singular matrices. consider the mapping

[by -+ ba] — (det (A)) " det (A[by - - - by]) =— (det (A))™" det ([Ab, - - - Ab,])

All conditions above are verified hence det (AB) = det (A) det (B). In particular, det (A™!) =
(det (A))~

Gauss-Jordan elimination An elementary matrix is a permutation matrix or, a matrix of the
form [ae; ex---e,], a # 0, or the matrix [(e; + e2) ex---e,]. Every matrixz is the product of
elementary matriz. In fact, every matrix can be reduced to the diagonal form [e; - - e 0] by
left and right multiplication by elementary matrices. k is the rank of the matrix.

Linear change-of-variables Let T: R™ — R"™ be linear and invertible. For each Borel set A the
set T~1(A) is Borel and the image measure of the Lebesgue measure m is A — m(T~1(A)) =
Tum(A), so that { g(y) Tum(dz) = §g(T(x)) dz. Let us show that Txm is translation invariant.

In fact

Tym(A+y) =m(T (A +y) =m(T™H(A) + T~ ly) = m(T~(A)) = Tpm(A) .

It follows that Tum is proportional to m, m(T~*(A))ocm(A).
Let us show that the proportionality constant is |det (T) |7, that is,

f 9(T(x)) dz = |det (T)| ! f o(y) dy .

Let us write the proportionality constant A(T). Note that m((ST)™1(4)) = m(T~1S71(4)) =
A(T)ym(S (A )) A(T)A(S)m(A) that is, A(ST) = A(T)A(S). If T' is a permutation matrix,
then A(T) = 1 = |det (T)|™Y; If T = [aey---ey], then A(T) = |a|7! = |det (T) |7} If
T = [(e1 + e2) ez - - - e,] the same result follows. As all matrices are a product of such matrices,
the result is proved.

3.2. Change of variable formula in R?. Let A, B = R? be open and ¢ be a diffeomer-
phism from A onto B. Let J¢: A — Mat (d x d) be the Jacobian mapping of ¢ and

Jo¢~t: B — Mat (d x d) the Jacobian mapping of ¢!, so that J¢~1 = (Jpo ¢*1)_1
each non-negative f: B — R",

Lf(y) dy = Lf o 3(x) |det (Jo(@))| de

Ezercise 4. A =]0,2r[x]0, +o[, B = R2 = R*\ {(z,y) e R?|z > 0,y = 0}, ¢(0,p) =
(pcosB, psinf).

—psinf cosd
pcosf sinf

Jf (2®+y?)/2 dl’dy _ JJ —(p? cos? 0+p? sin? 0) /2 P d@dp _
10,2

[ %x]0,+00[
ff ep/dede—QW

10,27[x]0,4+00[

Jo(0,p) = , det (Jo(0,p)) = —p
| 1



1. (Image of an absolutely continous measure)Let (S, F, u) be measure space, p: S — R
a probability density, (X, G) a measurable space, ¢: S — X a measurable function. If ¢
has a measurable inverse, then the image measure is characterised by

[ 7 dosto-) = [Foowau= [(Fooiwes o) du= [ fpoo dogn
hence ¢u(p-p) = (pod') - u. Eq. (3.2) applied to f o ¢ and the diffeomorphism ¢!
gives

f £ d(ul) = J f o dl@) de = J fodod(y) |det (Jo~\(y))| dy =
B A B
Lf(y) det (Jo(3)]| dy = Lf(y) det (Jgo 6 ()| dy

This shows that the image of the Lebesgue measure ¢ under a diffeomorphism is
ol = |det (Jo1)|- € = |det (Jpo o V)| -4
Exercise 5. A =]0,1[x]0,1[, B = R, ¢(u,v) = (v/—2logu cos(27v), v/—2log u sin(27v)),
1 2
——(—2logu)~Y2= cos(2mv) —2m/—2logusin(27v)

To(uwv) = | 1 4 ,
—5(—210gu)_1/2asin(27w) 27+/—2log u cos(27v)

2 2
det (Jo(u,v)) = —5, det (J¢o ¢—1(:17,y)) = e(:nT7;2)/2 :

The image of the uniform probability measure on ]0, 1[? under ¢ is (27) ‘e~ *+¥°)/2 dady.

2 (Marginalization). The previous argument does not apply when ® is not 1-to-1. We
will show in the chapter on conditioning that in such a case

Dyu(p-p) =p- Pun)
where p is the conditional expectation of p with respect to ®.

However, there are two common and simple cases namely, the finite state space case
and the marginalisation. Assume g = py ® o on S = S; x S5 and consider the marginal
projection ®: (z1,x9) — x1. Then ®71(A;) = A; x Sy and pu(®71(Ay)) = u(A; x Sy) =
p1(Ay) hence, @4 (1) = . Let p be a density on S with respect to p. For each positive
f: 51 we have

Jf dPy(p-p) = ff odd(p-p) = Jff(xl)p(ﬂihffz) p(dxy, dzy) =
[ 7 (fpm,xz) u2<dx2>) ()

so that
(I)#(p “p) = pi(en) g, pi(x) = Jp(xhlb) pa(da)
For example, if p(zy, x5) = (2m) te~@+73)/2 then

fp(xl,xg) dzy = (2m)2e*1/2 J(27T)_1/2e_x§/2 dzy = c(27) 2"/

with ¢ = 5(27?)*1/25“5/2 dry = 1 as the further integration with respect to dz; shows.

Notice that the argument applies to all p(x1,xs) = cf (x1) f(x2).
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3. The real random variable Z is standard Gaussian, Z ~ Ny (0, 1), if its distribution v
has density

R 5 2 o () — (27)5 exp (-%ZQ)

with respect to the Lebesgue measure. It is in fact a density, see above the computation
of its two-fold product.

Ezercise 6. All moments pu(n) = {2"y(z) dz exists. As zy(z) = —9/(z), integration
by parts produces a recurrent relation for the moments. [Hint: Write §2"v(z) dz =
§ 2" 12y(2) dz = {271 (—+/(2)) dz and perform an integration by parts]

Exercise 7 If f:R—->R absolutely continuous ie., f(z) = f(0) + § f'(u) du, with
§1f"(u)]v(u) du < 40 then §|zf(2)|v(z) dz < +c0. In fact,

2 (f(0+ f f(u) du) ol
) [1el2(c) d= +

The first term in the RHS equals 4/2/7 | f(0)|, while in the second term we have for z > 0,

<f<o<u<z>|f’<u>| du |
We have

ZJOZ f'(u) du|v(z) dz < J]z| (J(O <u<2)|f (u)] du) v(z) dz =

[ [" e @ du = 15100 [ ") dz au =

j ()] y(2s) du < o0

f ()| 7(2) dz = () d- <

"(u) du|y(z) dz

"(u) du

A similar argument applies to the case z < 0. This implies

f ) dz = Jf ) dz = Jf
Ezercise 8. The Stein operator is 6 f(z) = zf(z) — f'(z). We have
| ragen (@) ds = [ar@ten e

We define the Hermite polynomials to be H,(z) = §"1. For example, H,(z) = z, Ha(z) =
2% — 1, H3(z) = 2* — 32. Hermite polynomials are orthogonal with respect to 7,

JH v(z)dz=0 ifn>m.

4. Let Z ~N1(0,1),Y =b+aZ,a,beR. Then E(X) = b, E(X?) = a®+ % Var (X) =
a’. If a # 0, then ¢(z) = b + az is a diffeomorphism with inverse ¢~ '(x) = a~!(z — b),
hence the density of X is

o= ) ol = (2o (550 - 07

6



If a = 0 then the distribution of X = b is the Dirac measure at b. We say that X is
Gaussian with mean b and variance a?, X ~ Ny (b, a?). Viceversa, if X ~ N (i, 0?) and
02 # 1, then Z = o7 1(X — pu) ~ Ny (0,1).

5. The characteristic function of a probability measure p is

At) — f & p(dx) = fcos(tx) u(dz) + i f sin(tz) p(de), i—v—1

If two probability measure have the same characteristic function, then they are equal.

Exercise 9. For the standard Gaussian probability measure we have

2

A(t) = Jcos(tz) v(2)dz = e T .

In fact, by derivation under the integral

d .

%v(t) =— stin(tz) v(2)dz = Jsin(tz)’y/(z) dz = —ty(t)

and 7(0) = 1. The characteristic function of X ~ Ny (u, 0?) is
E (¢'X) = E (eit(u+aZ)) _ ot (ei(at)z> _ otutiot?

Ezxercise 10. The characteristic function fi of the probability measure p on R is non-
negative definite. Take t1,...,t, in R with n = 1,2,.... The matrix

T = [t = )y = | e )|

is Hermitian, that is the transposed matrix is equal to the conjugate matrix equivalently,
T is equal to its adjoint T*. An Hermitian matrix 7' is non-negative definite if for all
complex vector ¢ € C" it holds ¢*7'¢ > 0. In our case

¢* U /1) ] ZJ% p(dz) =

2.J=1

n

1,j=1

u(dz) =0 .

§:<iztx

Exercise 11. let X ~ Ny (b,0%) and f: R — R continuous and bounded. Show that
lim,—o B (F(X)) = /().

Ezercise 12. Let X be a real random variable with density p with respect to the Lebesgue
measure, and let Z ~ Ny (0,1). Assume X and Z are independent i.e., the joint random
variable (X, Z) has density p®-~ with respect to the Lebesgue measure of 2. Compute the
density of X + Z. [Hint: make a change of variable (z, z) — (z + z, z) then marginalize.|

JCZ it; xg ezt T da:
i.j=1

6. The product of absolutely continuous probability measures is

(p1 - 11) ® (p2 - p12) = (p1 @ p2) - p1 ® pig
The Re-valued random variable Z = (Zy,...,Z,) is multivariate standard Gaussian,
Z ~ N, (04, 1) if its components are IID Ny (0,1). We write 14 = v®? to denote the
d-fold product measure. The distribution vy = v®¢ of Z ~ N,, (0, 1) has the product
density



FEzercise 13. The moment generating function t — E (exp (t - Z)) € R is

" 1 1
R" st +— My(t) = Eexp <§tl2) = exp (5 ||t||2)
My is everywhere strictly convex and analytic.

Ezercise 14. The characteristic function ¢ — 7,(¢) = E (exp (v/=1¢ - Z)) is

2
1 1
R™ 5 ¢ A, (C) = L) _ L
5 (= An(C) J|=1| eXp( 2@) exp( 2IIC>
An is non-negative definite.

4. RECAP: POSITIVE DEFINITE MATRICES

7. We collect here a few useful properties of matrices. * denotes transposition.

(1) Denote by Mat (m x n) the vector space of mxn real matrices. We have Mat (m x 1) <
R™. Let Mat (n x n) be the vector space of n x n real matrices, GL (n) the group
of invertible matrices, Sym (n) the vector space of real symmetric matrices.

(2) Given A € Mat (n x n), a real eigen-value of A is a real number A such that A—\I
is singular i.e., det (A — AI) = 0. If X is an eigen-value of A, u an eigen-vector of
A associated to A if Au = \u.

(3) By identifying each matrix A € Mat (m x n) with its vectorized form vec(A) €
R™" the vector space Mat (m x n) is an Euclidean space for the scalar product
(A, B) = vec(A)* vec(B) = Tr (AB*). The general linear group GL (n) is an open
subset of Mat (n x n).

(4) A square matrix whose columns form an orthonormal system, S = [s;---8,],
sfs; = (i = j), has determinant +1. The property is characterised by S* = S~1.
The set of such matrices is the orthogonal group O(n).

(5) Each symmetric matric A € Sym (n) has n real eigen-values A\;, i = 1,...,n and
correspondingly an orthonormal basis of eigen-vectors w;, i = 1,...,n.

(6) Let A € Mat (m x n) and let r > 0 be its rank i.e., the dimension of the space
generated by its columns, equivalently by its rows. There exist matrices S €
Mat (m x r), T € Mat (n x r), and a positive diagonal r x r matrix A, such that
S*S = T*T = I,, and A = SAY?T*. The matrix SS* is the orthogonal projection
onto image A. In fact image S5* = image A, SS*A = A, and SS5* is a projection.
Similarly, TT* is the ortogonal projection unto image A*.

(7) A symmetric matrix A € Sym (n) is positive definite, A € Sym™ (n), respectively
strictly positive definite, A € Sym*" (n), if x € R" # 0 implies '’ Az > 0,
respectively > 0. Sym™ (n) is a closed pointed cone of Sym (n), whose interior is
Sym** (n). A positive definite matrix is strictly positive definite if it is invertible.

(8) A symmetric matrix A is positive definite, respectively strictly positive definite,
if, and only if, all eigen-values are non-negative, respectively positive.

(9) A symmetric matrix B is positive definite if, and only if, A = B'B for some
B € M,,. Moreover, A € GL,, if, and only if, B € GL,,.

(10) A symmetric matrix A is positive definite if, and only if A = B? and B is positive
definite. We write B = A2 and call B the positive square root of A.

Exercise 15. If you are not familiar with the previous items, try the following exercise.
8



Consider the matrices

cosf —sinf
R(6) = [sin@ cos 6 ] , 0€R.

Check that R(0)*R(0) = I, det R(d) = 1, and R(0;)R(02) = R(6, + 63). Compute the

matrix

z@zR@tgijm@ﬁ Mode =0

Chech that det X(0) = A Ag, X(0)* = X(0), the eigenvalues of () are A, Ag, and
Y(0)R(0) = R(#) diag (A1, A2). Compute

A2 .
A(0) = R(0) [ (1) A2 RO, M, 22=0.
2

Check that A(0)A(6)* = A(0)A(0) = £(0).

FEzercise 16. Let A € O(n) and Z ~ N, (0,I). Check that AZ ~ N, (0,I). let
B € Mat (n xr), r < n, and assume that the columns are orthonormal. Check that
BZN, (0,1). [Hint: complete B to an orthogonal matrix by adding columns, [B|C] €
O(n) and use the marginalization.|

Ezercise 17. Let Z ~ Ny (0,1), A = E

] € Mat (2 x 1). Check that AZ has no density
with respect to the Lebesgue measure.

Exercise 18. Let Z ~ N5 (0,1), A=[1 1] € Mat (1 x 2). Compute the density od AZ.

5. GENERAL GAUSSIAN DISTRIBUTION

Proposition 1.
(1) Definition Let Z ~ N, (0,I), A € Mat(m xn), b € R™, ¥ = AA*. Then
Y =b+ AZ has a distribution that depends on % and b only. The distribution of
Y is called Gaussian with mean b and variance X, N,, (b,%).
(2) Statility IfY ~ N, (b,%), B € Mat (r x m), c€ R", then c+ BY ~ N, (¢ + Bb, BXB*).
(3) Existence Given any non-negative definite 3 € Sym™ (n) and any vector b € R™,
the Gaussian distribution N, (b, %) ezists.
(4) Density If ¥ € Sym™* (n) e.g., ¥ € Sym™ (n) and moreover det (X) # 0, then
the Gaussian distribution N,, (b,3), has a density with respect to the Lebesgue
measure on R™ given by given by

pr(s) = (20 % dev () Fexp (30— 0750 -0))

(5) No density If the rank of ¥ is r < m, then the distribution of N,, (b,X) is
supported by the image of X. In particular it has no density w.r.t. the Lebesque
measure on R™.

(6) Characteristic functionY ~ N,, (b,X) if, and only if, the characteristic func-
tion s

1
R™ 5t — exp (—515*215 + ib*t)

Proof.



(1) Assume bl,bg € Rm’ Al € Mat (m X TLZ'), Y; = bz +A7JZ“ Zl ~ an (0,]), 1= 1,2 If
b1 # by then the expected values of Y7 and Y5 are different, hence the distribution
is different. Assume b; = by = b, and consider the distribution of Y; — b = A;Z;,
1 =1,2. We can write A; = S,-Ag/zﬂ*, which in turn implies implies ¥ = S;AS?,
but ¥ = SAS* hence S; = Sy = S and Ay = Ay = A (a part the order).
We are reduced to the case Y; — b = SAT*Z;, T; € Mat (n; x r) with both with
orthonormal columns. The conclusion follows from 772, ~ T5 Zs.

(2) Y ~ N, (b,Y) means Y = b+ AZ with ZN,, (0,1) and AA* = X. It follows
c+BY =c+ B(b+ AZ) = (c+ Bb) + (BA)Z ,

wth (BA)(BA)* — BAA*B* — BS.B*.
(3) Take Y = b + S22, Z ~ N, (0, 1.
(4) Use the change of variable formula in Y = b + AZ with A = %'/2 to get

py(y) = ‘det (A_l)‘PZ(A_l(?/ —b)) .

The express each term with X.

(5) use the decomposition 3 = SAS* and note that some elements on the diagonal
of A are zero.

(6) The “if” part is a computation, the “only if” part requires the injection property
of characteristic function.

g

FEzercise 19 (Linear interpolation of the Brownian motion). Let Z,, n = 1,2... be IID
N; (0,1). Given 0 < o « 1, define recursively the times ¢ty = 0 and t,,; = t, + o>
Let T = {t,Jn =0,1,...}. Define recursively B(0) = 0, B(t,4+1) = B(t,) + 0Z,. As
B(t,) =1 0Z; =0y, Z;, then Var (B(t,)) = 0® Var (3, Z;) = no* = t,,. For each
t € Roo\T, define B(t) by linear interpolation i.e.,

tn+1 —1

t—1t,
B(ty) + —————
tn+1 - tn tn+1 - tn

B(t) = B(tn+1) , te [tnatn—i-l] :

Compute the variance of B(t) and the density of B(t).

6. INDEPENDENCE OF JOINTLY GAUSSIAN RANDOM VARIABLES

Proposition 2. Consider a partitioned Gaussian vector

Y; by X1 X2
Y = ~ Nn na ) :
lYJ v ([52] [221 222])

Let r; = Rank (X)), X = SiASF with S; € Mat (n; x 1), SfS = I, and A; €
diag_ . (r;), i =1,2.
(1) The blocks Y1, Ys are independent, Y1 1L Y, if, and only if, X152 = 0, hence

Yo = Xy, = 0. More precisely, if, and only if, there exist two independent
standard Gaussian Z; ~ N,.. (0,1) and matrices A; € Mat (n; x r;), i = 1,2, such

that
Y N A 0|14
Y, 0 A ||Z] -

10



(2) (The following property is sometimes called Schur complement lemma.) Write
Yy = SoA; 1Sk, Then,

I -Su3h] [Sn S I 0]
0o I So1 Sao| |-ShSe 1|7
PIFFIED 3% 359 YA o] _
E21 E22 _232221 I

E11—2122;2221 0
0 Yool

hence the last matrix is non-negative definite. The Shur complement of the parti-
tioned covariance matriz X is

21‘2 = 211 — 2122;2221 € Syﬂl+ (nl) .

(3) Assume det (X) # 0. Then both det (X12) # 0 and det (X),, # 0. If we define the
partitioned concentration to be

K = 2—1 _ lKll KIQ]

Ko Ko
then KH = El_é and Kl_llKlg = —21222_21.

Exercise 20. Let ¥ € Sym™ (n) and let r = Rank (X). We know that ¥ = SAS* with
SeMat(nxr), S*S =1I,, A e diag, , (r). Let us define X+ = SA~1S*. Then it follows
by simple computation that XY = X3+ = §5*. Also, XXX = ¥ and XTXXT = X, If
Y ~ N, (0,%), then Y = SS*Y. In fact, Y — SS*Y = (I — SS*)Y is a Guassian random
variable with variance (I — SS*)SAS*(I — SS*) = 0 because (I — SS*)S =5 — S5*S =
S—S=0.

Proof. (1) If the blocks are independent, they are uncorrelated. Conversely, if 3;; =
SiN;SF, i = 1,2, define A; = ;A" to get

A 04 o] 5
0 Ayl|0 Ay 7~
(2) Computations using Ex. 20.
(3) From the computation above we see that the Schur complement is positive definite

and that
b b
det ([Z; EZD — det (S1) det (S)

It follows that det (X) # 0 implies both det (1) # 0 and det (£95) # 0. The
condition

[Kll K12] [211 Z12] _ [I 0]

Ky Koo| | X1 X 0 I

I =K1 + K929
0=K11212 + K129

is equivalent to

Right-multiply the second equation by ¥, and substitute in the first one, to get
K132 = I, hence Ki' = Y1j2. The other equality follows by left-multiplying

the second equation by K.
11
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Ezercise 21 (Whitening). Let Y ~ N, (b,X). Assume X has rank r and decomposition
Y = SAS*, S*S = I, A € diag,, (r). Then Z = A~Y25*(Y — b) ia a white noise,
Z ~ N, (O, I). Moreover, b+ SAY2Z =Y. In fact,

Y — (b+ SAY2Z) = (Y —b) — SAYVPATYV2S*(Y —b) = (I — SS*)(Y —b) =0.

Conditioning is one among the core concepts in reasoning about uncertainty in Proba-
bility, in Statistics, in Economics, in Machine Learning. See the textbook by D. Williams
[4, Ch. 9] and E. Cnlar [3, Ch. IV].

7. CONDITIONAL EXPECTATION

Ezercise 22. Let X be a measurable function from (€2, F) to (5,S). Let G be the o-
algebra generated by X ie., ¢ = X~ 'S. Every G-measurable real random variable YV
is of the form Y = f o X, where f is a real random variablle on (S,S). [Hint: If YV
is simple, Y = >, y;1p;, with B; € G, then B; = X~'(4;), A; € S. It follows that
Y =301 yilx-1a,) = 25— ¥ila, 0 X, hence f =37 y;1a,. If X is non-negative, take
an increasing sequence of simple random variable .. . ]

Definition 1. Let (€2, F, 1) be a probability space, X a real random variable with finite
expectation, E, [|X|] < +o0, G a sub-o-algebra of F. A random variable X is a version
of the conditional expectation of X given G if, and only if,

(1) X is integrable and G-measurable;
(2) for all bounded and G-measurable random variable it holds

E, |GX| = B, [GX] .

The sub-p in the notation is there to remember that the conditional expectation de-
pends on the probability. The conditions (1) and (2) in the definition provide actual
equations to compute the conditional expectation, as the following examples show.

FEzercise 23 (Examples). (1) If G = {7,Q}, then E, (X|G) = E, [X].
(2) If G = F, then E, (X|G) = X.
(3) Let {Ay,...,A,} be a measurable partition of Q and let G = o(Ay,..., 4,).
Assume p(A;) # 0,7 =1,...,n. It holds

n X d n
E, (X]g) = SM(T;H = Y B, (X4)) 14, .

j=1 j=1
Ezercise 24. If X is a real random variable with a positive density p, let G be the o-
algebra generated by |X|. That is, the absolute value only, not the sign, is observed.
In this case the conditional expectation of X given G = o(|X]|), breafly, given | X]|, is a

random variable of the form X = f(|X|) (condition (1)) such that E ()?G) = E(XG)

for all G = ¢(|X|), g bounded (condition (2)). As a density is given, we write the defining
equation

Jf(lwl)g(léﬂ)p(fc) dx = chgﬂxl)p(l‘) d .

[Hint: To compute f , split S = SEOO + SJ * and change the variable z — —z in the first
integral to get

: FlaDg(z)(p(e) + p(—2)) de = FOO g(|z)(zp(z) — xp(=2)) dx

0 0
12



hence

F(l2))(p(x) + p(—2)) = ap(z) —p(—z) .

(z)—zp(—x)

Finally, notice that PO EE symmetric.]

Exercise 25. Let S1, .95 be independent and exponential with mean 1. The joint density
is s, .5, (71, T2) = e~ @) (1) 2y > 0). We want to compute the conditional expectation

of Sy given S; + S5. We need to find f such that for all bounded g we have
o0 o0
Jf f(xl + z9)g(x1 + 1:2)6_(‘”1”2) dridxs = Jf z19(x1 + 22)e” @) dgda, |
0 0

[Hint. Let us make the transformation y = x1 + 29, 2 = x;. The inverse transformation
is 1 = 2z, x9 = y — z with determinant —1. We have

(1,29 >0)=(2>0)(y—2>0)=(0<z<y)
then the equation becomes

|| fwswer avaz =[] gty dzay.

{0<z<y} {0<z<y}
Computing the dz integrals on both sides we get

f:o F)aly)ye™ dy = F g(y)y;e‘y dy

0

hence f(y) = 2]

Ezercise 26. Let Z = (Z1,7Z3) ~ Ny (0,1) and define X = 71, Y = Z1 + Z5, G = o(Y).
To compute a version of E (X|G) we look for a function f such that f(Y) satisfies

E(Xg(Y)) =E ( f(Y)g(Y)> for all bounded g .

X1 [ 2z 1 1ol
Y| |(Z1+Zy |1 1| |2,
11 11
we have (X,Y) ~ N <O, [1 2]) and Y ~ Ny (0,2). We have det ([1 2]) =1 and

[Hint: As

-1
11 2 -1 .
ll 2] = l_l 1 ] so that the density of (X,Y)

1
pxy(z,y) = (2m) " exp (—5(21‘2 — 2zy + ?f)) :

We want
Jf xg(y) (2m) exp (—%(21:2 — 2y + y2)) dr dy =
ff(’y)g(y) (27 -2) 2 exp <_Lyz> dy

13



Let us perform first the dz integration in the RHS:

1 1
Jx exp (5(2x2 —2zy + yz)) dr = Jx exp ( (:1:2 —xy + §y2)> dr =
1\? 1
Jx exp (— (x — Ey) — Zyg) dr =
1 1\?
exp (—1y2> J?Tl/Ql‘ 2 exp (— <x — éy) ) dx =

ml/2 1,
5 YexXp\ =¥ | -

The defining equality becomes

1/2
17T

[t em e (<32 do = [ st 2no2 e (<5502 a

so that, g being generic, f(y) = y/2. (We are going to see below a simpler and more
principled way to do this computation.)]

8. As the equation E, [G()A( - X)] =0, G € L(G), is linear in G and continuous under

bounded pointwise convergence, it is enough to check it for random variables of the for
1¢, C € C, C w-system generating G. [Monotone-Class Theorem [4, 43.14].]

9 (Almost sure equivalence). If X1, Xo, are two versions of the conditional expectation of
X, then E, [G()AQ - )22)] =0 i.e. )AQ = )?2 p-almost-surely. [Take G = sign ()?1 - )?2>

to get E, [ )A(I — )A(QH = 0.] More generally, if X; = X5 p-almost-surely, then )A(l = )A(g

p-almost-surely. We write E, (X|G) to denote the p-class of versions and, with abuse

of notation, X = E, (X|G). If L*(F,p) is the vector space of classes p-equivalent real
random variables, there exists a mapping

LYNF,u)> X —E,(X|G) e L'(G, ) .

10 (Existence). The fact that the previous mapping is actually defined on all of L*(F, i),
is discussed in [4, 99.5]. We skip this discussion, together with a related issue namely,
the notion of u-complete o-algebra. Many proofs of existence are actually available, ei-
ther based on some result of Functional Analysis (existence of orthogonal projection), or
based on results from advanced Measure Theory such as the Radon-Nikodym Theorem
(see below). Here, we are mainly focused on either computing a version of the conditional
expectation of a given random variable, or checking that a random variable is a version
of the conditional expectation of some random variable. We have defined the conditional
expectation for integrable random variables. It is possible to define the conditional ex-
pectation for positive random variables, see the comments below about properties of the
conditional expectation.

11 (Properties of the conditional expectation). All random variables are defined on the
probability space (€2, F, ) and G is a sub-o-algebra of F

(1) Normalization. E,, (1|G) = 1.

(2) G-Linearity. 1f B, (X|G) = X and E,(Y|G) = Y, then E, (AX + BY|G) =

AX + BY pralmost-surely if A, B € L*(G).
14



(3) Positivity. If X > 0 and E, (X|G) = X, then
ity together imply monotonicity. [Hint: take G
property]

(4) Normalization, linearity and monotonicity together imply Jensen inequality. As-
sume ®: R — R and assume both X and ®(X) are integrable. Let x +— a + bx <
®(z). Then a + bE, (X|G) < E, (P(X)|G). Chose a version X = E, (X|G) Be-
cause of the convexity, for each w € (2, there exists coefficients a(w), b(w) such that

A~

a(w) + b(w)X (w) = ®(X(w)). We have shown that ®(E, (X|G)) < E, (®(X)|9).
In particular, E, (| X]|G)" < E, (|X]%|G) if « > 1.

(5) Monotone convergence. If 0 < X, 1 X and X,, = E, (X,,|G), n € N, then random
variable X defined by X, 1 X is such that E, [Gf(] — E,[GX]if0 < G e £L2(G).

It follows immediatly from the monotone convergence for the expectation [Notice
that here we are assuming each X, to be ’integrable so that the conditional
expectation is defined. This is not necessary if we define conditional expectation
for non-negative random variable as it was for che expectation. We do not consider
t/l}is generalization in this notes.] If moreover X happens to be integrable, then
X =E, (X|G). ~

(6) Fatou lemma. If 0 < X, and X,, = E,, (X,,|G), n € N, then A, X, < X, if m >
n, so that E;, (Am=nXm|G) < Amsn B, (X,|G). From the monotone convergence it
follows E, [G(liminf,_,, X,)] < E, [G(liminf, . E, (X,|9))] if G € L*(G) and
G = 0. If liminf, ., X,, is integrable, then we can write E,, (liminf,_,,, X,|G) <
liminf, . E, (X,|G).

(7) Dominated convergence. If in the Fatou lemma we assume that the sequence
(Xn)nen is dominated by the integrable random variable Y| by considering the
non-negative sequence (Y — X,,),eny we can obtain the inequality

g).

If the sequence is convergent, then liminf, ., X, = lim,,_,, X,, = limsup,,_,,, X,
hence liminf, ., E, (X,|G) = limsup,_,, E, (X,|G) and the sequence of condi-
tional expectations is convergent to the expectation of the limit. The condition of
positivity can be dropped by decomposing the positive and negative part of the
sequence and the limit.

Linearity and positiv-

X =o.
= 1{;(@} in the characteristic

E, <lim inf X,

n—ao0

Q) < liminf E, (X,|G) < limsupE, (X,|G) < E, (lim sup X,
n—ao0

n—0o0 n—o0

12 (Image of a density). On the measurable space (2, F), consider the probability mea-
sure 1 and the probability density p. If ® is measurable from (€2, F) to (S, S), consider the
image of the probability measure p- p under ®. The image v = ®,(p- p) is characterized
by

Lawuuwzﬁﬁomwp@mum,geﬁﬂasw

Now, g o ® is the generic bounded o(®)-measurable random variable, then

Lﬂommpwmww=ﬂgowmﬁow@mmm

where p o ® is a version of the p-conditional-expectation of p given o(®). Now apply
again the definition of image to the RHS to get

Jsg(y) Dy(p-p)(dy) = f 9(y)p(y) Py (1) (dy) -

S
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We have found the density of the image measure.
13 (Projection property). Let H be a sub-o-field of G. It is easy to check that
B, (B, (X[9)[H) = E, (X|H) .

In particular, the conditional expectation operator X — E, (X|F) is a projection opera-
tor on L'(F, u). In terms of Functional Analysis, one could say that it is the transposed
operator of the injection operator L*(G) — L*(F).

14 (Orthogonal projection). The conditioning operator is an orthogonal projection. As-
sume Y in L*(Q, F,u) that is, E(Y?) < 0. If Y = E(Y|G), then Y € L?(Q,G, u)
and

E((Y—?)Z) —0, 2el*0G,u).

This property should not be confused with linear regression. Let be given Y € L? and
let X1, ..., X,, € L? be explanatory variables. We want a vector @ = (6,01, .. .,04) € R+
such that

d 2
quadratic error = E (Y — 6y — Z (9ij>

J=1

be minimum. As a function of @ the quadratic error is a convex function then the
minimum is obtained by imposing the gradient to be zero.

Exercise 27. Check all detail of the previous paragraph.

5 (Conditional expectation of a real function of a r.v.). Let (S,S) be a measurable
space, Y: Q — S a measurable mapping, and ) = o(Y) = Y1(S). A real random
variable is )-measurable if, and only if, it is of the form ¢ o Y, where ¢ is a real random
variable on (S, S). In this situation, the definition of conditional expectaion is rephrased
as follows. A version of the conditional expectation of X given o(Y') is a p-integrable real

random variable of the form QASM x o Y such that for all bounded measurable ¢: S — R
it holds E, [cﬁ(y)@“,x(y)] — E,[6(Y)X]. Notice that we could write this in terms

of the joint distribution of the random variables X and Y as S¢(y)$u7 x () py(dy) =
§o(y)x pux,y(dedy). An imprecise, but widely used, notation is ¢, x(y) = E, (X|Y = y),
which is called the expected value of X, given Y = y.

16 (Special cases). (1) If XY then E, (X|o(Y)) = E, [X]. in fact,

fcb(y)ﬂf px,y (dzdy) = Jfb(y) (Jw ux(dx)) py (dy) -

(2) If XY then E, (f(X,Y)|o(Y)) = § f(z,Y) px(dz). In this case we have
f¢ (2, y) px @ py (dedy) = f¢ Uf(:v,y) ux(dw)> p (dy) -
(3) Let X, Y, be random variables in R™ such that (X —Y)1Y. Then

Ex (F(Y)lo(¥)) = B, (F((X = Y) 4 V)o(V) = | F(s.Y) e (ds)

Cf. the Gaussian case below.
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(4) If pxy(dz,dy) = pxy - vx ® vy, then puy = (§p(z,y) vx(dz)) - vy(dy) and the
characteristic equality becomes

Jotmoxt ([so vxtan)) vt = [o) ([ pxy vxta)) wrian.

hence we can take
pX,Y ('T? y)

ox0) = [ pa(aly) vx(d). - py (aly) = P

8. CONDITIONAL DISTRIBUTION
17 (Transition probability measure). Given a product measurable space (21 x Qq, F1 QF3)
a transition is a mapping py2: F1 x €2g such that

(1) for each x5 € Qy tha mapping F; 3 Ay — pu1j2(Ai|z) is a probability measure on
(Q1, F1) and
(2) for each A; € F; the mapping Qs 3 x5 — pu1)2(Ai]z2) is Fo-measurable.

18 (Integration of probability measures). Given a transition p2 on (4 x Qy, F1 ® F3)
and a probability measure puy on (€, F3), there exists a unique probability measure
p = § pu1j2 dpo on the product measurable space such that for each positive or p-integrable
function f: Qg x Qs 3 (21, 22) — f(x1,22) it holds

ff dp = J(Jf(%@) M12(d$1!$2)> pa(dzs) -

The measure p is characterised on functions of the form f(z1,x9) = fi(x1) fo(x2) by

[ n= [ ([ e mataniten) ates) patie)

[The proof is a simple variation of the argument for Fubini theorem.|

19 (Transition densities). A simple case occurs when the transition has the form
M1\2(A1‘$2) = f P1|2(IB1’IB2) vi(dr), AyeFr,zpel
Ay

where (21, 22) — pijp(x1|x2) is measurable on the product space (£2i,Qq, F1 ® F2) and
x1 — pipp(@1|z2) is a v4-probability density for each x5 € 5. In such a case,

JU Sila) ’”‘1|2(dx1|552)) fa(wa) po(dxy) =
J (f / 1<x1>f’1l2<x1'x2>w<dw1>) o) paldra) =

J fi(z1) fo(zo)prja(1|z) vi(day)pa(des) |

that is, p = pij2 - v1 @ pio. If moreover the second measure has itself a density, ps = ps - 1,
then p = (p1|2 ®pa) 1 @y

FEzercise 28 (Examples).

(1) Let X be a real random variable with positive density p. The conditional distri-
bution of X given |X| is
(2) Let T1,T5 be independent and Exp(1). Then the distribution of 77 given 71 + T, =
t is uniform on |0, ¢[.
17



(3) If (Y1,Ys) ~ Nyuyim, (0, %), det 3 # 0, find the conditional distribution of Y; given
Ys.
(4) If Y, Y; are independent and Nj (0,1), find the distribution of (Y7, Y3) given Y7 +

20 (Regular version of the conditional expectation). With the notations above, denoting
with X1, Xy the coordinate projection, the random variable f(XQ) = { f(z1, X2) papp(dar | X2)
is a version of the conditional expectation E, (f(X1,X2)|o(X2)), namely a regular ver-
sion. In fact,

B L0 Xl C60)] = [ ( [ o) muatdonten) ) otoa) patden) = B, [Fxadg60)]

9. CONDITIONING OF JOINTLY (GAUSSIAN VECTORS

FEzercise 29. Recall that for each ¥ € Sym™ (n) there exists an orthogonal U € O(n)
and a non-negative diagonal A = diag (Aq,...,\,) such that ¥ = UAU*. By discarding
the zero eigen-values, we can write ¥ = SDS* with S € Mat (n x r), S*S = I, and D
positive diagonal, where r is the rank of ¥.. If D = diag (\1,...,\,), we define D™! =
diag (A;',..., A1) and £F = SD71S*. It follows that

)T

Y'Y = SD7IS*SDS* = SS* and X¥* = SDS*SDS* = §S* .

We have IT = SS* € Sym™ (n) and IT? = II. The matrix II is the orthogonal projector
onto the image of . In fact, for all x € R,

[z = SS*r = SDS*SD'S*x = XSD'S*x .
Moreover, for each x,y € R”
(o= T12) - (%) =
(x — Tz)*(Zy) = [({ — SS™)x]*(SDS*y) = 2*(I — SS*)SDS*y =
z*(SDS* — SS*SDS*) =0
Proposition 3.
(1) The Gaussian random vector with components
Y=Y (b1 + L1a(Ya = b2)),  Liz = 12X,
Vo =Ys— by
18 such that E (EN/I> =0, Var (EN/I> = Y1 — Y1225, and }71 N }N/Q It follows
E (Y1]Y2) = by + Lia(Ya — bo)
(2) The conditional distribution of Y1 given Yy = yo is Gaussian with

Yi[(Ya = o) ~ Ny, (b1 + Lia(y2 — ba), 11 — L12X9;)
(3) The conditional density of Yy given Yo = yo in terms of the partitioned concentra-
tion 18
Pviva (ly2) = (2m) 7% det (Kyp)* x

1
exp <—§(y1 — by — K5 Kia(y2 — b)) Kii(yy — by — K" Ko (y2 — b2)))

18



Proof. (1) We have

V| _[1 -SuSh|[Yi-b] o [Ze O
A i D Yo—by| Tt Ul 0 my
It follows
E(VilY) =B (Fi+ b1+ (Vs = )| V2) =B (T1) + by + Lia(Ya = bo)

(2) The conditional distribution of Y; given Y3 is a transition probability iy, |y, : B(R™)x
R™ such that for all bounded f: R™

B(FODIY2) = [ £0) s |¥2).
We have
E(FOIY2) = E (7 + E0ilYa|¥a) = [ o+ E(4i1¥2)) 2(des0, Zi)

where ~(dz;0, EHQ) is the measure of N,,, (O, 21‘2). We obtain the statement by
considering the effect on the distribution N, (0,21‘2) of the translation =z
xr + (bl + L12<y2 — b2))

(3) A further application of the Schur complement gives

lzn 212] B [I Y10Y00 | [Z1e 0 H I 0]

o1 Yo |0 T || 0 Sp| |XxTa I
whose inverse is
Ky K| _ I 0] =52 0 [T —Swiy
Ky Koy —Y5Ya I 0 3|0 I
| lzfé X 01 [ —Y55
| —Y5 XXy, B | [0 I
_ [ z;lg e IINT) oty
|0 Tal, 5 TalpEinY; + Dy
In particular, we have Ki; = Zl_é and KﬁlKIQ = —21222_21, hence

Yi|(Ya = y2) ~ Ny, (b1 — K ' Kp(ya — b2)7Kf11)
so that the exponent of the Gaussian density has the factor
(y1 — b1 + K" Ko (y2 — b2)) " K (y1 — by + Ky Ko (y2 — bo))

19
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