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The problem of finding a rigorous mathematical model for infinite sequences of binary
independent repeated trials (0-1 outcomes) was solved by Emile Borel in the first years of
XX century, by using the Lebesgue integration theory, at that time new. That solution
was further generalised by A. Kolmogorov in the thirties with the use of abstract measure
theory but actually the Borel solution is fully usable: an important author such as Norbert
Wiener still used it in the fifties. Nowadays, it is quite common to think to all distribution
as a result of a simulation, which consists precisely of transformation of the uniform
distribution on the unit interval to some other distribution of interest.

Measure theory is presented in the lecture notes by Bertand Lods. A compact treatment
is offered in W. Rudin [1, Ch. 11]. See also the slides of these lectures.

1. Bernoulli trials: the Borel construction

Consider the infinite sample space SN “ t0, 1uN. Each sample point is an infinite
sequence of 0 and 1, x “ px1, x2, . . . q. The coordinate projections are denoted by Xt,
t P N namely, Xtpxq “ xt. There is a natural projection X t : SN Ñ St “ t0, 1ut, t P N,
given by X tpx1, x2, . . . q “ px1, x2, . . . , xtq.

1.1. The Borel σ-algebra of S. If St is the set of all sub-sets of St, then Gt “ pX tq´1St
is an algebra of sub-sets of SN. It holds Gs Ă Gt if s ď t. The union of all Gt is a field
contained in the set of all sub-sets of SN, which is a σ-field. The intersection of all σ-fields
of SN that contain all Gt is a σ-field denoted G8, the Borel σ-field of SN. The Bernoulli
measurable space is pSN,G8q.

Exercise 1. This exercise shows why we look for a σ-algebra. For each given x P SN, define
the sequence of frequencies fnpxq “

1
t

řn
t“1pxt “ 1q. The real sequence of frequencies

pfnpxqqnPN either converges to a real number in r0, 1s or is oscillating. If it is oscillating,
there exist natural numbers a, b P N, a ă b, such that the sequence is infinitely often
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above 1{a and infinitely often below 1{b. The set
 

x P SN
ˇ

ˇfmpxq ě 1{a
(

belong to the
field Sn. The set where the inequality holds infinitely often is the set

č

nPN

ď

měn

 

x P SNˇ
ˇfmpxq ě 1{a

(

which belongs to G8. Same for the other bound. In conclusion, the set of non-convergence
is

ď

a,bPN,aăb

˜˜

č

nPN

ď

měn

 

x P SNˇ
ˇfmpxq ě 1{a

(

¸

ď

˜

č

nPN

ď

měn

 

x P SNˇ
ˇfmpxq ď 1{b

(

¸¸

which belongs to G8. The set of convergence is the complementary set.

Exercise 2 (The Law of Large Numbers (LLN)). Assume there exists a probability mea-
sure P on pSN,G8q. The sequence of random variables pfnqnPN satisfies the LLN if there
exists a random variable f8 such that P

` 

x P SN
ˇ

ˇlimnÑ8 fnpxq “ fpxq
(˘

“ 1. The prob-

lem is well posed if the set
 

x P SN
ˇ

ˇlimnÑ8 fnpxq “ fpxq
(

is measurable.

Exercise 3 (Bernoulli shift). The mapping T : SN Ñ SN defined by T px1, x2, x3, . . . q “
px2, x3, . . . q is measurable. In fact, T´1py1, y2, . . . q “ tp0, y1, y2, . . . q, p1, y1, y2, . . . qu hence
T´1pGtq Ă Gt`1. The set where the LLN holds is invariant for the Bernoulli shift.

1.2. Bernoulli measure on the Bernoulli measurable space. Given any

x “ px1, x2, . . . q P t0, 1u
8
“ SN ,

the series ωpxq “
ř8

t“1 xtp1{2q
t is absolutely convergent to the real number ω in the

interval r0, 1s whose expression in base 2 is pωq2 “ 0.x1x2 . . . The mapping ω : SN Ñ r0, 1s
is not injective for example, 1{2 “

ř8

k“2p1{2q
k. In binary notation, .100 ¨ ¨ ¨ “ .011 ¨ ¨ ¨ .

The partial sum
řn
t“1 xtp1{2q

t “
řk
t“1 xt2

k

2n
is the left approximation of ωpxq by a binary

rational. It follows that the mapping is surjective because for each ω P r0, 1s we can
always construct a sequence x such that ωpxq gives the required value. The mapping ω
is a random variable from pSN,G8q to pr0, 1s,Bq, where B is a σ-algebra containing all
binary intervals. In particular, every probability measure on pSN,G8q has an image in
pr0, 1s,Bq.

Exercise 4. Consider the effect of the Bernoulli shift T . As pT pxqqt “ xt`1,

ωpT pxqq “
8
ÿ

t“1

xt`1

ˆ

1

2

˙t

“ 2
ÿ

sě2

xs

ˆ

1

2

˙s

“ 2
´

ωpxq ´
x1
2

¯

“ 2ωpxq ´X1pxq .

It follows that

X1pxq “ 2ωpxq ´ ωpT pxqq .

In a similar way, one can prove that

X2pxq “ 2ωpT 2
pxqq ´ ωpT 2

pxqq ,

and so on.
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Exercise 5 (Simulation). Let us provide the a measurable mapping Y : r0, 1s Ñ SN such
that ωpY pθqq “ θ, θ P r0, 1s. Let H : R Ñ R be defined by Hpθq “ 0 if θ Ps ´ 8, 1r and
Hpθq “ 1 if θ P r1{2,`8r. One can check that

Xtpθq “ H

˜

2tθ ´
t´1
ÿ

j“1

Xjpθq2
t´j

¸

, t P N ,

is such that ωpXpθqq “
ř8

t“1Xtpθqp1{2q
t “ θ, whereXpθq is the sequence pX1pθq, X2pθq, . . . q P

SN. The set tX1 “ 1u is the set of all ω P r0, 1s such that 2ω ě 1 that is, r1{2, 1s. The
set tX1 “ 1, X2 “ 1u is the set where 2ω ě 1 and 4ω ´ 2 ě 1 that is, r3{4, 1s. The set
X1 “ 0, X2 “ 1 is the set where 2ω ă 1 and 4ω ě 1 that is r1{4, 1{2r. The set tX2 “ 1u
is r1{4, 1{2rYr3{4, 1s.

Exercise 6. If pr0, 1s,F ,mq is the unit interval endowed with the Lebesgue measure, then

X : r0, 1s Q ω ÞÑ pXjpωq : j P Nq
is a measurable function. In fact, for all t P N and all x1, . . . , xt “ 0, 1, the counter-image
of the set

 

x P SNˇ
ˇX1pxq “ x1, . . . , Xtpxq “ xt

(

is a union of intervals. Here, measurable means that for each BS8 the set X´1pBq is
measurable in r0, 1s. As a consequence, B ÞÑ PpBq “ mpX´1pBqq is a probability measure
on the Bernoulli measurable space. This follows from the following representation of the
Bernoulli trials Xt. Let us consider the function on r0, 1s defined by T pωq “ 2ω on
r0, 1{2r, 2ω ´ 1 on r1{2, 1r, and 0 at 1. Multiplying by 2 the equality ω “

ř8

t“1Xtpωq
1
2t

we get

2ω “
8
ÿ

t“1

Xtpωq
1

2t´1
“

8
ÿ

s“0

Xs`1pωq
1

2s
“ X1pωq `

8
ÿ

s“1

Xs`1pωq
1

2s

pSN,S8,Pq is the Bernoulli probability space with probability of success 1{2.

Give any coherent family of probability measures on the sequence St “ t0, 1ut, there
exists a probability measure on r0, 1s whose images are the given measures.

Exercise 7 (Bernoulli trials). Given the Bernoulli probabilities on St, compute the first
images in r0, 1s and their distribution functions. Provide an intuitive argument to show
that the sequence of distribution functions is convergent to a distribution function.

Exercise 8 (Independence of Bernoulli trials). Show that the random variables X1, . . . , Xn

are independent i.e., given functions φ1, . . . , φn : S Ñ R, it holds

Ep rφ1pX1q ¨ ¨ ¨φnpXnqs “ Ep rφ1pX1qs ¨ ¨ ¨Ep rφnpXnqs .

1.3. Weak LLN for Bernoulli trials. Let Xt be a sequence of Bernoulli trials with
parameter p. It follows that P pXt “ 1q “ p and Ep rXts “ p. Define the frequences

Fn “
1
n

řn
t“1Xt. Then Ep rFns “ p and Ep

“

pFn ´ pq
2
‰

“
pp1´pq
n

. We have

1´ Pp pp´ ε ď Fn ď p` εq ď
1

nε2
pp1´ pq 1

hence the limit as nÑ 8 of the RHS is 0.
3



1.4. Strong LLN for Bernoulli trials. Let us compute a better estimate of the prob-
ability of deviation from the mean value. For each β P R we have

Ep
“

eβpFn´aq
‰

“ e´βa Ep

«

n
ź

t“1

eβXt{n

ff

“ e´βa
n
ź

t“1

Ep
“

eβXt{n
‰

“ e´βa
`

p1´ pq ` eβ{np
˘n

.

The log applied on both sides gives

logEp
“

eβpFn´aq
‰

“ ´n
`

aβ{n´ log
`

p1´ pq ` eβ{np
˘˘

.

If we define

κpaq “ sup tax´ log pp1´ pq ` expq|x P Du ,

we have the inequality

Ep
“

eβpFn´pq
‰

ď e´nκpaq

for all β{n P D. Notice that the RHS is summable:
ř

n e´nhppq ă `8.
The mapping x ÞÑ hpxq “ ax´ log pp1´ pq ` expq has hp0q “ 0 and has derivative

h1pxq “ a´
pex

p1´ pq ` exp
,

in particular h1p0q “ a´p. The second derivative is negative i.e., the function is concave.
Let us apply the computations to the probabilities of deviations Fn from p. One case

is deviation at left. Write a “ p´ ε and β{n Ps ´ 8, 0r“ D to get

Pp pFn ă p´ εq “ Pp pFn ´ a ă 0q “

Pp pβpFn ´ aq ą 0q “ Pp
`

eβpFn´aq ą 1
˘

ď Ep
“

eβpFn´aq
‰

ď e´nκpaq .

Exercise 9. Conclude the argument above to prove the Strong LLN for Bernoulli trials.

2. Distribution function and quantile function

On the real measurable space pR,Bq we define the distribution function of the probability
measure µ to be the real function R Q x ÞÑ Fµpxq “ µps´8, xsq. The distribution function
of the real random variable X is the distribution function of the induced probability
measure, FXpxq “ P pX ď xq. The class of intervals ts ´ 8, x|x P Ru is closed under
intersection, s ´ 8, xsXs ´ 8, ys “s ´ 8, x^ ys, hence µ “ ν if Fµ “ Fν .

The distribution function of µ has the following properties: 1) limxÑ´8 Fµpxq “ 0; 2)
limxÑ`8 Fµpxq “ 1; 3) pFµpyq ´ Fµpxqqpy ´ xq ě 0; 4) limyÓx Fµpyq “ Fµpxq. Notice that
µ txu “ Fµpxq ´ Fµpx´q.

We will show below that, conversely, any function F : RÑ r0, 1s with the properties 1)
to 4) is a distribution function of a unique probability measure.

Given any distribution function F and any real t the set tF ě tu “ tx P R|F pxq ě tu
is a left-closed interval rQptq,`8r. In fact, F pyq ě t implies F pzq ě t for all z ě y and
the minimum of tx P R|F ě tu obtains at some Qptq P R Y t´8,`8u. Notice that for
all x, t P R, Qptq ď x is equivalent to F pxq ě t and Qptq ă x is equivalent to F pxq ă t.
If t ď 0, then Qptq “ ´8; if t ą 1 then Qptq “ `8; if t Ps0, 1r then Qptq is finite; if
t “ 1 then the relevant condition is F pxq “ 1 hence Qp1q can be either `8 of finite. The
restriction of Q to s0, 1r is called the quantile function of F .

The quantile function is non-decreasing and left-continuous. In fact: 1) s ă t implies
tx P R|F pxq ě tu Ď tx P RuF pxq ě s hence Qpsq ď Qptq; 2) tt Ps0, 1r|Qptq ď xu is a
(relatively) closed interval.
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A non-decreasing function has at most a numerable many jump points. It can be seen
by evaluating the number of jumps larger than a given ε ą 0. A non decreasing function
is continuous in all points except a nuberable set.

Exercise 10. AsQptq “ inf tx P R|F pxq ě tu, we haveQpF pxqq “ inf ty P R|F pyq ě F pxqu “
x´ ď x. If F is not invertible then x´ ă x for some x and F pQpF pxqqq “ F pxq. If F is
invertible, then x´ “ x and Q “ F´1.

Let F be a distribution function with quantile function Q. Let m be the Lebesgue
probability measure on s0, 1r and let µ “ Q#m be the image of m under q. The distri-
bution function of µ is F , FQ#m “ F . In fact, Q´1ps ´ 8, xsq “ tt Ps0, 1r|Qptq ď xu “
tt Ps0, 1r|F pxq ě tu “s0, F pxqs so that mpQ´1ps ´ 8, xsqq “ F pxq.

If µ is a probability measure on pR,Bq and φ is any integrable function then
ż

φpxq µpdxq “

ż 1

0

φpQptqq dt .

If moreover Fµ P C
1pRq then the Change of Variable Theorem gives

ż

φpxq µpdxq “

ż 1

0

φpF´1µ ptqq dt “

ż Fµp`8q

Fµp´8q

φpxqF 1µpxq dx “

ż Fµp`8q

Fµp´8q

φpxqfµpxq dx ,

where fµ “ F 1µ is the density of µ. This is a special case of the general notion of density.

3. Weak convergence

Let µ and νn, n P N be real probability measures with distribution functions F and Fn
and quantile functions Q and Qn, respectively. The following conditions are equivalent.

(1) limnÑ8Qn “ Q almost surely;
(2) For all continuous and bounded φ, φ P Cb, it holds limnÑ8

ş

φ dµn “
ş

φ dµ. This
convergence is called weak convergence, µn Ñ µ.

(3) Fn converges to F at all continuity points of F .

Exercise 11 (Proof). p1q ñ p2q: If φ P Cb,

lim
nÑ8

ż

φ dµn “ lim
nÑ8

ż 1

0

φpQnptqq dt “

ż 1

0

φpQnptqq dt “

ż

φ dµ

by bounded convergence. p2q ñ p3q: Given x P R and ε ą 0 consider the functions
f, g P CbpRq defined by

fpyq “

$

’

&

’

%

1 if y ď x´ ε

´1
ε
py ´ xq if x´ ε ă y ă x

0 if y ě x

gpxq “

$

’

&

’

%

1 if y ď x

´1
ε
py ´ x´ εq if x ă y ă x` ε

0 if y ě x` ε

As f ď 1s´8,xs ď g,
ż

f dµ ď F pxq ď

ż

g dµ and

ż

f dµn ď Fnpxq ď

ż

g dµn

which in turn gives limnÑ8 |F pxq ´ Fnpxq| “ 0 if limεÑ0

ş

pg ´ fq dµ “ 0. p3q ñ p1q: Let
s be a continuity point of Q. For each ε ą 0 choose two continuity points of F , say x, y
such that x ă Qpsq ă y and y ´ x ď ε. As Q is continuous at s there exists t ą s such
that Qptq ď y. The first inequality is equivalent to F pxq ă s and the second one implies
s ă F pyq. It follows that Fnpxq ă s ď Fnpyq that is x ă Qnpsq ď y. It is important to
remark that in the proof of p2q ñ p3q we do not need the totality of function in Cb. We
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need only bounded continuous functions that separate points in the sense explained in
the proof.
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