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o T N U NS

The problem of finding a rigorous mathematical model for infinite sequences of binary
independent repeated trials (0-1 outcomes) was solved by Emile Borel in the first years of
XX century, by using the Lebesgue integration theory, at that time new. That solution
was further generalised by A. Kolmogorov in the thirties with the use of abstract measure
theory but actually the Borel solution is fully usable: an important author such as Norbert
Wiener still used it in the fifties. Nowadays, it is quite common to think to all distribution
as a result of a simulation, which consists precisely of transformation of the uniform
distribution on the unit interval to some other distribution of interest.

Measure theory is presented in the lecture notes by Bertand Lods. A compact treatment
is offered in W. Rudin [1, Ch. 11]. See also the slides of these lectures.

1. BERNOULLI TRIALS: THE BOREL CONSTRUCTION

Consider the infinite sample space SN = {0, 1}N. Each sample point is an infinite
sequence of 0 and 1, x = (z1,%2,...). The coordinate projections are denoted by X,
t € N namely, X,(z) = x;. There is a natural projection X*: S¥ — St = {0,1}", t € N,
given by X (z1,2,...) = (x1, 29, ..., T4).

1.1. The Borel g-algebra of S. If S; is the set of all sub-sets of S, then G; = (X*)~'S;
is an algebra of sub-sets of SN. It holds G, — G, if s < t. The union of all G, is a field
contained in the set of all sub-sets of SV, which is a o-field. The intersection of all o-fields
of SN that contain all G, is a o-field denoted G, the Borel o-field of SN. The Bernoulli
measurable space is (SN, G).

Ezercise 1. This exercise shows why we look for a o-algebra. For each given x € SV, define
the sequence of frequencies f,(z) = 1> (z; = 1). The real sequence of frequencies
(fnu(2))nen either converges to a real number in [0, 1] or is oscillating. If it is oscillating,

there exist natural numbers a,b € N, a < b, such that the sequence is infinitely often
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above 1/a and infinitely often below 1/b. The set {z € SN|f,,(z) > 1/a} belong to the
field S,,. The set where the inequality holds infinitely often is the set

ﬂ U {z e SN’fm(x) > 1/a}

which belongs to G,,. Same for the other bound. In conclusion, the set of non-convergence
is

g ((ﬂ | {zeS"|ful2) = 1/a}> U (ﬂ U {zes|fula) < 1/b}>)

a,beN,a<b neNm>=n neNm=n

which belongs to G,,. The set of convergence is the complementary set.

Ezercise 2 (The Law of Large Numbers (LLN)). Assume there exists a probability mea-
sure P on (SY,G.). The sequence of random variables (f,)nen satisfies the LLN if there
exists a random variable f,, such that P ({z € SN|lim,, . f,(z) = f(z)}) = 1. The prob-

lem is well posed if the set {z € SN|lim,, . f,(z) = f(z)} is measurable.

Exercise 3 (Bernoulli shift). The mapping T: SN — SN defined by T'(z1, o, x3,...) =
(w9, 3,...) is measurable. In fact, T~ (y1,y2,...) = {(0,y1,v2,...),(1,y1,¥2,...)} hence
T71(G¢) < Giy1. The set where the LLN holds is invariant for the Bernoulli shift.

1.2. Bernoulli measure on the Bernoulli measurable space. Given any
r = (11,19,...)€{0,1}° = SN,

the series w(z) = >,7 x,(1/2)" is absolutely convergent to the real number w in the
interval [0, 1] whose expression in base 2 is (w)y = 0.7175 ... The mapping w: SN — [0, 1]
is not injective for example, 1/2 = >)° ,(1/2)*. In binary notation, .100--- = .011-- .

k
The partial sum > | x,(1/2)" = Zt%fﬂk is the left approximation of w(z) by a binary

rational. It follows that the mapping is surjective because for each w € [0,1] we can
always construct a sequence x such that w(z) gives the required value. The mapping w
is a random variable from (SY,G.) to ([0, 1], B), where B is a o-algebra containing all
binary intervals. In particular, every probability measure on (SV,G,) has an image in

([0, 1], B).
Ezercise 4. Consider the effect of the Bernoulli shift 7. As (T'(x)): = %441,

(T (z)) = ;wm (%) _ 2;% (%) ~ 2 (o) 1) = 20() - i)
It follows that
Xi(z) = 2w(x) — w(T(x)) .
In a similar way, one can prove that
Xo(x) = 2w(T?(2)) — w(T?(x)) ,

and so on.



Ezercise 5 (Simulation). Let us provide the a measurable mapping Y: [0, 1] — S¥ such
that w(Y(0)) =6, 0 € [0,1]. Let H: R — R be defined by H(#) = 0 if 6 €] — o0, 1] and
H(f) =1if 0 €[1/2,+m0[. One can check that

t—1
X(0)=H (2t9 — Z )@-(9)2“) ,teN,
j=1

is such that w(X(0)) = 3.7, X,(0)(1/2)" = 6, where X () is the sequence (X1(6), Xo(0),...) €
SN, The set {X; = 1} is the set of all w € [0, 1] such that 2w > 1 that is, [1/2,1]. The
set {X; =1, Xy = 1} is the set where 2w > 1 and 4w — 2 > 1 that is, [3/4,1]. The set
X7 =0,X, =1 is the set where 2w < 1 and 4w > 1 that is [1/4,1/2[. The set {X, = 1}

is [1/4,1/2[U[3/4,1].

Ezercise 6. If ([0, 1], F,m) is the unit interval endowed with the Lebesgue measure, then
X:[0,1] 3w~ (X;(w): jeN)
is a measurable function. In fact, for all £ € N and all zy,...,2; = 0,1, the counter-image
of the set
{re SV Xi(z) = a1,..., Xe(x) = 2}

is a union of intervals. Here, measurable means that for each BS, the set X~!(B) is
measurable in [0, 1]. As a consequence, B — P(B) = m(X~!(B)) is a probability measure
on the Bernoulli measurable space. This follows from the following representation of the
Bernoulli trials X;. Let us consider the function on [0, 1] defined by T(w) = 2w on
[0,1/2[, 2w — 1 on [1/2,1], and 0 at 1. Multiplying by 2 the equality w = Y7, X;(w)

we get
0

QW—ZXt 2t o1 Z s 95 —Xl +ZX3+1

(SN, S, P) is the Bernoulh probablhty space with probablhty of success 1 / 2.

Give any coherent family of probability measures on the sequence S; = {0, 1}t, there
exists a probability measure on [0, 1] whose images are the given measures.

FEzercise 7 (Bernoulli trials). Given the Bernoulli probabilities on S*, compute the first
images in [0, 1] and their distribution functions. Provide an intuitive argument to show
that the sequence of distribution functions is convergent to a distribution function.

Ezercise 8 (Independence of Bernoulli trials). Show that the random variables X1, ..., X,
are independent i.e., given functions ¢1,...,¢,: S — R, it holds

Ep [01(X1) - 0n(Xn)] = By [01(X1)] - - By [0 (X)] -

1.3. Weak LLN for Bernoulli trials. Let X; be a sequence of Bernoulli trials with
parameter p. It follows that P(X; =1) = p and E,[X;] = p. Define the frequences

Fn - %Z?=1 Xt’ Then ]EP [Fn] =P and Ep [(Fn _p)Z] p(= p) We have
1
1-P,(p—e<F,<p+e)< n—p(l—p)

hence the limit as n — oo of the RHS is 0.
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1.4. Strong LLN for Bernoulli trials. Let us compute a better estimate of the prob-
ability of deviation from the mean value. For each 5 € R we have

]Ep [eB(Fn a)l _ —Ba [1_[ BXt/n] _ e—BaHE 6Xt/n _ e—,@a ((1 _p) +eﬁ/np)n

The log applied on both sides gives

logE, [~ = —n (aB/n —log (1 — p) + ”"p)) .
If we define
k(a) = sup{ax — log ((1 — p) + e"p)|lx € D}
we have the inequality
E, [o" )] < e~

for all 3/n € D. Notice that the RHS is summable: Y e P < 4c0.

The mapping x — h(x) = ax —log ((1 — p) + €"p) has h(0) = 0 and has derivative

pe

(1—p)+ep’

in particular 4/(0) = a —p. The second derivative is negative i.e., the function is concave.
Let us apply the computations to the probabilities of deviations F), from p. One case
is deviation at left. Write a = p — € and /n €] — 0, 0[= D to get

T

B (z)=a-—

PP<Fn <p-—¢) :Pp(Fn—a<O) =
IEDP (ﬁ(Fn - a) > O) = ]P)p (eﬂ(ana) > 1) < Ep [eﬁ(ana)] < efm{(a) .

Exercise 9. Conclude the argument above to prove the Strong LLN for Bernoulli trials.

2. DISTRIBUTION FUNCTION AND QUANTILE FUNCTION

On the real measurable space (R, B) we define the distribution function of the probability
measure i to be the real function R 3 x +— F),(z) = pu(]—o0, z]). The distribution function
of the real random variable X is the distribution function of the induced probability
measure, Fx(z) = P(X < xz). The class of intervals {] — oo, z|z € R} is closed under
intersection, | — o0, z]n] — o0, y] =] — o0,z A y], hence p = v if F,, = F,.

The distribution function of p has the following properties: 1) lim, , o, F,(z) = 0; 2)
lim, 4o Flu(z) = 1; 3) (Fu(y) — Fu(2))(y —x) = 0; 4) lim,, F,(y) = F,.(z). Notice that
pia} = Fu(x) = Fl(z—).

We will show below that, conversely, any function F: R — [0, 1] with the properties 1)
to 4) is a distribution function of a unique probability measure.

Given any distribution function F' and any real ¢ the set {F >t} = {x e R|F(x) >t}
is a left-closed interval [Q(t), +oo[. In fact, F'(y) = t implies F/(z) >t for all z > y and
the minimum of {z € R|F' > t} obtains at some Q(t) € R u {—o0, +00}. Notice that for
all z,t € R, Q(t) < z is equivalent to F(z) >t and Q(t) < x is equivalent to F(x) < t.
If t <0, then Q(t) = —oo; if ¢ > 1 then Q(t) = +oo; if ¢t €]0, 1] then Q(¢) is finite; if
t = 1 then the relevant condition is F'(z) = 1 hence Q(1) can be either 40 of finite. The
restriction of @ to ]0, 1[ is called the quantile function of F.

The quantile function is non-decreasing and left-continuous. In fact: 1) s
{reR|F(z) =1t} < {xeR}F(x) > s hence Q(s) < Q(t); 2) {t€]0,1[|Q(t
(relatively) closed interval.

implies

<t
)<z} is a
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A non-decreasing function has at most a numerable many jump points. It can be seen
by evaluating the number of jumps larger than a given € > 0. A non decreasing function
is continuous in all points except a nuberable set.

FEzercise 10. As Q(t) = inf {x € R|F(x) = t}, we have Q(F(z)) = inf {y e R|F(y) = F(x)} =
x~ < . If F is not invertible then = < x for some = and F(Q(F(z))) = F(x). If F'is
invertible, then x~ = x and Q = F~!.

Let F be a distribution function with quantile function Q. Let m be the Lebesque
probability measure on |0, 1] and let u = Qgm be the image of m under q. The distri-
bution function of pu is F, Fg,m = F. In fact, Q7'(] — o0,2]) = {t €]0, 1[|Q(t) <z} =

{t €]0, 1[|F(z) = t} =]0, F(x)] so that m(Q~"(] — o0, 2])) = F().
If i is a probability measure on (R, B) and ¢ is any integrable function then

[ o) i) = [ oiauoy ar

If moreover F, € C*(R) then the Change of Variable Theorem gives

[ote utae) = [ otrrwy = [ swpe a= [ s e

Fu(—m) Fu(—o0)

where f, = F}, is the density of . This is a special case of the general notion of density.

3. WEAK CONVERGENCE
Let p and v, n € N be real probability measures with distribution functions F' and F,
and quantile functions QQ and Q,,, respectively. The following conditions are equivalent.

(1) lim,, o Q,, = Q almost surely;

(2) For all continuous and bounded ¢, ¢ € Cy, it holds lim,,_,o, § ¢ du, = § ¢ dp. This
convergence s called weak convergence, p, — 4.

(3) F,, converges to F' at all continuity points of F.

Ezercise 11 (Proof). (1) = (2): If ¢ € Gy,
1 1
I djiy = 1 W) dt = () dt = | ¢ d
tiny [0 dy = lim | 9(Qu(0) dt = | 6(@u(0) dt = [0 dn

by bounded convergence. (2) = (3): Given z € R and ¢ > 0 consider the functions
f, g € Cy,(R) defined by

1 ify<az—e 1 ity <z
fly) =< -ty—2) fz—e<y<u gl) =3 —Ly—z—¢€) fz<y<az+te
0 ity>ux 0 ify>az+e

As f <1y

deuSF(x)<Jgdu and deunéFn(x)éfgdun

which in turn gives lim,,_,o |F(z) — F,(2)] = 0 if limc¢ §(¢ — f) du = 0. (3) = (1): Let
s be a continuity point of ). For each € > 0 choose two continuity points of F', say x,y
such that * < Q(s) <y and y — x < e. As @ is continuous at s there exists ¢ > s such
that Q(t) < y. The first inequality is equivalent to F(z) < s and the second one implies
s < F(y). It follows that F,(x) < s < F,(y) that is z < Q,(s) < y. It is important to

remark that in the proof of (2) = (3) we do not need the totality of function in C},. We
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need only bounded continuous functions that separate points in the sense explained in
the proof.
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