Probability 2018 1

Giovanni Pistone

www.giannidiorestino.it

Version February 16, 2018

Measurable space

Definition

- A family \mathcal{B} of subsets of S is an algebra on S if it contains \emptyset and S, and it is stable for the complements, finite unions, and finite intersection.
- A family \mathcal{F} of subsets of S is a σ -algebra on S if it is an algebra on S and it is stable for denumerable unions and intersections.
- A measurable space is a couple (S, \mathcal{F}) , where S is a set and \mathcal{F} is a σ -algebra on S.
- Given the family C of subsets of S, the σ -algebra generated by C is $\sigma(C) = \cap \{A | C \subset A \text{ and } A \text{ is a } \sigma\text{-algebra}\}.$
- Examples: the algebra generated by a finite partition; the Borel σ -algebra of \mathbb{R} is generated by the open intervals, or by the closed intervals, or by the intervals, or by the open sets, or by semi-infinite intervals. See Handout 1.

Measure space

Definition

- A measure μ of the measurable space (S, F) is a mapping μ: F → [0, +∞] such that μ(Ø) = 0 and for each sequence (A_n)_{n∈ℕ} of disjoint elements of F, μ(∪_{n∈ℕ}A_n) = ∑_{i=1}[∞] μ(A_n).
- A measure is finite if µ(S) < +∞; a measure is σ-finite if there is a sequence (S_n)_{n∈N} in F such that ∪_{n∈N}S_n = S and µ(S_n) < +∞ for all n∈ N.
- A probability measure is a finite measure such that μ(S) = 1; a probability space is the triple (S, F, μ), where μ is a probability measure.
- Examples: probability measure on a partition; probability measure on a denumerable set. See Handout 1.
- Equivalently, a probability measure is finitely additive and sequentially continuous at \emptyset

Product system aka π -system

Definition

Let S be a set. A π -system on S is a family \mathcal{I} of subsets of S which is stable under finite intersection.

- Examples: the family of all points of a finite set and the empty set; the family of open intervals of R; the familily of closed intervals of R; the family of cadlàg intervals of R; the family of convex (resp. open convex, closed convex) subsets of R²; the family of open (resp. closed) set in a topological space.
- If \mathcal{I}_i is a π -system of S_i , i = 1, ..., n, then $\{\times_{i=1}^n I_i | I_i \in \mathcal{I}_i\}$ is a π -system of $\times_{i=1}^n S_i$.
- The family of all real functions of the form α₀ + ∑_{j=1}ⁿ α_j1_{l_i}, n ∈ N, α_j ∈ ℝ, j = 0,..., n is a vector space and it is stable for multiplication.

 $\S1.6$ of ; Handout 1.

Dynkin system aka d-system

Definition

Let S be a set. A *d*-system on S is a family \mathcal{D} of subsets of S such that

- 1. $S \in D$
- 2. If $A, B \in \mathcal{D}$ and $A \subset B$, then $B \setminus A \in \mathcal{D}$. (Notice that $S \setminus A = A^c$)
- 3. If $(A_n)_{n \in \mathbb{N}}$ is an increasing sequence in \mathcal{D} , then $\cup_{n \in \mathbb{N}} \in \mathcal{D}$
- Given probabilities μ_i and i = 1, 2 on the measurable space (S, \mathcal{F}) , the family $\mathcal{D} = \{A \in \mathcal{F} | \mu_1(A) = \mu_2(A)\}$ in a *d*-system.
- Given measurable spaces (S_i, \mathcal{F}_i) , i = 1, 2, the product space $(S, \mathcal{F}) = (S_1 \times S_2, \mathcal{F}_1 \otimes \mathcal{F}_2)$, $\mathcal{F}_1 \otimes \mathcal{F}_2 = \sigma \{A_1 \times A_2 | A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\}$, and $x \in S_1$, the family $\mathcal{D} = \{A \in \mathcal{F}_1 \otimes \mathcal{F}_2 | A \cap \{x\} \times S_2 = \{x\} \times A_x, A_x \in \mathcal{F}_2\}$ is a *d*-system.

Dynkin's lemma

Theorem

- 1. A family of subsets of S is a σ -algebra if, and only if, it is both a d-system and a π -system.
- 2. If \mathcal{I} is a π -system, then $d(\mathcal{I}) = \sigma(\mathcal{I})$.
- 3. Any *d*-system that contains a *π*-system contains the *σ*-algebra generated by the *π*-system.

Theorem

If two probability measures on the same measurable space agree on a π -system \mathcal{I} they are equal on $\sigma(\mathcal{I})$.

A1.3 of ; Handout 1.

Probability space

Definition

A probability space is a triple $(\Omega, \mathcal{F}, \mathsf{P})$ of a sample space Ω (set of possible worlds), a σ -algebra \mathcal{F} on Ω , a probability measure $\mathsf{P}: \mathcal{F} \to [0, 1]$. An element $\omega \in \Omega$ is a sample point (world); an element $A \in \mathcal{F}$ is an event; the value $\mathsf{P}(A)$ is the probability of the event A.

- Examples: a finite set, all its subsets, a probability function $p: \Omega \to \mathbb{R}_{>0}$ such that $\sum_{\omega \in \Omega} p(\omega) = 1$; \mathbb{Z}_{\geq} with all its subsets, and a probability function $p: \mathbb{Z}_{\geq} \to \mathbb{R}_{>0}$ such that $\sum_{k=0}^{\infty} p(k) = 1$; the restriction of a probability space to a sub- σ -algebra; the product of two probability spaces.
- Bernoulli trials. Let $\Omega = \{0,1\}^{\mathbb{N}}$ and let $\mathcal{F}_n = \{A \times \{0,1\} \times \{0,1\} \times \cdots \mid A \subset \{0,1\}^n\}, \ \mathcal{F} = \sigma(\mathcal{F}_n \colon n \in \mathbb{N}).$ Given $\theta \in [0,1]$, the function $p_n(x_1x_2\cdots x_n\cdots) = \theta \sum_{i=1}^n x_i (1-\theta)^{n-\sum_{i=1}^n x_i}$ uniquely defines probability spaces $(\Omega, \mathcal{F}_n, \mathsf{P}_n), \ n \in \mathbb{N}$, such that $\mathsf{P}_{n+1}|_{\mathcal{F}_n} = \mathsf{P}_n$, hence a probability measure P on \mathcal{F} .

lim sup and lim inf

Definition

• Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of real numbers.

$$\begin{split} &\limsup_{n \to \infty} a_n = \wedge_{m \in \mathbb{N}} \vee_{n \ge m} a_n \quad (\text{maximum limit}) \\ &\lim_{n \to \infty} a_n = \vee_{m \in \mathbb{N}} \wedge_{n \ge m} a_n \quad (\text{minimum limit}) \end{split}$$

• Let $(E_n)_{n \in \mathbb{N}}$ be a sequence of events in the measurable space (Ω, \mathcal{F}) .

$$\begin{split} \limsup_{n \to \infty} E_n &= \cap_{m \in \mathbb{N}} \cup_{n \ge m} E_n \quad (E_n \text{ infinitely often} \\ \liminf_{n \to \infty} E_n &= \cup_{m \in \mathbb{N}} \cap_{n \ge m} E_n \quad (E_n \text{ eventually}) \end{split}$$

A similar definition applies to sequences of functions. If $(f_n)_n$ is a sequence of non-negative functions, then the set of $x \in S$ such that $\lim_n f_n(x) = 0$ is equal to the set $\{\limsup_n f_n = 0\}$.

Fatou lemma

Theorem

$$\mathsf{P}\left(\liminf_{n\to\infty} E_n\right) \leq \liminf_{n\to\infty} \mathsf{P}\left(E_n\right) \leq \limsup_{n\to\infty} \mathsf{P}\left(E_n\right) \leq \mathsf{P}\left(\limsup_{n\to\infty} E_n\right)$$

- $(\limsup_{n} E_{n})^{c} = \liminf_{n} E_{n}^{c}; \limsup_{n} \mathbf{1}_{E_{n}} = \mathbf{1}_{\limsup_{n} E_{n}}.$
- Proof of FL. Write ∪_m ∩_{n≥m} E_n = ∪_mG_m so that G_m ↑ G = lim inf_n E_n. We have P (G_m) ≤ ∧_{n≥m} P (E_n); monotone continuity (increasing) implies P (G_m) ↑ P (G) hence, ∨_m P (G_m) = P (G). The middle inequality is a property of lim inf and lim sup. The least inequality follows from a similar proof using continuity on decreasing sequences or, by taking the complements.
- BC1. Assume $\sum_{n=1}^{\infty} \mathsf{P}(E_n) < +\infty$. We have for all $m \in \mathbb{N}$ that

$$P\left(\limsup_{n} E_{n}\right) \leq P\left(\bigcup_{n \geq m} E_{n}\right) \leq \sum_{n=m}^{\infty} P\left(E_{n}\right) \to 0 \quad \text{if } m \to \infty$$

hence $P(\limsup_{n} E_n) = 0.$

Measurable function

Definition

Given measurable spaces (S_i, S_i) , i = 1, 2, we say that the function $h: S_1 \to S_2$ is measurable, or is a random variable, if for all $B \in S_2$ the set $h^{-1}(B) = \{s \in S_1 | h(s) \in B\}$ belongs into S_1 .

Theorem

- Let $C \subset S_2$ and $\sigma(C) = S_2$. If $h^{-1}: C \to S_1$, then h is measurable.
- Given measurable spaces (S_i, S_i), i = 1,2,3, if both h: S₁ → S₂, g: S₂ → S₃ are measurable functions, then g ∘ f : S₁ → S₃ is a measurable function.
- Given measurable spaces (S_i, S_i) , i = 0, 1, 2 and $h_i: S_0 \to S_j$, j = 1, 2, consider $h = (h_1, h_2): S_0 \to S_1 \times S_2$. with product space $(S_1 \times S_2, S_1 \otimes S_2)$, Then both h_1 and h_2 are measurable if, and only if, h is measurable.

Image measure

Definition

Given measurable spaces (S_i, S_i) , i = 1, 2, a measurable function $h: S_1 \to S_2$, and a measure μ_1 on (S_1, S_1) , then $\mu_2 = \mu_1 \circ h^{-1}$ is a measure on (S_2, S_2) . We write $h_{\#}\mu_1 = \mu_2 \circ h^{-1}$ and call it image measure. If μ_1 is a probability measure, we say that $h_{\#}\mu_1$ is the distribution of the random variable h.

• Bernoulli scheme Let $(\Omega, \mathcal{F}, \mathsf{P})$ be the Bernoulli scheme, and define $X_t \colon \Omega \to \{0, 1\}$ to be the *t*-projection, $X_t(x_1x_2\cdots) = x_t$. It is a random variable with Bernoulli distribution $\mathsf{B}(\theta)$. The random variable $Y_n = X_1 + \cdots + X_n$ has distribution $\mathsf{Bin}(\theta, n)$. The random variable $T = \inf \{k \in \mathbb{N} | X_k = 1\}$ has distribution $\mathsf{Geo}(\theta)$.

Real random variable

Definition

Let (S, S) be a measurable space. A real random variable is a real function $h: S \to \mathbb{R}$ with is measurable into (\mathbb{R}, B) .

Theorem

- h: S → ℝ is a real random variable if, and only if, for all c ∈ ℝ the level set {s ∈ S} h(s) ≤ c is measurable. The same property holds with ≤ replaced by < or ≥ or >. The condition can be taken as a definition of extended random variable i.e. h: S → ℝ = ℝ ∪ {-∞, +∞}.
- If g, h: S → ℝ are real random variables and Φ: ℝ² → ℝ is continuous, then Φ ∘ (g, h) is a real random variable.
- Let (h_n)_{n∈N} be a sequence of real random variables on (S,S). Then sup_n f_n, inf_n f_n, lim sup_n f_n, lim inf_n f_n are real random variable.

A monotone-class theorems

Theorem

Let ${\mathcal H}$ be a vector space of bounded real functions of a set S and assume $1\in {\mathcal H}.$ Assume

- 1. \mathcal{H} is a monotone class i.e., if for each bounded increasing sequence $(f_n)_n \in \mathbb{N}$ in \mathcal{H} the function $\vee_n f_n$ belong to \mathcal{H} .
- 2. \mathcal{H} contains the indicator functions of a π -system \mathcal{I} .

Then, \mathcal{H} contains all bounded measurable functions of $(S, \sigma(I))$.

• Application. Consider measurable spaces $(\Omega_i, \mathcal{F}_i)$, i = 1, 2. Define $\Omega = \Omega_1 \times \Omega_2$ and $\mathcal{I} = \{A_1 \times A_2 | A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\}$. Then $\mathcal{F}_1 \otimes \mathcal{F}_2 = \sigma(\mathcal{I})$. Let \mathcal{H} be the set of all bounded real functions $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ such that for each fixed $x \in \Omega_1$ the mapping $\Omega_2 \ni y \mapsto f(x, y)$ is \mathcal{F}_2 -measurable and for each fixed $y \in \Omega_2$ the mapping $\Omega_1 \ni x \mapsto f(x, y)$ is \mathcal{F}_1 -measurable.

§3.14 and §A3.1 of ; Hendout 1.