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1. Markov process

1. A stochastic process Y0, Y1, . . . is a Markov Process if past and future are conditionally
independent given the present,

pY0, . . . , YkqKKpYk, . . . , YNq|Yk , k ă N .

An equivalent condition is the sufficiency of the present in computing the distribution
of the future given the past,

E pφkpYkq ¨ ¨ ¨φNpYNq|Y0, . . . , φNpYkqq “ E pφkpYkq ¨ ¨ ¨φNpYNq|Ykq , k ă N ,

for all bounded φk, . . . , φN .

Exercise 1. The special case

E pφpYk`1q|Y0, . . . , Ykq “ E pφkpYk`1q|Ykq , k ă N ,

for all bounded φ implies the Markov property. [Hint: Prove the sufficiency condition by
induction conditioning first on Y0, . . . , YN´1.]

Exercise 2. Let be given a Gaussian white noise Z1, . . . , Zn and a further independent
Gaussian random variable X0. For a given real α define Xk “ αXk´1 ` Zk, k ě 1.
Show that it is a Markov process and compute the transitions. [Hint: write φpXk`1q “

φpαXk ` Zk`1 and use the independence.]

2 (Martingale problem). Let Y0, Y1, . . . , YN be a Markov process, each random variable
having values in the measurable space pS,Sq. Given any bounded measurable φ : S Ñ R
define the new process Xφ by Xφ

0 “ φpY0q,

Xφ
t “ Xφ

t´1 ` φpYtq ´ E pφpYtq|Y0, . . . , Yt´1q , t ě 1 .

Then, Xφ
t is pY0, . . . , Ytq-measurable and has the martingale property

E
´

Xφ
t

ˇ

ˇ

ˇ
Y0, . . . , Yt´1

¯

“ Xφ
t´1 .

Because the Markov property is a property of conditional independence, we know that

E pφpYtq|Y0, . . . , Yt´1q “ E pφpYtq|Yt´1q “

ż

φpyq µYt|Yt´1pdy|Yt´1q .
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The family of operators φ ÞÑ Atφ, t “ 1, . . . , N , defined byAtφpxq “ φpxq´
ş

φpyq µYt|Yt´1pdy|xq
is called the generator of the Markov process. We have

Xφ
t ´X

φ
t´1 “ φpYtq ´ φpYt´1q ` AtφpYt´1q

hence,

Xφ
t “ φpYtq `

t
ÿ

s“1

AsφpYs´1q .

The process
`
řt
s“1AsφpYs´1q

˘

tě1
is predictable and it is called the compensator of pφpYtqqtě1

because process minus compensator equals martingale. (See another example below.)

2. Markov chain with stationary transition probability

3. Let S be a finite set with #S “ N . A Markov chain with stationary transition
probability (MC) is an S-valued Markov process X0, X1, . . . such that for all couples of
consecutive times t, t ` 1 the conditional distribution of Xt`1 given Xt does not depend
on t. The common transition is called the stationary transition of the MC. As the space
S is finite, the transition is characterized by the numbers rppy|xq : x, y P Ss, so that

E pφpXt`1q|X0, . . . , Xtq “ E pφpXt`1q|Xtq Markov property

“
ÿ

yPS

φpyqppy|Xtq stationary transitions .

Given an order or numbering on S, the transition can be given in form of a matrix
P “ rPx,ysx,yPS with Px,y “ ppy|xq. P is called transition matrix. If the real functions on

S are identified with a column vector e.g., rφpyq : y P Ss˚, then E pφpXt`1q|Xtq “ φ̂pXtq

with φ̂ “ Pφ.
Let us represent the probability functions on S as row vectors. If πtpyq “ rP pXt “ yq : x P

Ss, then the joint distribution of pXt, Xt`1q is given by the probability function

px, yq ÞÑ P pXt “ x,Xt`1 “ yq “ P pXt`1 “ y|Xt “ xqP pXt “ xq “ πtpxqPx,y

and the probability function of Xt`1 is y ÞÑ πt`1pyq “
ř

x πtpxqPx,y, that is πt`1 “ πtP .
The probability function π is invariant if πP “ π that is if π is a left eigenvector with

eigenvaue 1.
Given a sequence of times s, s ` 1, . . . , s ` k then the joint probability function of

Xs, Xs`1, . . . , Xs`k is given by

P pXs “ xs, Xs`1 “ xs“1, . . . , Xs`k “ xs`kq “ πspxsqPxs,xs`1 ¨ ¨ ¨Pxs`k´1,xs`k
.

The proof is by induction. If k “ 1, then P pXs “ xs, Xs`1 “ xs`1q “ πspxsqPxs,xs`1 . If it
is true up to k ´ 1, then the MC property implies

P pXs “ xs, Xs`1 “ xs`1, . . . , Xs`k “ xs`kq “

P pXs`k “ xs`k|Xs “ xs, Xs`1 “ xs`1, . . . , Xs`k´1 “ xs`k´1qˆ

P pXs “ xs, Xs`1 “ xs`1, . . . , Xs`k´1 “ xs`k´1q “

P pXs`k “ xs`k|Xs`k´1 “ xs`k´1qP pXs “ xs, Xs`1 “ xs“1, . . . , Xs`k´1 “ xs`k´1q “

P pXs “ xs, Xs`1 “ xs“1, . . . , Xs`k´1 “ xs`k´1qPxs`k´1,xs`k

Given the initial distribution with probability function π0 and the transition matrix P ,
then the distribution at time t is given by the probability function

πtpyq “
ÿ

x,...,xt´1PS

π0px0qPx0,x1 ¨ ¨ ¨Pxt´1,y “ π0pxqP
n
x,y
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that is, πt “ π0P
n. If limnÑ8 π0P

n “ π exists and is a probability function, then π is an
invariant probability. In fact,

πP “
´

lim
nÑ8

π0P
n
¯

P “ lim
nÑ8

π0P
n`1

“ π .

We do not discuss here the existence and uniqueness of such a limit, see the Wikipedia
article Markov chain and the references therein, but see the exercise below. Markov
Chain Monte Carlo (MCMC) is a popular simulation method that uses limnÑ8 π0P

n to
simulate π.

Exercise 3. Let be given a probability function π0 on S and a N ˆ N matrix P with
positive elements such that P1 “ 1. Such a matrix is called a Markov matrix. Take the
sample space Ω “ Sn`1 and define the probability function

px0, x1, . . . , xnq ÞÑ π0px0qPx0,x1 ¨ ¨ ¨Pxn´1,xn .

(Show by induction that it is indeed a probability function.) Let P be the probability
with the given probability function and let X0, X1, . . . , Xn be the canonical process i.e.,
Xtpx0, . . . , xnq “ xt. Check that the process is a MC with transition matrix P . In
other word, the distribution of a MC is characterized by π0 and the transition matrix.
Conversely, given any probability function π and any Markov matrix P , there exist a MC
with the given initial probability and the given transition.

Exercise 4 (2-state MC). Let

P “

„

1´ α α
β 1´ β



α, β P r0, 1s

be the generic Markov matrix on the two elements set S “ t1, 2u. An invariant probability
function is π “

“

p 1´ p
‰

such that
#

p “ pp1´ αq ` p1´ pqβ

1´ p “ pα ` p1´ pqp1´ βq
.

The two equations are dependent because the rank of P ´ I is 1. It follows

ppα ` βq “ β and p1´ pqpα ` βq “ α .

If α`β “ 0 i.e., P “

„

1 0
0 1



then all probability functions are invariant. In the following,

we assume α ` β ą 0. In such a case, the invariant probability function is

π “
”

β
α`β

α
α`β

ı

.

For example, the invariant probability of both P “

„

0 1
1 0



and P “

„

1{2 1{2
1{2 1{2



is

π “
“

1
2

1
2

‰

. (Note that the first example is produces a “deterministic” process while the
second produces and “independent” process.) The characteristic equation of P is

det pP ´ λIq “ det

„

p1´ αq ´ λ α
β p1´ βq ´ λ



“ λ2 ´ p2´ α ´ βqλ` p1´ α ´ βq “ 0 .

One solution is λ1 “ 1 (why?), while the other is λ2 “ 1´α´β. Let us assume α, β ą 0.
The first eigen-vector is a vector

u1 “

„

u12
u22



such that

„

´α α
´β β

 „

u11
u21



“ 0
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e.g., u1 “
“

1 1
‰˚

. The second eigen-vector is a vector

u2 “

„

u12
u22



such that

„

β α
β α

 „

u12
u22



“ 0

e.g., u2 “
“

´α β
‰˚

. It follows that

P “ U

„

1 0
0 1´ α ´ β



U´1 with U “
“

u1 u2

‰

“

„

1 ´α
1 β



because detU “ α ` β ą 0. It follows that

P n
“ U

„

1 0
0 p1´ α ´ βqn



U´1 .

(Compute U´1 and P n. Check the equation for n “ 2.) As ´1 ă 1´ α´ β ă 1, we have

lim
nÑ8

P n
“

U lim
nÑ8

„

1 0
0 p1´ α ´ βqn



U´1 “

„

1 ´α
1 β

 „

1
α`β

0

0 0

 „

β α
´1 1



“

«

β
α`β

α
α`β

β
α`β

α
α`β

ff

“

„

π
π



.

In conclusion: if α ` β “ 0 all probability functions are invariant and there is no
convergence to the invariant probability; If α ` β ą 0 there is a unique probability and
there is convergence. What happens if α “ 0 while β ą 0?

Exercise 5. In the previous example, consider the case α, β ą 0. Define the time of first
visit to 1 as

T “ inf tt ě 0|Xt “ 1u .

Show that T is a stopping time with probability function

P pT “ tq “ αp1´ βqn .

Explain what happens if β “ 1. Otherwise, T is almost surely finite and E pT q “ α{β.

Exercise 6. Let Xn, n ě 0, be a Markov process with finite state space S and assume
stationary transition probabilities given by the Markov matrix P . For each real function
φ : S Ñ R, we have

E pφpXtq|X0, . . . , Xt´1q ´ φpXt´1q “ AφpXt´1q where A “ P ´ I .

It follows that Mφ
t “ φpXtq ´

řt
s“1AφpXs´1q is a martingale.

If T is a stopping time, then

Mφ
t^T “ φpXt^T q ´

ÿ

1ďsďt^T

AφpXs´1q

is martingale.
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Conversely, if P is a Markov matrix, A “ P ´ I, and for each φ the process Mφ is a
martingale, then

E pφpXtq|Ft´1q “ E

˜

Mφ
t `

t
ÿ

s“1

AφpXs´1q

ˇ

ˇ

ˇ

ˇ

ˇ

Ft´1

¸

“Mφ
t´1 `

t
ÿ

s“1

AφpXs´1q

“ φpXt´1q ` AφpXs´1q “ PφpXt´1q

so that pXtqtě0 is a MC with transition matrix P .

3. Reversible Markov chains

4. The Markov property is symmetric in the direction of time. If X0, . . . , Xn is a MC,
then the time-reversed process Yh “ Xn´h is a Markov process with transitions

P pYh`1 “ x|Yh “ yq “ P pXn´h´1 “ x|Xn´h “ yq “

P pXn´h´1 “ x,Xn´h “ yq

P pXn´h “ yq
“

P pXn´h “ y|Xn´h´1 “ xqP pXn´h´1 “ xq

P pXn´h “ yq
“

Px,yπn´h´ipxq

πn´hpyq
.

If moreover the MC is stationary that is πt “ π, then the time-reversed process is a
MC with the same invariant distribution and transitions

Qy,x “
πpxqPx,y
πpyq

.

Equivalently, we can say that the 2-dimensional distribution are given by

P pXs “ x,Xs`1 “ yq “ πpxqPx,y “ πpyqQy,x .

A stationary Markov chain is reversible if Qj.i “ Pj,i. Equivalently, if π is a probability
function such that

πpxqPx,y “ πpyqPy,x ,

we sum the previous relation over x to get
ÿ

xPS

πpxqPx,y “ πpyq
ÿ

xPS

Py,x “ πpyq ,

so that π is indeed an invariant probability and the MC constructed from π and P is
reversible.

Given a Markov matrix P , if there exists a positive function κ : S such that κpxqPx,y “
κpyqPy,x then we can normalize κ. In such a case we have an immediate way to compute
the invariant probability.

Exercise 7. Let G “ pS, Eq be a graph. For each vertex x P S the degree of x, deg x, is
the number of edges from x. Let E be the adjacency matrix of G. The degree as a row
vector is E1. Define the Markov matrix

P “ diag pE1q´1E .

i.e., the transitions

Px,y “

#

1
deg x

if y is connected with x,

0 if y is not connected with x.
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Observe that x is connected to y if, and only if, y is connected to x, hence

pdeg xqPx,y “ pxÑ yq “ py Ñ xq “ pdeg yqPy,x .

It follows that the invariant probability is

πpxq “
deg x

ř

yPS deg y
.

and the MC is reversible.

Exercise 8 (Hastings-Metropolis). Consider the following problem: Given a Markov ma-
trix Q on a finite S and a probability function π on S, define the matrix

Px,y “

#

Qx,yαpx, yq if x ‰ y

Qx,x `
ř

z‰xQx,zp1´ αpx, zqq if x “ y
,

where 0 ď αpx, yq ď 1 Notice that Px,y ě 0 amd
ÿ

yPS

Px,y “
ÿ

y‰x

Qx,yαpx, yq `Qx,x `
ÿ

z‰x

Qx,zp1´ αpx, zqq “ Qx,x `
ÿ

z‰x

Qx,z “ 1 .

The Markov matrix P is reversible with invariant probability π if

πpxqQx,yαpx, yq “ πpyqQy,xαpy, xq , x ‰ y .

One possible choice is

αpx, yq “ 1^
πpyqQy,x

πpxqQx,y

.
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