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1. Martingales

1. A finite or infinite sequence X0, X1, . . . of integrable real random variables of the
probability space pΩ,F , µq is a martingale if all k ě 1 in the index set it holds

E pXk|Xi : i ă kq “ Xk´1

that is,

E pXkgpX0, . . . , Xk´1qq “ E pXk´1gpX0, . . . , Xk´1qq

for all bounded measurable g. Notice that the property of being a martingale refers to a
condition on the conditional distribution of the variables in the sequence with respect to
the past namely, if µXk|X0,...,Xk´1

is the conditional distribution of Xk given X0, . . . , Xk´1,
then the martingale condition is

ż

y µXk|X0,...,Xk´1
pdy|X0, . . . , Xk´1q “ Xk´1 µ-a.s.

The theory of martingales is fully developed in [1, Part B]. Here we discuss only a few
basic fact in form of exercises.

Exercise 1. (1) Let X, Y be Bernoulli variables with pX,Y px, yq “ P pX “ x, Y “ yq,
x,“ 0, 1. Write the condition on the joint probability function pX,Y equivalent to
rX, Y s being a martingale.

(2) Let rX Y sT „ N2 pµ,Σq. Write the condition on µ and Σ equivalent to rX, Y s
being a martingale.

(3) Let be given a sequence of measurable functions X0, . . . , Xn of the measurable
space pΩ,Fq. The set of all probabilities such that the given sequence is a mar-
tingale is a convex set.

(4) Let Fk, k “ 0, . . . , n, be an increasing sequence of sub-σ-algebras of F . Such a
sequence is called a filtration. The sequence Xk, k “ 0, . . . n, is adapted to the
given filtration if each Xk is Fk-measurable. Each sequence is adapted to the
natural filtration Fk “ σX0, . . . , Xk, k “ 0, . . . n. Show that the sequence is a
martingale if

E pXk|Fk´1q “ Xk´1 k ě 1 .
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(5) Assume the sequence of real integrable random variables rX0, . . . , Xns is adapted
to the filtration pFkq

n
k“0. Then, it is a martingale if, and only if, E pXk ´Xk´1|Fk´1q “

0.
(6) Let Z1, . . . be a sequence of independent integrable real random variables of the

probability space pΩ,F , µq and assume E pZkq “ 0 for all k. The sequence Xk “
ř

iďk, k “ 0, 1, . . . , is the symmetric random walk. Show that X0, Xi, . . . is a
martingale. Let φ : R Ñ R be a bounded measurable function. Under which
condition the sequence φpX0q, φpX1q, . . . is a martingale?

(7) Let Z1, . . . , Zn be a sequence of independent integrable real random variables of
the probability space pΩ,F , µq. Let be given a initial value x0 P R and sequence
of bounded measurable functions sk : Rk´1 Ñ R. Let us call such a sequence a
strategy. Define X0 “ x0 and Xk “ Xk´1 ` ZkskpX0, . . . , Xk´1q. Such a sequence
is called the total gain. Show that it is a martingale for any strategy if, and only if,
E pZkq “ 0, k ě 1. Show that in fact it is enough to assume that E pZk|Fk´1q “ 0.
No non-anticipating strategy can transform a martingale into something else.

(8) Consider a martingale Xk, k “ 0, . . . n for the filtration Fk, k “ 0, . . . , n. A
stopping time or optional time is a random variable T with values in t0, . . . , nuY8
such that tT “ ku P Fk, k “ 0, . . . , n. Give an example of stopping time. The
stopped process is defined by XT

k “ XT^k. Show that the stopped process is a
martingale for the same filtration as the original one. The stopped process is a
martingale based on a strategy.

(9) A Gaussian vector X “ rX0 ¨ ¨ ¨Xns is a martingale if, and only if, the increments
Xk ´ Xk´1, k ě 1, are independent. Compute the distribution of X. Which
are the free parameters in the distribution of X? [Hint: Consider the increments
Zk “ Xk ´ Xk´1, k “ 1, . . . , n. If pFkq

n
k“0 be the natural filtration. We want

E pZk|Fk´1q “ 0, k ě 1. The filtration generated by X0, Z1, . . . is equal to the
natural filtration of rXks

n
k“1. It follows that the sequence x0, Z1, . . . is indepen-

dent.]

2. Conditional independence

Conditional independence is a key property in Statistics e.g. Graphical Models, in
Stochastic Processes e.g., Markov processes, in Random Fields, in Machine Learning.

2 (Conditional independence).

(1) The non-null events A,B,C are such that A and C are independent given B,
AKKC|B, if each one of the following equivalent conditions are satisfied:

P pAX C|Bq “ P pA|BqP pC|Bq

P pA|B X Cq “ P pA|Bq

P pAXB X CqP pBq “ P pAXBqP pB X Cq

Notice that the last condition is meaningful even if some of the events has is a
null event.

(2) Random variables Y1, Y3 are conditionally independent given the random variable
Y2, Y1KKY3|Y2 if each one of the following equivalent conditions are satisfied. If
fi, i “ 1, . . . , 3, are bounded,

E pf1pY1qf3pY3q|Y2q “ E pf1pY1q|Y2qE pf3pY3q|Y2q

E pf1pY1q|Y2, Y3q “ E pf1pY1q|Y2q
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(3) Let µpY1,Y3q|Y2 be the conditional distribution of pY1, Y3q given Y3. Then, Y1KKY3|Y2
if, and only if, µpY1,Y3q|Y2 “ µY1|Y2 b µY3|Y2 .

(4) A stochastic process Y1, . . . , YN is a Markov Process if

pY1, . . . , YkqKKpYk, . . . , YNq|Yk , k “ 2, . . . , N ´ 1 .

Exercise 2. Prove the equivalence of the statements for conditional indendence of events.

Exercise 3. Prove the equivalence of the two statement for conditional independence of
random variables.

Exercise 4. Let be given a Gaussian white noise Z1, . . . , Zn and a further independent
gaussian random variable X0. For each real α define Xk “ αXk´1 ` Zk, k ě 1. Show
that it is a Markov process.

Proposition 1. Let be given

Y “

»

–

Y1
Y2
Y3

fi

fl „ Nn1`n2`n3

¨

˝

»

–

b1
b2
b3

fi

fl ,

»

–

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

fi

fl

˛

‚

We have Y1KKY3|Y2 if, and only if, Σ13 “ Σ12Σ
`
22Σ23. In such a case,

„

Y1
Y3

ˇ

ˇ

ˇ

ˇ

pY2 “ y2q „ Nn1`n3

ˆ„

b1
b3



`

„

Σ12

Σ32



Σ`22py2 ´ b2q,

„

Σ1|2 0
0 Σ3|2

˙

and

Y1|pY2 “ y2, Y3 “ y3q “ Y1|pY2 “ y2q „ Nn1

`

b1 ` Σ1,2Σ
`
22py2 ´ b2q,Σ1|2

˘

Proof. Let us apply the conditioning formula to the partitioned Gaussian vector
»

–

Y1
Y3
Y2

fi

fl „ Npn1`n3q`n2

¨

˝

»

–

b1
b3
b2

fi

fl ,

»

–

Σ11 Σ13 Σ12

Σ31 Σ33 Σ32

Σ21 Σ23 Σ22

fi

fl

˛

‚ .

Let us compute the matrix

Lp13q2 “ Σp13q2Σ
`
22 “

„

Σ12

Σ32



Σ`22 “

„

Σ12Σ
`
22

Σ32Σ
`
22



and the conditional variance

Σp13q|2 “ Σp13qp13q ´ Lp13q2Σ2p13q “
„

Σ11 Σ13

Σ31 Σ33



´

„

Σ12Σ
`
22

Σ32Σ
`
22



“

Σ21 Σ23

‰

“

„

Σ11 Σ13

Σ31 Σ33



´

„

Σ12Σ
`
22Σ21 Σ12Σ

`
22Σ23

Σ32Σ
`
22Σ21 Σ32Σ

`
22Σ23



“

„

Σ11 ´ Σ12Σ
`
22Σ21 Σ13 ´ Σ12Σ

`
22Σ23

Σ31 ´ Σ32Σ
`
22Σ21 Σ33 ´ Σ32Σ

`
22Σ23



Then Y1KKY3|Y2 if, and only if, the conditional variance is block-diagonal, Σ13 “

Σ12Σ
`
22Σ23.

Consider now the partition
»

–

Y1
Y2
Y3

fi

fl „ Nn1`pn2`n3q

¨

˝

»

–

b1
b2
b3

fi

fl ,

»

–

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

fi

fl

˛

‚ .
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We have

L1p23q “ Σ1p23qΣ
`

p23qp23q “
“

Σ12 Σ13

‰

„

Σ22 Σ23

Σ32 Σ33

`

and

Σ1|p23q “ Σ11 ´ L1p23qΣp23q1 “ Σ11 ´
“

Σ12 Σ13

‰

„

Σ22 Σ23

Σ32 Σ33

` „

Σ21

Σ31



.

The conditional distribution is

Y1|pY2 “ y2, Y3 “ y3q „

Nn1

˜

b1 ` L1p23q

„

y2 ´ b2
y3 ´ b3



,Σ11 ´
“

Σ12 Σ13

‰

„

Σ22 Σ23

Σ32 Σ33

` „

Σ21

Σ31



¸

We can write the conditional independence condition as

“

Σ12 Σ13

‰

„

I ´Σ`22Σ23

0 I



“

„

Σ12 ´Σ12Σ
`
22Σ23 ` Σ13

0 I



“
“

Σ12 0
‰

This computation points to the Schur complement lemma. Check first that
„

Σ22 Σ23

Σ32 Σ33



“

„

I 0
Σ32Σ

`
22 I

 „

Σ22 0
0 Σ3|2

 „

I Σ`22Σ23

0 I .



Then check that
„

Σ22 Σ23

Σ32 Σ33

`

“

„

I ´Σ`22Σ23

I

 „

Σ`22 0
0 Σ`3|2

 „

I
´Σ32Σ

`
22 I .



It follows that

L1p23q “
“

Σ12 Σ13

‰

„

Σ22 Σ23

Σ32 Σ33

`

“

“

Σ12 Σ13

‰

„

I ´Σ`22Σ23

0 I

 „

Σ`22 0
0 Σ`3|2

 „

I 0
´Σ32Σ

`
22 I



“

“

Σ12 0
‰

„

Σ`22 0
0 Σ`3|2

 „

I 0
´Σ32Σ

`
22 I



“
“

Σ12Σ
`
22 0

‰

„

I 0
´Σ32Σ

`
22 I



“

“

Σ12Σ
`
22 0

‰

,

so that,

Σ1|p23q “ Σ11 ´
“

Σ12Σ
`
22 0

‰

„

Σ21

Σ31



“ Σ11 ´ Σ12Σ
`
22Σ21 “ Σ1|2 .

�

Exercise 5. Let Y “ pY1, Y2, Y3, Y4q be a Gaussian vector with zero mean and such that
each component is standard. Write the conditions imposed on the elements of the covari-
ance matrix by the Markov property.

Exercise 6 (Martingale problem). (1) Let Y0, Y1, . . . , YN be a Markov process, each
random variable having values in the measurable space pS,Sq. Given any bounded

measurable φ : S Ñ R define the new process Xφ
0 “ φpY0q,

Xφ
t “ Xφ

t´1 ` φpYtq ´ E pφpYtq|Y0, . . . , Yt´1q , t ě 1 .

Then, Xφ
t is pY0, . . . , Ytq-measurable and has the martingale property

E
´

Xφ
t

ˇ

ˇ

ˇ
Y0, . . . , Yt´1

¯

“ Xφ
t´1 .
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(2) Because the Markov property is a property of conditional independence, we know
that

E pφpYtq|Y0, . . . , Yt´1q “ E pφpYtq|Yt´1q “

ż

φpyq µYt|Yt´1pdy|Yt´1q .

The family of operators φ ÞÑ Atφ, t “ 1, . . . , N , defined by Aφpxq “ φpxq ´
ş

φpyq µYt|Yt´1pdy|xq is called the generator of the Markov process. We have

Xφ
t ´X

φ
t´1 “ AφpXφ

t´1q
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