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Conditioning is one among the core concepts in reasoning about uncertainty in Proba-
bility, in Statistics, in Economics, in Machine Learning. In this notes we refer mainly to
the textbook by D. Williams [2, Ch. 9]. A concise and fully rigorous review of the basic
mathematics is in the monograph by C. Dellacherie and P.-A. Meyer [1, Ch. I-III].

1. Conditional expectation

Exercise 1. Let X be a measurable function from pΩ,Fq to pS,Sq. Let G be the σ-
algebra generated by X i.e., G “ X´1S. Every G-measurable real random variable Y
is of the form Y “ f ˝ X, where f is a real random variablle on pS,Sq. [Hint: If Y
is simple, Y “

řn
j“1 yj1Bj

, with Bj P G, then Bj “ X´1pAjq, Aj P S. It follows that

Y “
řn
j“1 yj1X´1pAjq “

řn
j“1 yj1Aj

˝X, hence f “
řn
j“1 yj1Aj

. If X is non-negative, take

an increasing sequence of simple random variable . . . ]

Definition 1. Let pΩ,F , µq be a probability space, X a real random variable with finite

expectation, Eµ r|X|s ă `8, G a sub-σ-algebra of F . A random variable pX is a version
of the conditional expectation of X given G if, and only if,

(1) pX is integrable and G-measurable;
(2) for all bounded and G-measurable random variable it holds

Eµ
”

G pX
ı

“ Eµ rGXs .

The sub-µ in the notation is there to remember that the conditional expectation de-
pends on the probability. The conditions (1) and (2) in the definition provide actual
equations to compute the conditional expectation, as the following examples show.

Exercise 2. If X is a real random variable with a positive density p, let G be the σ-
algebra generated by |X|. That is, the absolute value only, not the sign, is observed.
In this case the conditional expectation of X given G “ σp|X|q, breafly, given |X|, is a

random variable of the form pX “ f̂p|X|q (condition (1)) such that E
´

pXG
¯

“ E pXGq
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for all G “ gp|X|q, g bounded (condition (2)). As a density is given, we write the defining
equation

ż

f̂p|x|qgp|x|qppxq dx “

ż

xgp|x|qppxq dx .

[Hint: To compute f̂ , split
ş

“
ş0

´8
`
ş`8

0
and change the variable x Ñ ´x in the first

integral to get
ż `8

0

f̂p|x|qgp|x|qpppxq ` pp´xqq dx “

ż `8

0

gp|x|qpxppxq ´ xpp´xqq dx ,

hence

f̂p|x|qpppxq ` pp´xqq “ xppxq ´ xpp´xq .

Finally, notice that xppxq´xpp´xq
ppxq`pp´xq

is symmetric.]

Exercise 3. Let S1, S2 be independent and exponential with mean 1. The joint density
is pS1,S2px1, x2q “ e´px1`x2qpx1, x2 ą 0q. We want to compute the conditional expectation

of S1 given S1 ` S2. We need to find f̂ such that for all bounded g we have
8
ĳ

0

f̂px1 ` x2qgpx1 ` x2qe
´px1`x2q dx1dx2 “

8
ĳ

0

x1gpx1 ` x2qe
´px1`x2q dx1dx2 .

[Hint. Let us make the transformation y “ x1 ` x2, z “ x1. The inverse transformation
is x1 “ z, x2 “ y ´ z with determinant ´1. We have

px1, x2 ą 0q “ pz ą 0qpy ´ z ą 0q “ p0 ă z ă yq

then the equation becomes
ĳ

t0ăzăyu

f̂pyqgpyqe´y dydz “

ĳ

t0ăzăyu

zgpyqe´y dzdy .

Computing the dz integrals on both sides we get
ż 8

0

f̂pyqgpyqye´y dy “

ż 8

0

gpyq
y2

2
e´y dy ,

hence f̂pyq “ y
2
.]

Exercise 4. Let Z “ pZ1, Z2q „ N2 p0, Iq and define X “ Z1, Y “ Z1`Z2, G “ σpY q. To

compute a version of E pX|Gq we look for a function f̂ such that f̂pY q satisfies

E pXgpY qq “ E
´

f̂pY qgpY q
¯

for all bounded g .

[Hint: As
„

X
Y



“

„

Z1

Z1 ` Z2



“

„

1 0
1 1

 „

Z1

Z2



we have pX, Y q „ N2

ˆ

0,

„

1 1
1 2

˙

and Y „ N1 p0, 2q. We have det

ˆ„

1 1
1 2

˙

“ 1 and
„

1 1
1 2

´1

“

„

2 ´1
´1 1



so that the density of pX, Y q

pX,Y px, yq “ p2πq
´1 exp

ˆ

´
1

2
p2x2

´ 2xy ` y2
q

˙

.
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We want
ĳ

xgpyq p2πq´1 exp

ˆ

´
1

2
p2x2

´ 2xy ` y2
q

˙

dx dy “

ż

f̂pyqgpyq p2π ¨ 2q´1{2 exp

ˆ

´
1

2 ¨ 2
y2

˙

dy

Let us perform first the dx integration in the RHS:
ż

x exp

ˆ

´
1

2
p2x2

´ 2xy ` y2
q

˙

dx “

ż

x exp

ˆ

´

ˆ

x2
´ xy `

1

2
y2

˙˙

dx “

ż

x exp

˜

´

ˆ

x´
1

2
y

˙2

´
1

4
y2

¸

dx “

exp

ˆ

´
1

4
y2

˙
ż

π1{2x π´1{2 exp

˜

´

ˆ

x´
1

2
y

˙2
¸

dx “

π1{2

2
y exp

ˆ

´
1

4
y2

˙

.

The defining equality becomes

ż

gpyq p2πq´1π
1{2

2
y exp

ˆ

´
1

4
y2

˙

dy “

ż

fpyqgpyq p2π ¨ 2q´1{2 exp

ˆ

´
1

2 ¨ 2
y2

˙

dy

so that, g being generic, f̂pyq “ y{2. (We are going to see below a simpler and more
principled way to do this computation.)]

1. As the equation Eµ
”

Gp pX ´Xq
ı

“ 0, G P L8pGq, is linear in G and continuous under

bounded pointwise convergence, it is enough to check it for random variables of the for
1C , C P C, C π-system generating G. [Monotone-Class Theorem [2, ¶3.14].]

2 (Almost sure equivalence). If pX1, pX2, are two versions of the conditional expectation of

X, then Eµ
”

Gp pX1 ´ pX2q

ı

“ 0 i.e. pX1 “ pX2 µ-almost-surely. [Take G “ sign
´

pX1 ´ pX2

¯

to get Eµ
”
ˇ

ˇ

ˇ

pX1 ´ pX2

ˇ

ˇ

ˇ

ı

“ 0.] More generally, if X1 “ X2 µ-almost-surely, then pX1 “ pX2

µ-almost-surely. We write Eµ pX|Gq to denote the µ-class of versions and, with abuse

of notation, pX “ Eµ pX|Gq. If L1pF , µq is the vector space of classes µ-equivalent real
random variables, there exists a mapping

L1
pF , µq Q X ÞÑ Eµ pX|Gq P L1

pG, µq .

3 (Existence). The fact that the previous mapping is actually defined on all of L1pF , µq,
is discussed in [2, ¶9.5]. We skip this discussion, together with a related issue namely,
the notion of µ-complete σ-algebra. Many proofs of existence are actually available, ei-
ther based on some result of Functional Analysis (existence of orthogonal projection), or
based on results from advanced Measure Theory such as the Radon-Nikodým Theorem
(see below). Here, we are mainly focused on either computing a version of the conditional
expectation of a given random variable, or checking that a random variable is a version
of the conditional expectation of some random variable. We have defined the conditional
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expectation for integrable random variables. It is possible to define the conditional ex-
pectation for positive random variables, see the comments below about properties of the
conditional expectation.

4 (Image of a density). On the measurable space pΩ,Fq, consider the probility measure
µ and the probability density P . If Φ is measurable from pΩ,Fq to pS,Sq, consider the
image of the probability measure p ¨µ under Φ. The image ν “ Φ#pp ¨µq is characterized
by

ż

S

gpyq νpdyq “

ż

Ω

g ˝ Φpxq ppxqµpdxq, g P L8pS,Sq .

Now, g ˝ Φ is the generic bounded σpΦq-measurable random variable, then
ż

Ω

g ˝ Φpxq ppxqµpdxq “

ż

Ω

g ˝ Φpxq pp ˝ Φpxqµpdxq ,

where pp ˝Φ is a version of the conditional expectation of p given σpΦq. Now apply again
the definition of image to the RHS to get

ż

S

gpyq Φ#pp ¨ µqpdyq “

ż

S

gpyqpppyqΦ#pµqpdyq .

We have found the density of the image measure.

5 (Projection property). Let H be a sub-σ-field of G. It is easy to check that

Eµ pEµ pX|Gq|Hq “ Eµ pX|Hq .

In particular, the conditional expectation operator X ÞÑ Eµ pX|Fq is a projection op-
erator on L1pF , µq. [ One could say that it is the transposed operator of the injection
operator L8pGq Ñ L8pFq.

6 (Orthogonal projection). The conditioning operator is an orthogonal projection. As-

sume Y in L2pΩ,F , µq that is, E pY 2q ă 8. If pY “ E pY |Gq, then pY P L2pΩ,G, µq
and

E
´

pY ´ pY qZ
¯

“ 0 , z P L2
pΩ,G, µq .

This property should not be confused with linear regression. Let de given Y P L2 and
letX1, . . . , Xm P L

2 be explanatory variables. We want a vector θ “ pθ0, θ1, . . . , θdq P Rd`1

such that

quadratic error “ E

¨

˝

˜

Y ´ θ0 ´

d
ÿ

j“1

θjXj

¸2
˛

‚

be minimum. As a function of θ the quadratic error is a convex function then the
minimum is obtained by imposing the gradient to be zero.

Exercise 5. Check all detail of the previous paragraph.

Exercise 6 (Examples). (1) If G “ tH,Ωu, then Eµ pX|Gq “ Eµ rXs.
(2) If G “ F , then Eµ pX|Gq “ X.
(3) Let tA1, . . . , Anu be a measurable partition of Ω and let G “ σpA1, . . . , Anq.

Assume µpAjq ‰ 0, j “ 1, . . . , n. It holds

Eµ pX|Gq “
n
ÿ

j“1

ş

Aj
X dµ

µpAjq
1Aj

“

n
ÿ

j“1

Eµ pX|Ajq1Aj
.
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7 (Conditioning to a random variable). Let pS,Sq be a measurable space, Y : Ω Ñ S a
measurable mapping, and Y “ σpY q “ Y ´1pSq. A real random variable is Y-measurable
if, and only if, it is of the form φ ˝Y , where φ is a real random variable on pS,Sq. In this
situation, the definition of conditional expectaion is rephrased as follows. A version of the
conditional expectation of X given σpY q is a µ-integrable real random variable of the form
pφµ,X ˝ Y such that for all bounded measurable φ : S Ñ R it holds Eµ

”

φpY qpφµ,XpY q
ı

“

Eµ rφpY qXs. Notice that we could write this in terms of the joint distribution of the

random variables X and Y as
ş

φpyqpφµ,Xpyq µY pdyq “
ş

φpyqx µX,Y pdxdyq. An imprecise,
but widely used, notation is φµ,Xpyq “ Eµ pX|Y “ yq, which is called the expected value
of X, given Y “ y.

8 (Special cases). (1) If XKKY then Eµ pX|σpY qq “ Eµ rXs. in fact,
ż

φpyqx µX,Y pdxdyq “

ż

φpyq

ˆ
ż

x µXpdxq

˙

µY pdyq .

(2) If XKKY then Eµ pfpX, Y q|σpY qq “
ş

fpx, Y q µXpdxq. In this case we have
ż

φpyqfpx, yq µX b µY pdxdyq “

ż

φpyq

ˆ
ż

fpx, yq µXpdxq

˙

µY pdyq .

(3) Let X, Y , be random variables in Rm such that pX ´ Y qKKY . Then

Eµ pfpY q|σpY qq “ Eµ pfppX ´ Y q ` Y q|σpY qq “

ż

fps, Y q µpX´Y qpdsq .

Cf. the Gaussian case below.
(4) If µX,Y pdx, dyq “ pX,Y ¨ νX b νY , then µY “

`ş

ppx, yq νXpdxq
˘

¨ νY pdyq and the
characteristic equality becomes

ż

φpyqφXpyq

ˆ
ż

ppx, yq νXpdxq

˙

¨ νY pdyq “

ż

φpyq

ˆ
ż

x pX,Y νXpdxq

˙

νY pdyq ,

hence we can take

pφXpyq “

ż

x pX|Y px|yq νXpdxq, pX|Y px|yq “
pX,Y px, yq

pXpxq
.

9 (Properties). All random variables are defined on the probability space pΩ,F , µq and
G is a sub-σ-algebra of F

(1) Normalization. Eµ p1|Gq “ 1.

(2) G-Linearity. If Eµ pX|Gq “ pX and Eµ pY |Gq “ pY , then Eµ pAX `BY |Gq “
A pX `BpY µ-almost-surely if A,B P L8pGq.

(3) Positivity. If X ě 0 and Eµ pX|Gq “ pX, then pX ě 0. Linearity and positiv-
ity together imply monotonicity. [Hint: take G “ 1t pXď0u in the characteristic

property]
(4) Normalization, linearity and monotonicity together imply Jensen inequality. As-

sume Φ: RÑ R and assume both X and ΦpXq are integrable. Let x ÞÑ a` bx ď

Φpxq. Then a ` bEµ pX|Gq ď Eµ pΦpXq|Gq. Chose a version pX “ Eµ pX|Gq Be-
cause of the convexity, for each ω P Ω, there exists coefficients apωq, bpωq such that

apωq ` bpωq pXpωq “ Φp pXpωqq. We have shown that ΦpEµ pX|Gqq ď Eµ pΦpXq|Gq.
In particular, Eµ p|X||Gqα ď Eµ p|X|

α
|Gq if α ě 1.
5



(5) Monotone convergence. If 0 ď Xn Ò X and pXn “ Eµ pXn|Gq, n P N, then random

variable pX defined by pXn Ò pX is such that Eµ
”

G pX
ı

“ Eµ rGXs if 0 ď G P L8pGq.
It follows immediatly from the monotone convergence for the expectation [Notice
that here we are assuming each Xn to be ’integrable so that the conditional
expectation is defined. This is not necessary if we define conditional expectation
for non-negative random variable as it was for che expectation. We do not consider
this generalization in this notes.] If moreover X happens to be integrable, then
pX “ Eµ pX|Gq.

(6) Fatou lemma. If 0 ď Xn and pXn “ Eµ pXn|Gq, n P N, then ^měnXm ď Xm if m ě

n, so that Eµ p^měnXm|Gq ď ^měn Eµ pXm|Gq. From the monotone convergence it
follows Eµ rGplim infnÑ8Xnqs ď Eµ rGplim infnÑ8 Eµ pXn|Gqqs if G P L8pGq and
G ě 0. If lim infnÑ8Xn is integrable, then we can write Eµ plim infnÑ8Xn|Gq ď
lim infnÑ8 Eµ pXn|Gq.

(7) Dominated convergence. If in the fatou lemma we assume that the sequence
pXnqnPN is dominated by the integrable random variable Y , by considering the
non-negative sequence pY ´XnqnPN we can obtain the inequality

Eµ

´

lim inf
nÑ8

Xn

ˇ

ˇ

ˇ
G
¯

ď lim inf
nÑ8

Eµ pXn|Gq ď lim sup
nÑ8

Eµ pXn|Gq ď Eµ

ˆ

lim sup
nÑ8

Xn

ˇ

ˇ

ˇ

ˇ

G
˙

.

If the sequence is convergent, then lim infnÑ8Xn “ limnÑ8Xn “ lim supnÑ8Xn

hence lim infnÑ8 Eµ pXn|Gq “ lim supnÑ8 Eµ pXn|Gq and the sequence of condi-
tional expectations is convergent to the expectation of the limit. The condition of
positivity can be dropped by decomposing the positive and negative part of the
sequence and the limit.

2. Conditional distribution

10 (Transition probability measure). Given a product measurable space pΩ1ˆΩ2,F1bF2q

a transition is a mapping µ1|2 : F1 ˆ Ω2 such that

(1) for each x2 P Ω2 tha mapping F1 Q A1 ÞÑ µ1|2pA1|x2q is a probability measure on
pΩ1,F1q and

(2) for each A1 P F1 the mapping Ω2 Q x2 ÞÑ µ1|2pA1|x2q is F2-measurable.

11 (Integration of probability measures). Given a transition µ1|2 on pΩ1 ˆ Ω2,F1 b F2q

and a probability measure µ2 on pΩ2,F2q, there exists a unique probability measure
µ “

ş

µ1|2 dµ2 on the product measurable space such that for each positive or µ-integrable
function f : Ω2 ˆ Ω2 Q px1, x2q ÞÑ fpx1, x2q it holds

ż

f dµ “

ż
ˆ
ż

fpx1, x2q µ1|2pdx1|x2q

˙

µ2pdx2q .

The measure µ is characterised on functions of the form fpx1, x2q “ f1px1qf2px2q by
ż

f1f2 dµ “

ż
ˆ
ż

f1px1q µ1|2pdx1|x2q

˙

f2px2q µ2pdx2q .

[The proof is a simple variation of the argument for Fubini theorem.]

12 (Transition densities). A simple case occurs when the transition has the form

µ1|2pA1|x2q “

ż

A1

p1|2px1|x2q ν1pdxq, A1 P F1, x2 P Ω2

6



where px1, x2q ÞÑ p1|2px1|x2q is measurable on the product space pΩ1,Ω2,F1 b F2q and
x1 ÞÑ p1|2px!|x2q is a ν1-probability density for each x2 P Ω2. In such a case,

ż
ˆ
ż

f1px1q µ1|2pdx1|x2q

˙

f2px2q µ2pdx2q “

ż
ˆ
ż

f1px1qp1|2px1|x2qν1pdx1q

˙

f2px2q µ2pdx2q “

ĳ

f1px1qf2px2qp1|2px1|x2q ν1pdx1qµ2pdx2q ,

that is, µ “ p1|2 ¨ν1bµ2. If moreover the second measure has itself a density, µ2 “ p2 ¨ν2,
then µ “ pp1|2 b p2q ¨ ν1 b ν2

Exercise 7 (Examples).

(1) Let X be a real random variable with positive density p. The conditional distri-
bution of X given |X| is

(2) Let T1, T2 be independent and Expp1q. Then the distribution of T1 given T1`T2 “

t is uniform on s0, tr.
(3) If pY1, Y2q „ Nn1`n2 p0,Σq, det Σ ‰ 0, find the conditional distribution of Y1 given

Y2.
(4) If Y1, Y2 are independent and N1 p0, 1q, find the distribution of pY1, Y2q given Y 2

1 `

Y 2
2 .

13 (Regular version of the conditional expectation). With the notations above, denoting

withX1, X2 the coordinate projection, the random variable pfpX2q “
ş

fpx1, X2q µ1|2pdx1|X2q

is a version of the conditional expectation Eµ pfpX1, X2q|σpX2qq, namely a regular version.
In fact,

Eµ rfpX1, X2qgpX2qs “

ż
ˆ
ż

fpx1, x2q µ1|2pdx1|x2q

˙

gpx2q µ2pdx2q “ Eµ
”

pfpX2qgpX2q

ı

.

3. Conditioning of jointly Gaussian vectors

Exercise 8. Recall that for each Σ P Sym`pnq there exists an orthogonal U P Opnq and
a non-negative diagonal Λ “ diag pλ1, . . . , λnq such that Σ “ UΛU˚. By discarding the
zero eigen-values, we can write Σ “ SDS˚ with S P Mat pnˆ rq, S˚S “ Ir, and D
positive diagonal, where r is the rank of Σ. If D “ diag pλ1, . . . , λrq, we define D´1 “

diag
`

λ´1
1 , . . . , λ´1

r

˘

and Σ` “ SD´1S˚. It follows that

Σ`Σ “ SD´1S˚SDS˚ “ SS˚ and ΣΣ˚ “ SDS˚SD´1S˚ “ SS˚ .

We have Π “ SS˚ P Sym`pnq and Π2 “ Π. The matrix Π is the orthogonal projector
onto the image of Σ. In fact, for all x P Rn,

Πx “ SS˚x “ SDS˚SD´1S˚x “ ΣSD´1S˚x .

Moreover, for each x, y P Rn

px´ Πxq ¨ pΣyq “

px´ Πxq˚pΣyq “ rpI ´ SS˚qxs˚pSDS˚yq “ x˚pI ´ SS˚qSDS˚y “

x˚pSDS˚ ´ SS˚SDS˚q “ 0

Proposition 1.
7



(1) The Gaussian random vector with components

rY1 “ Y1 ´ pb1 ` L12pY2 ´ b2qq , L12 “ Σ12Σ`22

rY2 “ Y2 ´ b2

is such that E
´

rY1

¯

“ 0, Var
´

rY1

¯

“ Σ11 ´ Σ12Σ`22Σ21, and rY1 KK rY2. It follows

E pY1|Y2q “ b1 ` L12pY2 ´ b2q

(2) The conditional distribution of Y1 given Y2 “ y2 is Gaussian with

Y1|pY2 “ y2q „ Nn1 pb1 ` L12py2 ´ b2q,Σ11 ´ L12Σ21q

(3) The conditional density of Y1 given Y2 “ y2 in terms of the partitioned concentra-
tion is

pY1|Y2py1|y2q “ p2πq
´

n1
2 det

`

K1|2

˘
1
2 ˆ

exp

ˆ

´
1

2
py1 ´ b1 ´K

´1
11 K12py2 ´ b2qq

TK11py1 ´ b1 ´K
´1
11 K12py2 ´ b2qq

˙

Proof. (1) We have
„

rY1

rY2



“

„

I ´Σ12Σ`22

0 I

 „

Y1 ´ b1

Y2 ´ b2



„ Nn1`n2

ˆ

0,

„

Σ1|2 0
0 Σ22

˙

It follows

E pY1|Y2q “ E
´

rY1 ` b1 ` L12pY2 ´ b2q

ˇ

ˇ

ˇ
Y2

¯

“ E
´

rY1

¯

` b1 ` L12pY2 ´ b2q

(2) The conditional distribution of Y1 given Y2 is a transition probability µY1|Y2 : BpRn1qˆ

Rn2 such that for all bounded f : Rn1

E pfpY1q|Y2q “

ż

fpy1q µY1|Y2pdy1|Y2q.

We have

E pfpY1q|Y2q “ E
´

fprY1 ` E pY1|Y2qq

ˇ

ˇ

ˇ
Y2

¯

“

ż

fpx` E pY1|Y2qq γpdx; 0,Σ1|2q

where γpdx; 0,Σ1|2q is the measure of Nn1

`

0,Σ1|2

˘

. We obtain the statement by

considering the effect on the distribution Nn1

`

0,Σ1|2

˘

of the translation x ÞÑ
x` pb1 ` L12py2 ´ b2qq.

(3) A further application of the Schur complement gives
„

Σ11 Σ12

Σ21 Σ22



“

„

I Σ12Σ´1
22

0 I

 „

Σ1|2 0
0 Σ22

 „

I 0
Σ´1

22 Σ21 I



whose inverse is
„

K11 K12

K21 K22



“

„

I 0
´Σ´1

22 Σ21 I

 „

Σ´1
1|2 0

0 Σ´1
22

 „

I ´Σ12Σ´1
22

0 I



“

„

Σ´1
1|2 0

´Σ´1
22 Σ21Σ´1

1|2 Σ´1
22

 „

I ´Σ12Σ´1
22

0 I



“

„

Σ´1
1|2 ´Σ´1

1|2Σ12Σ´1
22

´Σ´1
22 Σ21Σ´1

1|2 Σ´1
22 Σ21Σ´1

1|2Σ12Σ´1
22 ` Σ´1

22


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In particular, we have K11 “ Σ´1
1|2 and K´1

11 K12 “ ´Σ12Σ´1
22 , hence

Y1|pY2 “ y2q „ Nn1

`

b1 ´K
´1K12py2 ´ b2q, K

´1
11

˘

so that the exponent of the Gaussian density has the factor

py1 ´ b1 `K
´1
11 K12py2 ´ b2qq

TK11py1 ´ b1 `K
´1
11 K12py2 ´ b2qq

�
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