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Conditioning is one among the core concepts in reasoning about uncertainty in Proba-
bility, in Statistics, in Economics, in Machine Learning. In this notes we refer mainly to
the textbook by D. Williams [2, Ch. 9]. A concise and fully rigorous review of the basic
mathematics is in the monograph by C. Dellacherie and P.-A. Meyer [1, Ch. I-ITI].

1. CONDITIONAL EXPECTATION

Ezercise 1. Let X be a measurable function from (2, F) to (5,8). Let G be the o-
algebra generated by X i.e., G = X~ 'S. Every G-measurable real random variable Y
is of the form Y = f o X, where f is a real random variablle on (S,S). [Hint: If V'
is simple, Y = 3", y;1p;, with B; € G, then B; = X~'(4;), A; € S. It follows that
Y =30 1 yilx-1a,) = 251 ¥ila, 0 X, hence f =37 y;1a,. If X is non-negative, take
an increasing sequence of simple random variable .. .]

Definition 1. Let (2, F, 1) be a probability space, X a real random variable with finite
expectation, E, [|X|] < +o0, G a sub-o-algebra of F. A random variable X is a version
of the conditional expectation of X given G if, and only if,

(1) X is integrable and G-measurable;
(2) for all bounded and G-measurable random variable it holds

B, |GX| =B, [GX] .

The sub-p in the notation is there to remember that the conditional expectation de-
pends on the probability. The conditions (1) and (2) in the definition provide actual
equations to compute the conditional expectation, as the following examples show.

Ezercise 2. If X is a real random variable with a positive density p, let G be the o-
algebra generated by |X|. That is, the absolute value only, not the sign, is observed.
In this case the conditional expectation of X given G = o(|X]|), breafly, given | X]|, is a

random variable of the form X = f(|X|) (condition (1)) such that E ()?G) = E(XG)
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for all G = ¢(|X|), g bounded (condition (2)). As a density is given, we write the defining
equation

Jf(lwl)g(lﬂ)p(x) dx = fxgﬂ:vl)p(x) da .

[Hint: To compute f, split = SO_OO + S; * and change the variable + — —z in the first
integral to get

400

L i (2l g () (p(x) + p(—2)) do = J g(|z)(zp(z) — xp(=2)) dx

0
hence

Fla)) (p(x) + p(—2)) = zp(z) — p(—) .

(z)—zp(—x)

Finally, notice that zg OETEORES symmetric.]

Exercise 3. Let S1,S3 be independent and exponential with mean 1. The joint density
is ps,.s, (71, 72) = e~ @1+22) (1 29 > 0). We want to compute the conditional expectation

of S given S; + Sy. We need to find f such that for all bounded g we have
0 0
Jf f(xl + 29)g(21 + 22)e” @) dayday = Jf 219(1 + 22)e” 1) dyyda,
0 0

[Hint. Let us make the transformation y = x7 + x9, 2 = x;. The inverse transformation
is x1 = 2z, x9 = y — z with determinant —1. We have

(1,20 >0)=(2>0)(y—2>0)=(0< z<y)

then the equation becomes

H FW)gly)e™ dydz = H zg(y)e ™ dzdy .
{0<z<y} {0<z<y}

Computing the dz integrals on both sides we get

0 2

Jw FW)gy)ye™ dy = J gy)Lev dy

0 0 2

hence f(y) = 2]

Ezercise 4. Let Z = (Z1,7Z5) ~ N9 (0,1) and define X =7, Y = Z, + Z5, G =o(Y). To
compute a version of E (X|G) we look for a function f such that f(Y') satisfies

E(Xg(Y)) =E ( f(Y)g(Y)) for all bounded ¢ .

X1 [ 2z 1 1ol
Y| |(Zi+ 2y |1 1| |2,
11 11
we have (X,Y) ~ N (O, [1 2]) and Y ~ Ny (0,2). We have det ([1 2]) = 1 and

[Hint: As

1 1] 2 -1 .
[1 2] - l_l 1 ] so that the density of (X,Y)

1
pxy(z,y) = (2m) " exp (—5(%2 — 2zy + yQ)) :
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We want

ng(y) (27) " exp (-%(2352 ~ay + y2)) do dy —
ff(y)g(y) (27 - 2) "2 exp (—%zf) dy

Let us perform first the dz integration in the RHS:

1 1
zoexp|—=22% —2xy+v*) | de = |z exp | — [ 2* — 2y + =1° dr =
2 2
1\* 1
Jx exp ( (x — §y) — Zgﬂ) dr =
1 1\?
exp | —=? mex Y exp |~ (2 — 2y dz =
4 2
/2 1,
ety )

The defining equality becomes

_ 1
ff(y)g(y) (27 - 2)" 2 exp (—n@ﬁ) dy
so that, g being generic, f (y) = y/2. (We are going to see below a simpler and more
principled way to do this computation.)]

1. As the equation E,, [G’()A( - X)] =0, G € L*(G), is linear in G and continuous under

bounded pointwise convergence, it is enough to check it for random variables of the for
1¢, C € C, C w-system generating G. [Monotone-Class Theorem [2, 43.14].]

2 (Almost sure equivalence). If X 1, )A(g, are two versions of the conditional expectation of
X, then E, [G()?l — )?2)] =0i.e. )2'1 = )A(g p-almost-surely. [Take G = sign ()?1 — )A(Q)

to get E, H)?l — )?QH = 0.] More generally, if X; = X5 p-almost-surely, then ),(\'1 = )?2
p-almost-surely. We write E, (X|G) to denote the p-class of versions and, with abuse

of notation, X = E, (X|G). If L*(F,p) is the vector space of classes u-equivalent real
random variables, there exists a mapping

LNF,p) 2 X —E,(X|G) e LY (G, u) .

3 (Existence). The fact that the previous mapping is actually defined on all of L'(F, u1),
is discussed in [2, 99.5]. We skip this discussion, together with a related issue namely,
the notion of u-complete o-algebra. Many proofs of existence are actually available, ei-
ther based on some result of Functional Analysis (existence of orthogonal projection), or
based on results from advanced Measure Theory such as the Radon-Nikodym Theorem
(see below). Here, we are mainly focused on either computing a version of the conditional
expectation of a given random variable, or checking that a random variable is a version

of the conditional expectation of some random variable. We have defined the conditional
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expectation for integrable random variables. It is possible to define the conditional ex-
pectation for positive random variables, see the comments below about properties of the
conditional expectation.

4 (Image of a density). On the measurable space (€2, F), consider the probility measure
w and the probability density P. If ® is measurable from (€2, F) to (S,S), consider the
image of the probability measure p -y under ®. The image v = ®4(p- p) is characterized
by

Lg<y> v(dy) = Lgo B(z) px)u(dz), ge LS, S) .

Now, g o ® is the generic bounded o(®)-measurable random variable, then

f g0 ®(x) ple)u(de) = j g0 () po d(x)u(dr) |
Q Q

where po ® is a version of the conditional expectation of p given o(®). Now apply again
the definition of image to the RHS to get

Lg(y) Dy(p-p)(dy) = f 9(y)p(y) Py (1) (dy) -

S
We have found the density of the image measure.

5 (Projection property). Let H be a sub-o-field of G. It is easy to check that
B, (B, (X[G)[H) = E, (X|H) .

In particular, the conditional expectation operator X — E, (X|F) is a projection op-
erator on L'(F, ). [ One could say that it is the transposed operator of the injection
operator L*(G) — LP(F).

6 (Orthogonal projection). The conditioning operator is an orthogonal projection. As-
sume Y in L2(€, F,p) that is, E(Y?2) < co. If Y = E(Y|G), then Y e L*(,G, p)
and

E((Y—?)Z) —0, 2eL*,G,p).

This property should not be confused with linear regression. Let de given Y € L? and
let X1,...,X,, € L? be explanatory variables. We want a vector @ = (6,0, . ..,0;) € RiH!
such that

J 2
quadratic error = E (Y — 6y — Z Hij>
j=1
be minimum. As a function of @ the quadratic error is a convex function then the
minimum is obtained by imposing the gradient to be zero.

Exercise 5. Check all detail of the previous paragraph.

FEzercise 6 (Examples). (1) If G = {,Q}, then E, (X|G) = E, [X].
(2) If G = F, then E, (X|G) = X.
(3) Let {A1,...,A,} be a measurable partition of 2 and let G = o(Ay,...,A4,).
Assume p(A;) # 0,5 =1,...,n. It holds

n a4, X dp =
E, (X|G) = —14. =) E, (X|4;)14. .
w (X[0) ;umj) 4 ;uum]
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7 (Conditioning to a random variable). Let (S5, S) be a measurable space, Y: 2 — S a
measurable mapping, and Y = o(Y) = Y1(S). A real random variable is Y-measurable
if, and only if, it is of the form ¢ oY, where ¢ is a real random variable on (S,S). In this
situation, the definition of conditional expectaion is rephrased as follows. A version of the
conditional expectation of X given o(Y') is a p-integrable real random variable of the form

qu,x oY such that for all bounded measurable ¢: S — R it holds E,, [gb(Y)qng (Y)} =

E,[¢(Y)X]. Notice that we could write this in terms of the joint distribution of the

random variables X and Y as Sgb(y)ggux( )y (dy) = §o(y)z pxy(dedy). An imprecise,
but widely used, notation is ¢, x(y) = E, (X]Y = y), which is called the expected value
of X, given'Y =y.

8 (Special cases). (1) If XY then E, (X|o(Y)) = E, [X]. in fact,

Jcﬁ(y)x pxy (dxdy) = Jcb(y) Ufc ux(dl’)) py (dy) -

(2) If XY then E, (f(X,Y)|o(Y)) =§ f(2,Y) px(dz). In this case we have

Jaﬁ (2,9) px ® py (drdy) = Jaﬁ <Jf(x,y) ux(dfc>) py (dy) -

(3) Let X, Y, be random variables in R™ such that (X —Y)1Y. Then

E, (F(Y)lo(Y)) = B, (X =Y) + V)lo(v)) = [ F(.Y) s (ds)

Cf. the Gaussian case below.

(4) If pxy(de,dy) = pxy - vx @ vy, then py = (§p(z,y) vx(dr)) - vy(dy) and the
characteristic equality becomes

Jotmoxt) ([sto vxtan)) vvtan) = [oto) ([ pxy vxta) wrian.

hence we can take

5x(0) = [ px(aly) wx(do), iy (aly) = 20

px(x)
9 (Properties). All random variables are defined on the probability space (€2, F, ) and
g is a sub-o-algebra of F
(1) Normalization. E,, (1|G) = 1.
(2) G-Linearity. 1If E,(X|g) = X and E,(Y|g) = Y, then E, (AX + BY|g) =
AX + BY ;- almost surely if A, B e £°°(g)

(3) Positivity. If X > 0 and E, (X|G) = X, then X > 0. Linearity and positiv-
ity together imply monotonlClty. [Hint: take G =1 (%<0} in the characteristic

property]|
(4) Normalization, linearity and monotonicity together imply Jensen inequality. As-
sume ®: R — R and assume both X and ®(X) are integrable. Let = — a + bz <
®(z). Then a + bE, (X|G) < E, (®(X)|G). Chose a version X = E, (X|G) Be-
cause of the convex1ty, for each w € ), there exists coefficients a(w), b(w) such that
a(w) + b(w)X (w) = ®(X (w)). We have shown that ®(E 4 (X1]G)) < E, (9(X)|G).
In particular, E, (| X||G)" < E, (|X|*G) if a > 1.
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(5) Monotone convergence. If 0 < X,, 1 X and X,, = E, (X,|G), n € N, then random
variable X defined by X, 1 X is such that E, [G)A(] =E,[GX]if0< G e LPG).

It follows immediatly from the monotone convergence for the expectation [Notice
that here we are assuming each X, to be ’integrable so that the conditional
expectation is defined. This is not necessary if we define conditional expectation
for non-negative random variable as it was for che expectation. We do not consider
this generalization in this notes.] If moreover X happens to be integrable, then
X =E, (X|G). R

(6) Fatou lemma. If 0 < X, and X, = E,, (X,,|G), n € N, then A, X, < X, if m >
n, so that E, (AnznXm|G) < Amsn E, (X5,]|G). From the monotone convergence it
follows E, [G(liminf,_, X,,)] < E,[G(liminf, . E, (X,|9))] if G € L*(G) and
G = 0. If liminf, ., X,, is integrable, then we can write E,, (liminf,_,,, X,,|G) <
liminf, . E, (X,|G).

(7) Dominated convergence. If in the fatou lemma we assume that the sequence
(X1)nen is dominated by the integrable random variable Y, by considering the
non-negative sequence (Y — X,,)nen We can obtain the inequality

g) |

If the sequence is convergent, then liminf, ., X, = lim,,_,, X,, = limsup,,_,,, X,
hence liminf, ., E, (X,|G) = limsup,_,, E, (X,|G) and the sequence of condi-
tional expectations is convergent to the expectation of the limit. The condition of
positivity can be dropped by decomposing the positive and negative part of the
sequence and the limit.

E, <hm inf X,

n—o0

> < liminfE, (X,|G) < limsupE, (X,,|G) < E, <lim sup X,
n—0o0

n—o0 n—00

2. CONDITIONAL DISTRIBUTION

10 (Transition probability measure). Given a product measurable space (§£2; x Qq, F1RF3)
a transition is a mapping py2: Fi x (23 such that

(1) for each x5 € Qy tha mapping F; 3 A; — pu1)2(Ai|z2) is a probability measure on
(24, F1) and
(2) for each A; € F; the mapping Qs 3 x5 — pu1)2(Ai|z2) is Fo-measurable.

11 (Integration of probability measures). Given a transition pi2 on (€ x Qo, F1 ® F3)
and a probability measure puy on (s, F3), there exists a unique probability measure
p = § pj2 dpo on the product measurable space such that for each positive or p-integrable
function f: Qg x Qs 3 (21, 22) — f(x1,22) it holds

ff dp = J(Jf(ﬂfbﬂfz) M12(d371!372)> pa(drs) -

The measure p is characterised on functions of the form f(x1,zo) = fi(z1)fo(x2) by

Jflf2 dp = J (Jfl(m) N12(d9€1|x2)) fa(2) pa(dzs) .

[The proof is a simple variation of the argument for Fubini theorem.|
12 (Transition densities). A simple case occurs when the transition has the form

H1\2(A1|152) = f p1|2(931]x2) vi(dr), AyeFi,zp€e
Ay
6



where (21, 72) — pij2(21]22) is measurable on the product space (€4,Q, 1 ® F2) and
x1 — pj2(a1|z2) is a v1-probability density for each x; € ;. In such a case,

f (f fil@) M1|2(da:1\x2)) fa() pa(das) =
J (J f1(561)p1|2(:c1\;c2)y1(dx1)) fo(x2) po(d2) =
J fi(@1) fa(z2)prja(@r|@2) v1(der)pa(ds)

that is, pt = pij2 - v1 @ po. If moreover the second measure has itself a density, ps = ps - 1,
then p = (p1|2 ®pa) V1 @y

FEzercise 7 (Examples).
(1) Let X be a real random variable with positive density p. The conditional distri-
bution of X given |X| is
(2) Let Ty, T3 be independent and Exp(1). Then the distribution of T} given Ty + T3 =
t is uniform on |0, ¢[.
(3) If (Y1,Y5) ~ Ny in, (0,%), det ¥ # 0, find the conditional distribution of Y; given
Ys.
(4) If Y1, Y, are independent and Ny (0, 1), find the distribution of (Y3, Y3) given Y2 +
13 (Regular version of the conditional expectation). With the notations above, denoting
with X7, X, the coordinate projection, the random variable f(X5) = § f (21, X2) p1j2(da1| X5)
is a version of the conditional expectation E,, (f(X1, X2)|o(X2)), namely a regular version.
In fact,

B X0 Xl 060 = [ ( [ Form0) mapldeiien) g(oa) paliny) = B, [Fo)a(x)]

3. CONDITIONING OF JOINTLY (GAUSSIAN VECTORS

Ezercise 8. Recall that for each ¥ € Sym, (n) there exists an orthogonal U € O(n) and
a non-negative diagonal A = diag (\y,...,\,) such that ¥ = UAU*. By discarding the
zero eigen-values, we can write ¥ = SDS* with S € Mat (n xr), S*S = I, and D
positive diagonal, where r is the rank of ¥.. If D = diag(\1,...,\,), we define D™! =
diag (A7',..., A1) and £F = SD7'S*. It follows that

Y'Y = SD1S*SDS* = §S* and XX* = SDS*SD'S* = §5* .
We have II = SS* € Sym, (n) and II* = II. The matrix II is the orthogonal projector
onto the image of . In fact, for all x € R,
[z = SS*r = SDS*SD'S*x = XSD'S*x .
Moreover, for each x,y € R”
(z —Iz) - (Zy) =
(x — Tz)*(Xy) = [({ — SS™)x]*(SDS*y) = 2*(I — SS*)SDS*y =
x*(SDS* — S5*SDS*) =0

Proposition 1.



(1) The Gaussian random vector with components
Yi=Yi— (b + Lia(Ya— b)), Lz =155
Yo=Y, — by
1s such that E (%) =0, Var (ﬁ) = Y1 — X125, and }Nfl A }72 It follows
E (Y1]Y2) = by + Lia(Y2 — bo)
(2) The conditional distribution of Yy given Yy = yo is Gaussian with
Yi|(Ya = y2) ~ Ny, (by + Lia(y2 — b2), X11 — L12Xs1)
(3) The conditional density of Y1 given Y = ys in terms of the partitioned concentra-
tion 18
ny 1
Pyi|ys (y1’y2> = (271-)77 det (KI\Q) 2 %

1
exp <_§(yl — by — K ' Kia(y2 — bo)) K11 (y1 — by — Kii' Kia(y2 — 52)))

Proof. (1) We have

Vil _[1 —SuSh|[Yi-b] _\ o [Z 0
Y, 0 I Yo — by ntng ’ 0 Y09

It follows
E(Vil) =B (Fi+ b1 + La(Va = )| V2) =B (T1) + by + Lia(Ya = bo)

(2) The conditional distribution of Y; given Y3 is a transition probability iy, |y, : B(R™)x
R™ such that for all bounded f: R™

E(f(Y1)]Ya) = f F (1) pvsps (i [Ya).
We have

B(MIY) = E (F7i + E0iYa)[¥a) = [ o+ E(4i199) 2(dss0, Z1p)

where (dz;0, El|2) is the measure of N,,, (O, 21‘2). We obtain the statement by
considering the effect on the distribution N, (O, 21‘2) of the translation =z —
xr + (b1 + ng(y2 — bg))

(3) A further application of the Schur complement gives

S | _ |1 Ee¥n | [T 0 I 0
Yo Lo 0 I 0 S| |SemSe I

whose inverse is

Ku Ko| [ I 0[S 0 |[I —Su¥y
Kor Ky __22_21221 I_ | 0 2521 0 I
| ?flé X 01] [I —2122521]
R —Y 12
|0 Tal, Y EalipEinY; + Dy
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In particular, we have K;; = El_é and KﬁlKlg = —21222_21, hence

Yi|(Ya = y2) ~ Ny, (b1 — K" Koo (y2 — bo), K1)
so that the exponent of the Gaussian density has the factor
(1 — b1 + K7 Kia(y2 — b2)) " Kii (1 — by + K7 K1z (y2 — b))
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