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This handout covers multivariate Gaussian distributions and the relevant matrix the-
ory. Two classical references are [3] and [1] (many reprints available). A modern advanced
reference for positive definite matrices is [2].

1. Standard Gaussian Distribution

1 (Change of variable formula in Rd). Let A,B Ă Rd be open and φ be a diffeomerphism
from A onto B. Let Jφ : AÑ Mat pdˆ dq be the Jacobian mapping of φ and Jφ´1 : B Ñ
Mat pdˆ dq the Jacobian mapping of φ´1, so that Jφ´1 “ pJφ ˝ φ´1q

´1
. For each non-

negative f : B Ñ Rn,
ż

B
fpyq dy “

ż

A
f ˝ φpxq |det pJφpxqq| dx

Exercise 1. A “s0, 2πrˆs0,`8r, B “ R2
˚ “ R2z tpx, yq P R2|x ě 0, y “ 0u, φpθ, ρq “

pρ cos θ, ρ sin θq.

Jφpθ, ρq “

„

´ρ sin θ cos θ
ρ cos θ sin θ



, det pJφpθ, ρqq “ ´ρ

ĳ

R2
˚

e´px
2`y2q{2 dxdy “

ĳ

s0,2πrˆs0,`8r

e´pρ
2 cos2 θ`ρ2 sin2 θq{2 ρ dθdρ “

ĳ

s0,2πrˆs0,`8r

e´ρ
2{2 ρ dθdρ “ 2π

2. (Image of an absolutely continous measure) Let pS,F , µq be measure space, p : S Ñ
Rą0 a probability density, pX,Gq a measurable space, φ : S Ñ X a measurable function.
If φ has a measurable inverse, then the image measure is characterised by

ż

f dφ#pp ¨ µq “

ż

pf ˝ φqp dµ “

ż

pf ˝ φqpp ˝ φ´1 ˝ φq dµ “

ż

fp ˝ φ´1 dφ#µ
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hence φ#pp ¨µq “ pp ˝φ
´1q ¨µ. Eq. (1) applied to f ˝φ and the diffeomorphism φ´1 gives

ż

B
f dpφ#`q “

ż

A
f ˝ φpxq dx “

ż

B
f ˝ φ ˝ φ´1pyq

ˇ

ˇdet
`

Jφ´1pyq
˘
ˇ

ˇ dy “

ż

B
fpyq

ˇ

ˇdet
`

Jφ´1pyq
˘ˇ

ˇ dy “

ż

B
fpyq

ˇ

ˇdet
`

Jφ ˝ φ´1pyq
˘ˇ

ˇ

´1
dy

This shows that the image of the Lebesgue measure ` under a diffeomorphism is

φ#` “
ˇ

ˇdet
`

Jφ´1
˘ˇ

ˇ ¨ ` “
ˇ

ˇdet
`

Jφ ˝ φ´1
˘
ˇ

ˇ

´1
¨ `

Exercise 2. A “s0, 1rˆs0, 1r, B “ R2
˚, φpu, vq “ p

?
´2 log u cosp2πvq,

?
´2 log u sinp2πvqq,

Jφpu, vq “

»

—

–

´
1

2
p´2 log uq´1{2

2

u
cosp2πvq ´2π

?
´2 log u sinp2πvq

´
1

2
p´2 log uq´1{2

2

u
sinp2πvq 2π

?
´2 log u cosp2πvq

fi

ffi

fl

,

det pJφpu, vqq “ ´
2π

u
, det

`

Jφ ˝ φ´1px, yq
˘

“
2π

epx2`y2q{2
.

The image of the uniform probability measure on s0, 1r2 under φ is p2πq´1e´px
2`y2q{2 dxdy.

3 (Marginalization). The previous argument does not apply when Φ is not 1-to-1. We
will show in the chapter on conditioning that in such a case

Φ#pp ¨ µq “ p̂ ¨ Φ#pµq

where p̂ is the conditional expectation of p with respect to Φ.
However, there are two common and simple cases namely, the finite state space case

and the marginalisation. Assume µ “ µ1 b µ2 on S “ S1 ˆ S2 and consider the marginal
projection Φ: px1, x2q ÞÑ x1. Then Φ´1pA1q “ A1 ˆ S2 and µpΦ´1pA1qq “ µpA1 ˆ S2q “

µ1pA1q hence, Φ#pµq “ µ1. Let p be a density on S with respect to µ. For each positive
f : S1 we have
ż

f dΦ#pp ¨ µq “

ż

f ˝ Φ dpp ¨ µq “

ĳ

fpx1qppx1, x2q µpdx1, dx2q “

ż

fpx1q

ˆ
ż

ppx1, x2q µ2pdx2q

˙

µ1pdx1q

so that

Φ#pp ¨ µq “ p1px1q ¨ µ1, p1px1q “

ż

ppx1, x2q µ2pdx2q

For example, if ppx1, x2q “ p2πq
´1e´px

2
1`x

2
2q{2, then

ż

ppx1, x2q dx2 “ p2πq
´1{2e´x

2
1{2

ż

p2πq´1{2e´x
2
2{2 dx2 “ cp2πq´1{2e´x

2
1{2

with c “
ş

p2πq´1{2e´x
2
2{2 dx2 “ 1 as the further integration with respect to dx1 shows.

Notice that the argument applies to all ppx1, x2q “ cfpx1qfpx2q.

4. The real random variable Z is standard Gaussian, Z „ N1 p0, 1q, if its distribution ν
has density

R Q z ÞÑ γpzq “ p2πq´
1
2 exp

ˆ

´
1

2
z2
˙

with respect to the Lebesgue measure. It is in fact a density, see above the computation
of its two-fold product.
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Exercise 3. All moments µpnq “
ş

znγpzq dz exists. As zγpzq “ ´γ1pzq, integration
by parts produces a recurrent relation for the moments. [Hint: Write

ş

znγpzq dz “
ş

zn´1zγpzq dz “
ş

zn´1p´γ1pzqq dz and perform an integration by parts]

Exercise 4. If f : R Ñ R absolutely continuous i.e., fpzq “ fp0q `
şz

0
f 1puq du, with

ş

|f 1puq| γpuq du ă `8 then
ş

|zfpzq| γpzq dz ă `8. In fact,
ż

|zfpzq| γpzq dz “

ż

ˇ

ˇ

ˇ

ˇ

z

ˆ

fp0`

ż z

0

f 1puq du

˙
ˇ

ˇ

ˇ

ˇ

γpzq dz ď

|fp0q|

ż

|z| γpzq dz `

ż

ˇ

ˇ

ˇ

ˇ

z

ż z

0

f 1puq du

ˇ

ˇ

ˇ

ˇ

γpzq dz .

The first term in the RHS equals
a

2{π |fp0q|, while in the second term we have for z ě 0,
ˇ

ˇ

ˇ

ˇ

ż z

0

f 1puq du

ˇ

ˇ

ˇ

ˇ

ď

ż

p0 ď u ď zq |f 1puq| du .

We have
ż

ˇ

ˇ

ˇ

ˇ

z

ż z

0

f 1puq du

ˇ

ˇ

ˇ

ˇ

γpzq dz ď

ż

|z|

ˆ
ż

p0 ď u ď zq |f 1puq| du

˙

γpzq dz “

ż

|f 1puq|

ż 8

u

zγpzq dz du “

ż

|f 1puq|

ż 8

u

p´γ1pzqq dz du “

ż

|f 1puq| γpuq du ă 8 .

A similar argument applies to the case z ď 0. This implies
ż

zfpzqγpzq dz “

ż

fpzqp´γ1pzqq dz “

ż

f 1pzq γpzqdz .

Exercise 5. The Stein operator is δfpzq “ zfpzq ´ f 1pzq. We have
ż

fpzqg1pzqγpzq dz “

ż

δfpzqgpzqγpzqdz

We define the Hermite polynomials to be Hnpzq “ δn1. For example, H1pzq “ z, H2pzq “
z2 ´ 1, H3pzq “ z3 ´ 3z. Hermite polynomials are orthogonal with respect to γ,

ż

HnpzqHmpzqγpzq dz “ 0 if n ą m .

5. Let Z „ N1 p0, 1q, Y “ b` aZ, a, b P R. Then E pXq “ b, E pX2q “ a2` b2, Var pXq “
a2. If a ‰ 0, then φpzq “ b ` az is a diffeomorphism with inverse φ´1pxq “ a´1px ´ bq,
hence the density of X is

γpa´1px´ bqq |a|´1 “ p2πa2q´1{2 exp

ˆ

1

2a2
px´ bq2

˙

If a “ 0 then the distribution of X “ b is the Dirac measure at b. We say that X is
Gaussian with mean b and variance a2, X „ N1 pb, a

2q. Viceversa, if X „ N1 pµ, σ
2q and

σ2 ‰ 1, then Z “ σ´1pX ´ µq „ N1 p0, 1q.

6. The characteristic function of a probability measure µ is

pµptq “

ż

eitx µpdxq “

ż

cosptxq µpdxq ` i

ż

sinptxq µpdxq, i “
?
´1

If two probability measure have the same characteristic function, then they are equal.
3



Exercise 6. For the standard Gaussian probability measure we have

pγptq “

ż

cosptzq γpzqdz “ e´
t2

2 .

In fact, by derivation under the integral

d

dt
pγptq “ ´

ż

z sinptzq γpzqdz “

ż

sinptzqγ1pzq dz “ ´tγptq

and pγp0q “ 1. The characteristic function of X „ N1 pµ, σ
2q is

E
`

eitX
˘

“ E
`

eitpµ`σZq
˘

“ eitµ E
´

eipσ
tqZ

¯

“ e´tµ`
1
2
σ2t2

Exercise 7. The characteristic function pµ of the probability measure µ on R is non-
negative definite. Take t1, . . . , tn in R with n “ 1, 2, . . . . The matrix

T “ rpµpti ´ tjqs
n
i,j“1 “

„
ż

eipti´tjqx µpdxq

n

i,j“1

is Hermitian, that is the transposed matrix is equal to the conjugate matrix equivalently,
T is equal to its adjoint T ˚. An Hermitian matrix T is non-negative definite if for all
complex vector ζ P Cn it holds ζ˚Tζ ě 0. In our case

ζ˚
„
ż

eipti´tjqx µpdxq



ζ “
n
ÿ

i.j“1

ż

ζiζje
ipti´tjqx µpdxq “

n
ÿ

i.j“1

ż

ζie
itixζjeitjx µpdxq “

ż

›

›

›

›

›

n
ÿ

i“1

ζie
itix

›

›

›

›

›

2

µpdxq ě 0 .

Exercise 8. let X „ N1 pb, σ
2q and f : R Ñ R continuous and bounded. Show that

limσÑ0 E pfpXqq “ fpbq.

Exercise 9. Let X be a real random variable with density p with respect to the Lebesgue
measure, and let Z „ N1 p0, 1q. Assume X and Z are independent i.e., the joint random
variable pX,Zq has density pbγ with respect to the Lebesgue measure of 2. Compute the
density of X `Z. [Hint: make a change of variable px, zq ÞÑ px` z, zq then marginalize.]

7. The product of absolutely continuous probability measures is

pp1 ¨ µ1q b pp2 ¨ µ2q “ pp1 b p2q ¨ µ1 b µ2

The Rd-valued random variable Z “ pZ1, . . . , Zdq is multivariate standard Gaussian,
Z „ Nn p0d, Idq if its components are IID N1 p0, 1q. We write νd “ νbd to denote the
d-fold product measure. The distribution νd “ γbd of Z „ Nn p0, Iq has the product
density

Rn
Q z ÞÑ γpzq “

n
ź

j“1

φpzjq “ p2πq
´n

2 exp

ˆ

´
1

2
}z}2

˙

Exercise 10. The moment generating function t ÞÑ E pexp pt ¨ Zqq P Rą is

Rn
Q t ÞÑMZptq “

n
ź

j“1

exp

ˆ

1

2
t2i

˙

“ exp

ˆ

1

2
}t}2

˙

MZ is everywhere strictly convex and analytic.
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Exercise 11. The characteristic function ζ ÞÑ pγnpζq “ E
`

exp
`?
´1ζ ¨ Z

˘˘

is

Rn
Q ζ ÞÑ pγnpζq “

2
ź

j“1

exp

ˆ

´
1

2
ζ2i

˙

“ exp

ˆ

´
1

2
}ζ}2

˙

pγn is non-negative definite.

2. Positive Definite Matrices

8. We collect here a few useful properties of matrices. ˚ denotes transposition.

(1) Denote by Mat pmˆ nq the vector space ofmˆn real matrices. We have Mat pmˆ 1q Ø
Rm. Let Mat pnˆ nq be the vector space of nˆ n real matrices, GLpnq the group
of invertible matrices, Sympnq the vector space of real symmetric matrices.

(2) Given A P Mat pnˆ nq, a real eigen-value of A is a real number λ such that A´λI
is singular i.e., det pA´ λIq “ 0. If λ is an eigen-value of A, u an eigen-vector of
A associated to λ if Au “ λu.

(3) By identifying each matrix A P Mat pmˆ nq with its vectorized form vecpAq P
Rmn, the vector space Mat pmˆ nq is an Euclidean space for the scalar product
xA,By “ vecpAq˚ vecpBq “ Tr pAB˚q. The general linear group GLpnq is an open
subset of Mat pnˆ nq.

(4) A square matrix whose columns form an orthonormal system, S “ rs1 ¨ ¨ ¨ sns,
s˚i sj “ pi “ jq, has determinant ˘1. The property is characterised by S˚ “ S´1.
The set of such matrices is the orthogonal group Opnq.

(5) Each symmetric matrix A P Sympnq has n real eigen-values λi, i “ 1, . . . , n and
correspondingly an orthonormal basis of eigen-vectors ui, i “ 1, . . . , n.

(6) Let A P Mat pmˆ nq and let r ą 0 be its rank i.e., the dimension of the space
generated by its columns, equivalently by its rows. There exist matrices S P

Mat pmˆ rq, T P Mat pnˆ rq, and a positive diagonal r ˆ r matrix Λ, such that
S˚S “ T ˚T “ Ir, and A “ SΛ1{2T ˚. The matrix SS˚ is the orthogonal projection
onto imageA. In fact imageSS˚ “ imageA, SS˚A “ A, and SS˚ is a projection.
Similarly, TT ˚ is the ortogonal projection unto imageA˚.

(7) A symmetric matrix A P Sympnq is positive definite, A P Sym`pnq, respectively
strictly positive definite, A P Sym``pnq, if x P Rn ‰ 0 implies x1Ax ě 0,
respectively ą 0. Sym`pnq is a closed pointed cone of Sympnq, whose interior is
Sym``pnq. A positive definite matrix is strictly positive definite if it is invertible.

(8) A symmetric matrix A is positive definite, respectively strictly positive definite,
if, and only if, all eigen-values are non-negative, respectively positive.

(9) A symmetric matrix B is positive definite if, and only if, A “ B1B for some
B PMn. Moreover, A P GLn if, and only if, B P GLn.

(10) A symmetric matrix A is positive definite if, and only if A “ B2 and B is positive

definite. We write B “ A
1
2 and call B the positive square root of A.

Exercise 12. If you are not familiar with the previous items, try the following exercise.
Consider the matrices

Rpθq “

„

cos θ ´ sin θ
sin θ cos θ



, θ P R .

Check that Rpθq˚Rpθq “ I, detRpθq “ 1, and Rpθ1qRpθ2q “ Rpθ1 ` θ2q. Compute the
matrix

Σpθq “ Rpθq

„

λ1 0
0 λ2



Rpθq˚ , λ1, λ2 ě 0 .
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Chech that det Σpθq “ λ1λ2, Σpθq˚ “ Σpθq, the eigenvalues of Σpθq are λ1, λ2, and
ΣpθqRpθq “ Rpθq diag pλ1, λ2q. Compute

Apθq “ Rpθq

«

λ
1{2
1 0

0 λ
1{2
2

ff

Rpθq˚ , λ1, λ2 ě 0 .

Check that ApθqApθq˚ “ ApθqApθq “ Σpθq.

Exercise 13. Let A P Opnq and Z „ Nn p0, Iq. Check that AZ „ Nn p0, Iq. let
B P Mat pnˆ rq, r ă n, and assume that the columns are orthonormal. Check that
BZ Nr p0, Iq. [Hint: complete B to an orthogonal matrix by adding columns, rB|Cs P
Opnq and use the marginalization.]

Exercise 14. Let Z „ N1 p0, 1q, A “

„

1
1



P Mat p2ˆ 1q. Check that AZ has no density

with respect to the Lebesgue measure.

Exercise 15. Let Z „ N2 p0, Iq, A “
“

1 1
‰

P Mat p1ˆ 2q. Compute the density od AZ.

3. General Gaussian Distribution

Proposition 1.

(1) Definition Let Z „ Nn p0, Iq, A P Mat pmˆ nq, b P Rm, Σ “ AA˚. Then
Y “ b`AZ has a distribution that depends on Σ and b only. The distribution of
Y is called Gaussian with mean b and variance Σ, Nm pb,Σq.

(2) Statility If Y „ Nm pb,Σq, B P Mat pr ˆmq, c P Rr, then c`BY „ Nr pc`Bb,BΣB˚q.
(3) Existence Given any non-negative definite Σ P Sym`pnq and any vector b P Rn,

the Gaussian distribution Nn pb,Σq exists.
(4) Density If Σ P Sym``pnq e.g., Σ P Sym`pnq and moreover det pΣq ‰ 0, then

the Gaussian distribution Nm pb,Σq, has a density with respect to the Lebesgue
measure on Rn given by given by

pY pyq “ p2πq
´m

2 det pΣq´
1
2 exp

ˆ

´
1

2
py ´ bqTΣ´1py ´ bq

˙

.

(5) No density If the rank of Σ is r ă m, then the distribution of Nm pb,Σq is
supported by the image of Σ. In particular it has no density w.r.t. the Lebesgue
measure on Rn.

(6) Characteristic function Y „ Nm pb,Σq if, and only if, the characteristic func-
tion is

Rm
Q t ÞÑ exp

ˆ

´
1

2
t˚Σt` ib˚t

˙

Proof.

(1) Assume b1, b2 P Rm, Ai P Mat pmˆ niq, Yi “ bi`AiZi, Zi „ Nni
p0, Iq, i “ 1, 2. If

b1 ‰ b2 then the expected values of Y1 and Y2 are different, hence the distribution
is different. Assume b1 “ b2 “ b, and consider the distribution of Yi ´ b “ AiZi,

i “ 1, 2. We can write Ai “ SiΛ
1{2
i T ˚i , which in turn implies implies Σ “ SiΛS

˚
i ,

but Σ “ SΛS˚, hence S1 “ S2 “ S and Λ1 “ Λ2 “ Λ (a part the order).
We are reduced to the case Yi ´ b “ SΛT ˚i Zi, Ti P Mat pni ˆ rq with both with
orthonormal columns. The conclusion follows from T ˚1 Z1 „ T ˚2 Z2.
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(2) Y „ Nm pb,Σq means Y “ b` AZ with Z Nn p0, Iq and AA˚ “ Σ. It follows

c`BY “ c`Bpb` AZq “ pc`Bbq ` pBAqZ ,

wth pBAqpBAq˚ “ BAA˚B˚ “ BΣB˚.
(3) Take Y “ b` Σ1{2Z, Z „ Nn p0, Iq.
(4) Use the change of variable formula in Y “ b` AZ with A “ Σ1{2 to get

pY pyq “
ˇ

ˇdet
`

A´1
˘
ˇ

ˇ pZpA
´1
py ´ bqq .

The express each term with Σ.
(5) use the decomposition Σ “ SΛS˚ and note that some elements on the diagonal

of Λ are zero.
(6) The “if” part is a computation, the “only if” part requires the injection property

of characteristic function.

�

Exercise 16 (Linear interpolation of the Brownian motion). Let Zn, n “ 1, 2 . . . be IID
N1 p0, 1q. Given 0 ă σ ! 1, define recursively the times t0 “ 0 and tn`1 “ tn ` σ2.
Let T “ ttn|n “ 0, 1, . . .u. Define recursively Bp0q “ 0, Bptn`1q “ Bptnq ` σZn. As
Bptnq “

řn
i“1 σZi “ σ

řn
i“1 Zi, then Var pBptnqq “ σ2 Var p

řn
i“1 Ziq “ nσ2 “ tn. For each

t P Rą0zT , define Bptq by linear interpolation i.e.,

Bptq “
tn`1 ´ t

tn`1 ´ tn
Bptnq `

t´ tn
tn`1 ´ tn

Bptn`1q , t P rtn, tn`1s .

Compute the variance of Bptq and the density of Bptq.

4. Independence of Jointly Gaussian Random Variables

Proposition 2. Consider a partitioned Gaussian vector

Y “

„

Y1
Y2



„ Nn1`n2

ˆ„

b1
b2



,

„

Σ11 Σ12

Σ21 Σ22

˙

.

Let ri “ Rank pΣiiq, Σii “ SiΛiS
˚
i with Si P Mat pni ˆ riq, S˚i S “ Iri, and Λi P

diag`` priq, i “ 1, 2.

(1) The blocks Y1, Y2 are independent, Y1 KK Y2, if, and only if, Σ12 “ 0, hence
Σ21 “ Σ˚12 “ 0. More precisely, if, and only if, there exist two independent
standard Gaussian Zi „ Nri p0, Iq and matrices Ai P Mat pni ˆ riq, i “ 1, 2, such
that

„

Y1
Y2



„

„

A1 0
0 A1

 „

Z1

Z2



.

(2) (The following property is sometimes called Schur complement lemma.) Write
Σ`22 “ S2Λ

´1
2 S˚2 . Then,

„

I ´Σ12Σ
`
22

0 I

 „

Σ11 Σ12

Σ21 Σ22

 „

I 0
´Σ`22Σ21 I



“

„

Σ11 ´ Σ12Σ
`
22Σ21 0

Σ21 Σ22

 „

I 0
´Σ`22Σ21 I



“

„

Σ11 ´ Σ12Σ
`
22Σ21 0

0 Σ22



,
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hence the last matrix is non-negative definite. The Shur complement of the parti-
tioned covariance matrix Σ is

Σ1|2 “ Σ11 ´ Σ12Σ
`
22Σ21 P Sym`pn1q .

(3) Assume det pΣq ‰ 0. Then both det
`

Σ1|2

˘

‰ 0 and det pΣq22 ‰ 0. If we define the
partitioned concentration to be

K “ Σ´1 “

„

K11 K12

K21 K22



,

then K11 “ Σ´11|2 and K´1
11 K12 “ ´Σ12Σ

´1
22 .

Exercise 17. Let Σ P Sym`pnq and let r “ Rank pΣq. We know that Σ “ SΛS˚ with
S P Mat pnˆ rq, S˚S “ Ir, λ P diag`` prq. Let us define Σ` “ SΛ´1S˚. Then it follows
by simple computation that Σ`Σ “ ΣΣ` “ SS˚. Also, ΣΣ`Σ “ Σ and Σ`ΣΣ` “ Σ`. If
Y „ Nn p0,Σq, then Y “ SS˚Y . In fact, Y ´ SS˚Y “ pI ´ SS˚qY is a Guassian random
variable with variance pI ´ SS˚qSΛS˚pI ´ SS˚q “ 0 because pI ´ SS˚qS “ S ´ SS˚S “
S ´ S “ 0.

Proof. (1) If the blocks are independent, they are uncorrelated. Conversely, if Σii “

SiΛiS
˚
i , i “ 1, 2, define Ai “ SiΛ

1{2
i to get

„

A1 0
0 A2

 „

A1 0
0 A2

˚

“ Σ .

(2) Computations using Ex. 17.
(3) From the computation above we see that the Schur complement is positive definite

and that

det

ˆ„

Σ11 Σ12

Σ21 Σ22

˙

“ det
`

Σ1|2

˘

det pΣ22q .

It follows that det pΣq ‰ 0 implies both det
`

Σ1|2

˘

‰ 0 and det pΣ22q ‰ 0. The
condition

„

K11 K12

K21 K22

 „

Σ11 Σ12

Σ21 Σ22



“

„

I 0
0 I



is equivalent to

I “K11Σ11 `K12Σ21

0 “K11Σ12 `K12Σ22

...

Right-multiply the second equation by Σ´122 and substitute in the first one, to get
K11Σ1|2 “ I, hence K´1

11 “ Σ1|2. The other equality follows by left-multiplying
the second equation by K´1

11 .
�

Exercise 18 (Whitening). Let Y „ Nn pb,Σq. Assume Σ has rank r and decomposition
Σ “ SΛS˚, S˚S “ Ir, λ P diag`` prq. Then Z “ Λ´1{2S˚pY ´ bq ia a white noise,
Z „ Nr pO, Iq. Moreover, b` SΛ1{2Z “ Y . In fact,

Y ´ pb` SΛ1{2Zq “ pY ´ bq ´ SΛ1{2Λ´1{2S˚pY ´ bq “ pI ´ SS˚qpY ´ bq “ 0 .
8



References

[1] T. W. Anderson, An introduction to multivariate statistical analysis, third ed., Wiley Series in Prob-
ability and Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2003. MR 1990662

[2] Rajendra Bhatia, Positive definite matrices, Princeton Series in Applied Mathematics, Princeton
University Press, Princeton, NJ, 2007. MR 2284176 (2007k:15005)

[3] Paul R. Halmos, Finite-dimensional vector spaces, The University Series in Undergraduate Mathe-
matics, D. Van Nostrand Co., Inc., Princeton-Toronto-New York-London, 1958, 2nd ed. MR 0089819

Collegio Carlo Alberto
E-mail address: giovanni.pistone@carloalberto.org

9


