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This handout covers multivariate Gaussian distributions and the relevant matrix the-
ory. Two classical references are [3] and [1] (many reprints available). A modern advanced
reference for positive definite matrices is [2].

1. STANDARD GAUSSIAN DISTRIBUTION

1 (Change of variable formula in R?). Let A, B = R¢ be open and ¢ be a diffeomerphism
from A onto B. Let J¢: A — Mat (d x d) be the Jacobian mapping of ¢ and J¢~': B —
Mat (d x d) the Jacobian mapping of ¢!, so that J¢o=' = (Jpo (;5_1)_1. For each non-
negative f: B — R",

f f(y) dy = f fod(x) [det (Jo(x))| da
B A

Ezercise 1. A =]0,27[x]0,+[, B = R2 = R*\ {(x,y) e R?|z = 0,y = 0}, ¢(0,p) =
(pcosB, psind).

_ | —psin@ cos@ o
J¢(0>p) - [pCOSH sin@] ’ det (‘]¢<97p)) =0
Jf e*($2+y2)/2 d.ﬁl]dy — fj ef(p2 cos? 0+p? sin? 9) /2 p d@dp _
R2, 10,27 x]0,+00[
e P2 p dfdp = 2
10,27[x]0,+00[

2. (Image of an absolutely continous measure) Let (S, F, ) be measure space, p: S —
R.( a probability density, (X,G) a measurable space, ¢: S — X a measurable function.
If ¢ has a measurable inverse, then the image measure is characterised by

[ 1 dosto-) = (oo au= [(rooiwes o) du= [ fpoo dogn
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hence ¢4 (p-p) = (pod™') - u. Eq. (1) applied to f o ¢ and the diffeomorphism ¢~! gives
f f d(o0) = f fod(x) da = f Fodod(y) [det (Jo\(y))| dy =
B A B
Lf(y) det (o ()] dy = Lf(y) det (Joo 6 (g)| " dy

This shows that the image of the Lebesgue measure ¢ under a diffeomorphism is
bl = |det (JoV)|- € = [det (Jpo o) -4
Ezercise 2. A =]0,1[x]0,1[, B = R2, ¢(u,v) = (v/—2log u cos(2mv), /—2log usin(27v)),

1 2
(w.v) —%(—2 logu) Y%= cos(2mv) —2my/—2logusin(27v)
Jo(u,v) = Y )
—5(—2 logu)~Y2 = sin(2mv)  2my/—2log u cos(2mv)
u

det (Jo(u, v)) — —%”, det (J6 0 6~ (z,1)) — e<2+—7;>/2 .

The image of the uniform probability measure on ]0, 1[ under ¢ is (27?)*16*(952“/2)/ 2 dady.

3 (Marginalization). The previous argument does not apply when ® is not 1-to-1. We
will show in the chapter on conditioning that in such a case

Dulp-p) =p- Pu(p)
where p is the conditional expectation of p with respect to ®.

However, there are two common and simple cases namely, the finite state space case
and the marginalisation. Assume p = py ® g on S = S; x S and consider the marginal
projection ®: (z1,x9) — x1. Then ®71(A;) = A; x Sy and pu(®71(A))) = u(A; x Sy) =
p1(Ay) hence, @4 (1) = . Let p be a density on S with respect to p. For each positive
f: 51 we have

| ravsto) = [ ro@ e = [[ teptorns) uden o) -
[ 7w ( [ tare ua(dxz)> i dr)

so that
Py(p-p) =pi(x1) -1, pilzr) = Jp(mhlb) p2(dx2)
For example, if p(zy, 5) = (2m) te~@+73)/2 then
Jp(wl,xg) day = (27) e 21/ J(27r)_1/2e_””§/2 dzy = c(2m)2e 1/
with ¢ = {(27)712e7%/2 dzy = 1 as the further integration with respect to dr; shows.
Notice that the argument applies to all p(xq,x2) = cf (x1) f(22).
4. The real random variable Z is standard Gaussian, Z ~ Ny (0, 1), if its distribution v

has density

2

with respect to the Lebesgue measure. It is in fact a density, see above the computation
of its two-fold product.

R 52 y(2) = (27)% exp (—12)
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Ezercise 3. All moments p(n) = {2"y(z) dz exists. As z27y(z) = —/(z), integration
by parts produces a recurrent relation for the moments. [Hint: Write §2"v(z) dz =
§ 2" 12y(2) dz = {271 (=+/(2)) dz and perform an integration by parts]

E:Eercz'se 4 If f:R—->R absolutely continuous ie., f(z) = f(0) + § f'(u) du, with
§1/"(u)]v(u) du < 40 then §|zf(2)|v(z) dz < +o0. In fact,

z (f(o +f0 I (u) du>
) [ () dz +

The first term in the RHS equals 4/2/7 | f(0)|, while in the second term we have for z > 0,

< J(O <u<z2)|f(u)] du.
We have

zf: f'(u) du|v(2) dz < J]z| (J(O <u<2)|f (u)] du) v(z) dz =

[ "2 de du= [1r) [ d= au-

j ()] () du < o0

f 2H]) dz - 32) ds <

"(u) du|v(2) dz

w) du

A similar argument applies to the case z < 0. This implies

| 2tGr) @z = [ s dz—ff

Exercise 5. The Stein operator is 6 f(z) = . We have

| rargon(e) dz - faf

We define the Hermzte polynomials to be H,(z) = 0"1. For example, H,(z) = z, Ha(z) =
2% — 1, H3(z) = 2% — 3z. Hermite polynomials are orthogonal with respect to 7,

JH Y(z) dz=0 ifn>m.

5. Let Z ~N;(0,1),Y =b+aZ,a,beR. Then E(X) =0, E(X?) =a®+0b? Var(X) =
a’. If a # 0, then ¢(z) = b + az is a diffeomorphism with inverse ¢~'(z) = a=!(z — b),
hence the density of X is

=) ol = e (o - 07)

If a = 0 then the distribution of X = b is the Dirac measure at b. We say that X is
Gaussian with mean b and variance a?, X ~ N (b, a?). Viceversa, if X ~ Ny (u,02) and
02 # 1, then Z = 07 1(X — ) ~ Ny (0,1).

6. The characteristic function of a probability measure p is
at) — f e p(da) = fcos(ta:) j(dz) + i f sin(tz) p(dz), i—v—1

If two probability measure have the same characteristic function, then they are equal.
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Exercise 6. For the standard Gaussian probability measure we have

+2

~(t) = Jcos(tz) v(2)dz =e 7 .

In fact, by derivation under the integral

%3@) = — JZSin(tZ) *y(z)dz - JSin(tz)'y’(Z) ds — —tv(t)

and 7(0) = 1. The characteristic function of X ~ Ny (u,0?) is
E (¢'X) = E (eit(u+aZ)) _ Gt (ei(at)z> _ otutiott?

Exercise 7. The characteristic function i of the probability measure p on R is non-
negative definite. Take t1,...,t, in R with n = 1,2,.... The matrix

T = [t —t))]5,-, = Uei(ti_mz Iu(dx)]
’ ij=1
is Hermitian, that is the transposed matrix is equal to the conjugate matrix equivalently,

T is equal to its adjoint T*. An Hermitian matrix T is non-negative definite if for all
complex vector ¢ € C" it holds ¢*T'¢ > 0. In our case

¢ [ [E dx]c chc )7y (dr) =
ZJQ oot p(dr) =

i.j=1

ztx

p(de) = 0.

Exercise 8. let X ~ Nj(b,0?) and f: R — R continuous and bounded. Show that
hma—>0E (f(X>) = f(b)

Ezercise 9. Let X be a real random variable with density p with respect to the Lebesgue
measure, and let Z ~ Ny (0,1). Assume X and Z are independent i.e., the joint random
variable (X, Z) has density p®-~ with respect to the Lebesgue measure of 2. Compute the
density of X + Z. [Hint: make a change of variable (z,z) — (z + z, z) then marginalize.|

7. The product of absolutely continuous probability measures is

(p1- 1) ® (P2 - p12) = (P1 @ pa) - 11 ® piz

The R¢valued random variable Z = (Zy,...,7Z,) is multivariate standard Gaussian,
Z ~ N, (04, 1) if its components are IID Ny (0,1). We write v = v®¢ to denote the
d-fold product measure. The distribution vy = v®¢ of Z ~ N,, (0,1) has the product

density
= 1
R" 3z — (2 znqﬁ z;) = (27) 72 exp <—§zl2)

Jj=

Ezercise 10. The moment generating function t — E (exp (t - Z)) € R.. is

1
R™ 5t > My(t Hexp< )ZGXP (§||t||2)

My is everywhere strictly convex and analytic.
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Ezercise 11. The characteristic function ¢ — 7,(¢) = E (exp (v/=1¢ - Z)) is

2
R 5¢ = 5,(0) = [ [oxn (367 ) = o (3 61°)
j=1

~n is non-negative definite.

2. PosiTivE DEFINITE MATRICES

8. We collect here a few useful properties of matrices. * denotes transposition.

(1) Denote by Mat (m x n) the vector space of mxn real matrices. We have Mat (m x 1) <
R™. Let Mat (n x n) be the vector space of n x n real matrices, GL(n) the group
of invertible matrices, Sym(n) the vector space of real symmetric matrices.

(2) Given A € Mat (n x n), a real eigen-value of A is a real number A such that A— I
is singular i.e., det (A — AI) = 0. If X is an eigen-value of A, u an eigen-vector of
A associated to A if Au = \u.

(3) By identifying each matrix A € Mat (m x n) with its vectorized form vec(A) €
R™" the vector space Mat (m x n) is an Euclidean space for the scalar product
(A, B) = vec(A)* vec(B) = Tr (AB*). The general linear group GL(n) is an open
subset of Mat (n x n).

(4) A square matrix whose columns form an orthonormal system, S = [s;---8,],
sfs; = (i = j), has determinant +1. The property is characterised by S* = S~
The set of such matrices is the orthogonal group O(n).

(5) Each symmetric matriz A € Sym(n) has n real eigen-values \;, i = 1,...,n and
correspondingly an orthonormal basis of eigen-vectors w;, 1 = 1,...,n.

(6) Let A € Mat (m x n) and let > 0 be its rank i.e., the dimension of the space
generated by its columns, equivalently by its rows. There exist matrices S €
Mat (m x r), T € Mat (n x r), and a positive diagonal r x r matrix A, such that
S*S = T*T = I,, and A = SAY2T*. The matrix SS* is the orthogonal projection
onto image A. In fact image S5* = image A, SS*A = A, and §S5* is a projection.
Similarly, TT* is the ortogonal projection unto image A*.

(7) A symmetric matrix A € Sym(n) is positive definite, A € Sym, (n), respectively
strictly positive definite, A € Sym_,(n), if * € R* # 0 implies ’Ax > 0,
respectively > 0. Sym, (n) is a closed pointed cone of Sym(n), whose interior is
Sym, . (n). A positive definite matrix is strictly positive definite if it is invertible.

(8) A symmetric matrix A is positive definite, respectively strictly positive definite,
if, and only if, all eigen-values are non-negative, respectively positive.

(9) A symmetric matrix B is positive definite if, and only if, A = B'B for some
B € M,,. Moreover, A € GL,, if, and only if, B € GL,,.

(10) A symmetric matrix A is positive definite if, and only if A = B% and B is positive
definite. We write B = A2 and call B the positive square root of A.

Ezercise 12. If you are not familiar with the previous items, try the following exercise.
Consider the matrices

cosf —sinf
R(g):[sinﬁ COSG]’ feR.

Check that R(0)*R(0) = I, det R() = 1, and R(0,)R(02) = R(61 + 62). Compute the
matrix

5(6) = R(6) lel AOJ RO, M >0,
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Chech that det () = Mg, X(0)* = X(0), the eigenvalues of () are Aj, Ao, and
Y(0)R(0) = R(9) diag (A1, A2). Compute

A2 .
2

Check that A(6)A(0)* = A(6)A(6) = ().

Ezercise 13. Let A € O(n) and Z ~ N, (0,1). Check that AZ ~ N, (0,I). let
B € Mat (n x 1), r < n, and assume that the columns are orthonormal. Check that
BZN, (0,1). [Hint: complete B to an orthogonal matrix by adding columns, [B|C] €
O(n) and use the marginalization.]

FEzercise 14. Let Z ~ Ny (0,1), A = {1

1] € Mat (2 x 1). Check that AZ has no density

with respect to the Lebesgue measure.

Ezercise 15. Let Z ~ N5 (0,1), A= |1 1] € Mat (1 x 2). Compute the density od AZ.

3. GENERAL GAUSSIAN DISTRIBUTION

Proposition 1.

(1) Definition Let Z ~ N, (0,I), A € Mat(m xn), b € R™, ¥ = AA*. Then
Y =b+ AZ has a distribution that depends on ¥ and b only. The distribution of
Y is called Gaussian with mean b and variance X, N,, (b,%).
(2) Statility IfY ~ N, (b,%), B € Mat (r x m), ce R", then c+BY ~ N, (c + Bb, BLB*).
(3) Existence Given any non-negative definite ¥ € Sym, (n) and any vector b e R,
the Gaussian distribution N, (b, X)) exists.
(4) Density If ¥ € Sym_ ,(n) e.g., ¥ € Sym,(n) and moreover det (X) # 0, then
the Gaussian distribution N, (b,X), has a density with respect to the Lebesque
measure on R™ given by given by

pr(v) = (20) % det () oxp (30~ 0" -))

(5) No density If the rank of ¥ is r < m, then the distribution of N, (b,%) is
supported by the image of . In particular it has no density w.r.t. the Lebesque
measure on R™.

(6) Characteristic functionY ~ N,, (b,X) if, and only if, the characteristic func-
tion s

R™ 3¢ +— exp (—%t*Zt + ib*t)

Proof.

(1) Assume by, by € R™ A; € Mat (m xn;), Y; =b; + A Z;, Z; ~ N, (0,1), 0 =1,2. If
b1 # by then the expected values of Y7 and Y5 are different, hence the distribution
is different. Assume b; = by = b, and consider the distribution of Y; — b = A;Z;,
i =1,2. We can write A; = S,-Ag/QTi*, which in turn implies implies > = S;AS¥,
but ¥ = SAS* hence S; = Sy = S and A; = Ay = A (a part the order).
We are reduced to the case Y; —b = SAT*Z;, T; € Mat (n; x r) with both with

orthonormal columns. The conclusion follows from 7772, ~ T5 Zs.
6



(2) Y ~ N, (b,%) means Y = b+ AZ with ZN,, (0,1) and AA* = X. It follows
c+BY =c+ B(b+ AZ) = (c+ Bb) + (BA)Z

wth (BA)(BA)* = BAA*B* = BX.B*.
(3) Take Y = b+ X227, Z ~ N, (0,1).
(4) Use the change of variable formula in Y = b+ AZ with A = £/ to get

py(y) = ‘det (A_l)‘PZ(A_l(y b)) .

The express each term with X.

(5) use the decomposition ¥ = SAS* and note that some elements on the diagonal
of A are zero.

(6) The “if” part is a computation, the “only if” part requires the injection property
of characteristic function.

i

Ezercise 16 (Linear interpolation of the Brownian motion). Let Z,, n = 1,2... be IID
N; (0,1). Given 0 < ¢ « 1, define recursively the times ¢y = 0 and t,.; = t, + o>
Let T = {t,Jn =0,1,...}. Define recursively B(0) = 0, B(t,4+1) = B(t,) + 0Z,. As
B(t,) =X 0Z; =0, | Z;, then Var (B(t,)) = 0® Var (3, Z;) = no* = t,,. For each
t € Roo\T, define B(t) by linear interpolation i.e.,

t—1t,

tn+1 - tn

tn+1 —1

B<t) = B(tn> + B(tn+1) , te [tm thrl] :

tn+1 - tn

Compute the variance of B(t) and the density of B(t).

4. INDEPENDENCE OF JOINTLY GAUSSIAN RANDOM VARIABLES

Proposition 2. Consider a partitioned Gaussian vector

Y; by Y X2
Y = ~ Ny tno , )
LQ] ' (LJ [zm Em])
Let r; = Rank (X)), X; = S;ASF with S; € Mat (n; xr;), SFS = I,,, and A; €

diag, ., (r;), 1 =1,2.

(1) The blocks Yy, Yo are independent, Yy 1L Y, if, and only if, X152 = 0, hence
Yo1 = Xf, = 0. More precisely, if, and only if, there exist two independent
standard Gaussian Z; ~ N,. (0,1) and matrices A; € Mat (n; x r;), © = 1,2, such

that
Yi N A 0|4
Y, 0 Aif |22
(2) (The following property is sometimes called Schur complement lemma.) Write
iy = SoA;1SE. Then,

I -2u3L] [Zn S I 0]
0o I N1 Seo| | =ShSe I| T
211—2122;2221 0 I 0 _
221 222 _23_2221 I

Y1 — XYY 0
0 Yoo |



hence the last matrix is non-negative definite. The Shur complement of the parti-
tioned covariance matrix Y s

Yap=Xn — 319%55 Y01 € Sym, (n1) .

(3) Assume det (X) # 0. Then both det (£12) # 0 and det (X),, # 0. If we define the
partitioned concentration to be

K = 2—1 _ lKll KIQ]

K21 K22
then KH = El_é and Kl_llKlg = —21222_21.

Ezercise 17. Let ¥ € Sym, (n) and let » = Rank (X). We know that ¥ = SAS* with
S e Mat (n xr), S*S = I, A € diag_ , (r). Let us define Xt = SA™'S*. Then it follows
by simple computation that XX = ¥4+ = SS*. Also, XXX = Y and XTXYT = X+, If
Y ~ N, (0,%), then Y = SS*Y. In fact, Y — SS*Y = (I — SS*)Y is a Guassian random
variable with variance (I — SS*)SAS*(I — SS*) = 0 because (I — SS5*)S =5 — S5*S =
S—8=0.

Proof. (1) If the blocks are independent, they are uncorrelated. Conversely, if 3;; =

Si\;SF, i = 1,2, define A; = S;A? to get

Ar 0]fAL 0" _ g
0 A0 Ay 77
(2) Computations using Ex. 17.

(3) From the computation above we see that the Schur complement is positive definite
and that

Y11 o2
det (lzﬁ EZD ~ det (S1) det (Z) .

It follows that det (X) # 0 implies both det (21‘2) # 0 and det (Xg92) # 0. The
condition

[Kn K1z] [211 Z12] _ l] 0]

Ko Ko | [Xo1 Yoo 0 I

I =K1 + K229
0=K11212 + K229

is equivalent to

Right-multiply the second equation by ¥, and substitute in the first one, to get
K11%2 = I, hence Kﬁl = Yj2. The other equality follows by left-multiplying

the second equation by K;'.
O

Exercise 18 (Whitening). Let Y ~ N,, (b,%). Assume ¥ has rank r and decomposition
Y = SAS*, S§*S = I,, A € diag,, (r). Then Z = A7Y28*(Y — b) ia a white noise,
Z ~ N, (O, I). Moreover, b+ SAY2Z =Y. In fact,

Y — (b+ SAY2Z) = (Y —b) — SAV2AV28*(Y —b) = (I — SS*)(Y —b) = 0.
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