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1. Standard Gaussian Distribution

1 (Change of variable formula in Rd). Let A,B Ă Rd be open and φ be a diffeomerphism
from A onto B. Let Jφ : AÑ Mat pdˆ dq be the Jacobian mapping of φ and Jφ´1 : B Ñ
Mat pdˆ dq the Jacobian mapping of φ´1, so that Jφ´1 “ pJφ ˝ φ´1q

´1
. For each non-

negative f : B Ñ Rn,

(1)

ż

B
fpyq dy “

ż

A
f ˝ φpxq |det pJφpxqq| dx

Example. A “s0, 2πrˆs0,`8r, B “ R2
˚ “ R2z tpx, yq P R2|x ě 0, y “ 0u, φpθ, ρq “

pρ cos θ, ρ sin θq.

Jφpθ, ρq “

„

´ρ sin θ cos θ
ρ cos θ sin θ



, det pJφpθ, ρqq “ ´ρ

ĳ

R2
˚

e´px
2`y2q{2 dxdy “

ĳ

s0,2πrˆs0,`8r

e´pρ
2 cos2 θ`ρ2 sin2 θq{2 ρ dθdρ “

ĳ

s0,2πrˆs0,`8r

e´ρ
2{2 ρ2 dθdρ “ 2π

2. (Image of an absolutely continous measure) Let pS,F , µq be measure space, p : S Ñ
Rą0 a probability density, pX,Gq a measurable space, φ : S Ñ X a measurable function.
If φ has a measurable inverse, then the image measure is characterised by

ż

f dφ#pp ¨ µq “

ż

pf ˝ φqp dµ “

ż

pf ˝ φqpp ˝ φ´1 ˝ φq dµ “

ż

fp ˝ φ´1 dφ#µ
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hence φ#pp ¨µq “ pp ˝φ
´1q ¨µ. Eq. (1) applied to f ˝φ and the diffeomorphism φ´1 gives

ż

B
f dpφ#`q “

ż

A
f ˝ φpxq dx “

ż

B
f ˝ φ ˝ φ´1pyq

ˇ

ˇdet
`

Jφ´1pyq
˘
ˇ

ˇ dy “

ż

B
fpyq

ˇ

ˇdet
`

Jφ´1pyq
˘ˇ

ˇ dy “

ż

B
fpyq

ˇ

ˇdet
`

Jφ ˝ φ´1pyq
˘ˇ

ˇ

´1
dy

This shows that the image of the Lebesgue measure ` under a diffeomorphism is

(2) φ#` “
ˇ

ˇdet
`

Jφ´1
˘
ˇ

ˇ ¨ ` “
ˇ

ˇdet
`

Jφ ˝ φ´1
˘
ˇ

ˇ

´1
¨ `

Example. A “s0, 1rˆs0, 1r, B “ R2
˚, φpu, vq “ p

?
´2 log u cosp2πvq,

?
´2 log u sinp2πvqq,

Jφpu, vq “

»

—

–

´
1

2
p´2 log uq´1{2

2

u
cosp2πvq ´2π

?
´2 log u sinp2πvq

´
1

2
p´2 log uq´1{2

2

u
sinp2πvq 2π

?
´2 log u cosp2πvq

fi

ffi

fl

,

det pJφpu, vqq “ ´
2π

u
, det

`

Jφ ˝ φ´1px, yq
˘

“
2π

epx2`y2q{2
.

The image of the uniform probability measure on s0, 1r2 under φ is p2πq´1e´px
2`y2q{2 dxdy.

3. The real random variable Z is standard Gaussian, Z „ N1 p0, 1q, if its distribution ν
has density

R Q z ÞÑ γpzq “ p2πq´
1
2 exp

ˆ

´
1

2
z2
˙

with respect to the Lebesgue measure. It is in fact a density, see above the computation
of its two-fold product. All moments µpnq “

ş

znγpzq dz exists. If f : R Ñ R absolutely
continuous with

ş

|f 1pzq| γpzqdz ă `8 then
ş

|zfpzq| γpzqdz ă `8 and
ş

zfpzq γpzqdz “
ş

f 1pzq γpzqdz. The Stein operator δfpzq “ zfpzq ´ f 1pzq. We have
ż

fpzqg1pzqγpzq dz “

ż

δfpzqgpzqγpzqdz

It follows p1`nqµpnq “ µpn`2q. We define the Hermite polynomials to be Hnpzq “ δn1;
they are orthogonal with respect to γ ¨ `.

4. Let Z „ N1 p0, 1q, Y “ b` aZ, a, b P R. Then E pXq “ b, E pX2q “ a2` b2, Var pXq “
a2. If a ‰ 0, then φpzq “ b ` az is a diffeomorphism with inverse φ´1pxq “ a´1px ´ bq,
hence the density of X is

γpa´1px´ bqq |a|´1 “ p2πa2q´1{2 exp

ˆ

1

2a2
px´ bq2

˙

If a “ 0 then the distribution of X “ b is the Dirac measure at b. We say that X is
Gaussian with mean b and variance a2, X „ N1 pb, a

2q. Viceversa, if X „ N1 pµ, σ
2q and

σ2 ‰ 1, then Z “ σ´1pX ´ µq „ N1 p0, 1q.

5. The characteristic function of a probability measure µ is

pµptq “

ż

eitx µpdxq “

ż

cosptxq µpdxq ` i

ż

sinptxq µpdxq, i “
?
´1

For the standard Gaussian measure we have

pνptq “

ż

cosptzq γpzqdz “ e´
t2

2
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If two probability measure have the same characteristic function, then they are equal. See
i.e., [2, Ch. 13]. The characteristic function is non-negative definite. The characteristic
function of X „ N1 pµ, σ

2q is

E
`

eitX
˘

“ E
`

eitpµ`σZq
˘

“ eitµ E
´

eipσ
tqZ

¯

“ e´tµ`
1
2
σ2t2

6. The product of absolutely continuous probability measures is

pp1 ¨ µ1q b pp2 ¨ µ2q “ pp1 b p2q ¨ µ1 b µ2

7. The Rd-valued random variable Z “ pZ1, . . . , Zdq is standard Gaussian, Z „ Nn p0d, Idq
if its components are IID N1 p0, 1q. We write νd “ νbd to denote the d-fold product
measure. The distribution νd “ γbd of Z „ Nn p0, Iq has the product density

Rn
Q z ÞÑ γpzq “

n
ź

j“1

φpzjq “ p2πq
´n

2 exp

ˆ

´
1

2
}z}2

˙

8. The moment generating function t ÞÑ E pexp pt ¨ Zqq P Rą is

Rn
Q t ÞÑMZptq “

n
ź

j“1

exp

ˆ

1

2
t2i

˙

“ exp

ˆ

1

2
}t}2

˙

MZ is everywhere strictly convex and analytic. The characteristic function ζ ÞÑ pγnpζq “
E
`

exp
`?
´1ζ ¨ Z

˘˘

P C is

Rn
Q ζ ÞÑ pγnpζq “

2
ź

j“1

exp

ˆ

´
1

2
ζ2i

˙

“ exp

ˆ

1

2
}ζ}2

˙

pγn is non-negative definite and analytic.

2. Positive Definite Matrices

We collect here useful properties of matrices. The algebra of matrices used in Gaussian
statistical models is discussed in the monograph [1, Appendix A]. Calculus on the space
of matrices is treated in [3]. Find below a check-list of relevant facts.

(1) Denote by Mat pmˆ nq the vector space of mˆn real matrices. We have Mn,1 Ø

Rn. Let Mat pnˆ nq be the vector space of nˆ n real matrices, GLpnq the group
of invertible matrices, Sympnq the vector space of real symmetric matrices.

(2) By identifying each matrix A P Mat pmˆ nq with its vectorized form vecpAq P
Rmn, the vector space Mat pmˆ nq is an Hilbert space for the scalar product
xA,By “ vecpAq˚ vecpBq “ Tr pAB˚q. The general linear group GLpnq is an open
subset of Mat pnˆ nq.

(3) The mapping f : Mat pnˆ nq Ñ R, fpAq “ det pAq, has derivative at A in
the direction H (that is derivative at zero of t ÞÑ det pA` tHq P R), equal to
Tr padjpAqHq.

(4) The mapping f : GLpnq Ñ GLpnq, fpAq “ A´1, has derivative at A in the direc-
tion H, that is the derivative at zero of t ÞÑ pA`tHq P GLn, equal to ´A´1HA´1.

(5) A square matrix whose columns form an orthonormal system, S “ rs1 ¨ ¨ ¨ sns,
s˚i sj “ pi “ jq, has determinant ˘1. The property is characterised by S˚ “ S´1.

(6) Each symmetric matrix A P Sn has n real eigen-values λi, i “ 1, . . . , n and corre-
spondingly an orthonormal basis of eigen-vectors ui, i “ 1, . . . , n.
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(7) Let A P Mat pmˆ nq and let r ą 0 be its rank i.e., the dimension of the space
generated by its columns, equivalently by its rows. There exist matrices S P

Mat pmˆ rq, T P Mat pnˆ rq, and a positive diagonal r ˆ r matrix Λ, such that
S˚S “ T ˚T “ Ir, and A “ SΛ1{2T ˚. The matrix SS˚ is the orthogonal projection
onto ImageA. In fact ImageSS˚ “ ImageA, SS˚A “ A, and SS˚ is a projection.
Similarly, TT ˚ is the ortogonal projection unto ImageA˚.

(8) A symmetric matrix A P Sympnq is positive definite, A P Sym`pnq, respectively
strictly positive definite, A P Sym``pnq, if x P Rn ‰ 0 implies x1Ax ě 0,
respectively ą 0. Sym`pnq is a closed pointed cone of Sympnq, whose interior is
Sym``pnq. A positive definite matrix is strictly positive definite if it is invertible.

(9) A symmetric matrix A is positive definite, respectively strictly positive definite,
if, and only if, all eigen-values are non-negative, respectively positive.

(10) A symmetric matrix B is positive definite if, and only if, A “ B1B for some
B PMn. Moreover, A P GLn if, and only if, B P GLn.

(11) A symmetric matrix B is positive definite, if, and only if, there exist an upper
triangular matrix T such that A “ T 1T . T can be chosen to have nonnegative
diagonal entries and it is unique if A is invertible.

(12) A symmetric matrix is positive definite, respectively strictly positive definite, if
and only if all leading principal minors are nonnegative.

(13) A symmetric matrix A is positive definite if, and only if A “ B2 and B is positive

definite. We write B “ A
1
2 and call B the positive square root of A.

(14) A symmetric matrix A is positive definite, respectively strictly positive definite,
if there exist an Hilbert space H and vectors x1, . . . ,xn, respectively linear inde-
pendent vectors, with aij “ xxi,xjy.

3. General Gaussian Distribution

Proposition 1. (1) Let Z „ Nn p0, Iq, A P Mat pmˆ nq, b P Rm, Σ “ AAT . Then
Y “ b`AZ has a distribution that depends on Σ and b only. The distribution of
Y is called Gaussian with mean b and variance Σ, Nm pb,Σq.

(2) Given any non-negative definite Σ, there exists matrices A such that Σ “ AAT .
(3) If det pΣq ‰ 0, then the distribution of Y “ b ` AZ „ Nm pb,Σq, A P Rmˆm,

AAT “ Σ, has a density given by

Rm
Q y ÞÑ pY pyq “

ˇ

ˇdet
`

A´1
˘ˇ

ˇ pZpA
´1
py ´ bqq “

p2πq´
m
2 det pΣq´

1
2 exp

ˆ

´
1

2
py ´ bqTΣ´1py ´ bq

˙

(4) If the rank of Σ is r ă m, then the distribution of Nm pb,Σq is supported by the
image of Σ. In particular it has no density w.r.t. the Lebesgue measure on Rm.

(5) Y „ Nm pb,Σq if, and only if, the characteristic function is

Rm
Q t ÞÑ exp

ˆ

´
1

2
t˚Σt` ib˚t

˙

Proof. (1) Assume b1, b2 P Rm, Ai P Mat pmˆ niq, Yi “ bi ` AiZi, Zi „ Nn1 p0, Iq,
i “ 1, 2. If b1 ‰ b2 then the expected values of Y1 and Y2 are different, hence
the distribution is different. Assume b1 “ b2 “ b, and consider the distribution of

Yi ´ b “ AiZi, i “ 1, 2. The singular value decomposition Ai “ SiΛ
1{2
i T ˚i implies

Σ “ SiΛS
˚
i , hence S1 “ S2 “ S and Λ1 “ Λ2 “ Λ (a part the order), and we are
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reduced to the case Yi ´ b “ SΛT ˚i Zi, Ti P Mat pni ˆ rq and orthogonal, i “ 1, 2.
The conclusion follows from T ˚1 Z1 „ T ˚2 Z2.

(2) Take A “ Σ1{2.
(3) Use the change of variable formula.
(4) From the singular value decomposition.
(5) The “if” part is a computation, the “only if” part requires the injection property

of characteristic function, see for example [2, Ch. 13].
�

4. Conditioning of Jointly Gaussian Random Variables

Proposition 2. Consider a partitioned Gaussian vector

Y “

„

Y1
Y2



„ Nn1`n2

ˆ„

b1
b2



,

„

Σ11 Σ12

Σ21 Σ22

˙

.

Let ri “ Rank pΣiiq and Σii “ SiΛiS
˚
i with Si P Mat pni ˆ riq, S

˚
i S “ Ini

, Λi P Sym``priq
diagonal, i “ 1, 2.

(1) The blocks Y1, Y2 are independent, Y1 KK Y2, if, and only if, Σ12 “ 0, hence
Σ21 “ Σ˚12 “ 0. More precisely, if, and only if, there exist two independent
standard Gaussian Zi „ Nri p0, Iq and matrices Ai P Mat pni ˆ riq, i “ 1, 2, such
that

#

Y1 “ b1 ` A1Z1 ,

Y2 “ b2 ` A2Z2 .

(2) (The following property is sometimes called Schur complement lemma.) Write
Σ`22 “ S2Λ

´1
2 S˚2 . Then,

„

I ´Σ12Σ
`
22

0 I

 „

Σ11 Σ12

Σ21 Σ22

 „

I 0
´Σ`22Σ21 I



“

„

Σ11 ´ Σ12Σ
`
22Σ21 0

Σ21 Σ22

 „

I 0
´Σ`22Σ21 I



“

„

Σ11 ´ Σ12Σ
`
22Σ21 0

0 Σ22



,

hence the last matrix is non-negative definite. The Shur complement of the parti-
tioned covariance matrix Σ is

Σ1|2 “ Σ11 ´ Σ12Σ
`
22Σ21 P Sym`pn1q .

(3) Assume det pΣq ‰ 0. Then both det
`

Σ1|2

˘

‰ 0 and det pΣq22 ‰ 0. If we define the
partitioned concentration to be

K “ Σ´1 “

„

K11 K12

K21 K22



,

then K11 “ Σ´11|2 and K´1
11 K12 “ ´Σ12Σ

´1
22

Proof. (1) If the blocks are independent, they are uncorrelated. Viceversa,

Σ “

„

A1 0
0 A2

 „

A1 0
0 A2

˚

.

(2) Computations.
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(3) From the computation above we see that the Schur complement is positive definite
and that

det

ˆ„

Σ11 Σ12

Σ21 Σ22

˙

“ det
`

Σ1|2

˘

det pΣ22q .

It follows that det pΣq ‰ 0 implies both det
`

Σ1|2

˘

‰ 0 and det pΣ22q ‰ 0.
�

Proposition 3. (1) Define The Gaussian random vector with components

rY1 “ Y1 ´ pb1 ` L12pY2 ´ b2qq , L12 “ Σ12Σ
`
22

rY2 “ Y2 ´ b2

is such that E
´

rY1

¯

“ 0, Var
´

rY1

¯

“ Σ11 ´ Σ12Σ
`
22Σ21, and rY1 KK rY2. It follows

E pY1|Y2q “ b1 ` L12pY2 ´ b2q

(2) The conditional distribution of Y1 given Y2 “ y2 is Gaussian with

Y1|pY2 “ y2q „ Nn1 pb1 ` L12py2 ´ b2q,Σ11 ´ L12Σ21q

(3) The conditional density of Y1 given Y2 “ y2 in terms of the partitioned concentra-
tion is

pY1|Y2py1|y2q “ p2πq
´

n1
2 det

`

K1|2

˘
1
2 ˆ

exp

ˆ

´
1

2
py1 ´ b1 ´K

´1
11 K12py2 ´ b2qq

TK11py1 ´ b1 ´K
´1
11 K12py2 ´ b2qq

˙

Proof. (1) We have
„

rY1
rY2



“

„

I ´Σ12Σ
`
22

0 I

 „

Y1 ´ b1
Y2 ´ b2



„ Nn1`n2

ˆ

0,

„

Σ1|2 0
0 Σ22

˙

It follows

E pY1|Y2q “ E
´

rY1 ` b1 ` L12pY2 ´ b2q
ˇ

ˇ

ˇ
Y2

¯

“ E
´

rY1

¯

` b1 ` L12pY2 ´ b2q

(2) The conditional distribution of Y1 given Y2 is a transition probability µY1|Y2 : BpRn1qˆ

Rn2 such that for all bounded f : Rn1

E pfpY1q|Y2q “

ż

fpy1q µY1|Y2pdy1|Y2q.

We have

E pfpY1q|Y2q “ E
´

fprY1 ` E pY1|Y2qq
ˇ

ˇ

ˇ
Y2

¯

“

ż

fpx` E pY1|Y2qq γpdx; 0,Σ1|2q

where γpdx; 0,Σ1|2q is the measure of Nn1

`

0,Σ1|2

˘

. We obtain the statement by

considering the effect on the distribution Nn1

`

0,Σ1|2

˘

of the translation x ÞÑ
x` pb1 ` L12py2 ´ b2qq.

(3) A further application of the Schur complement gives
„

Σ11 Σ12

Σ21 Σ22



“

„

I Σ12Σ
´1
22

0 I

 „

Σ1|2 0
0 Σ22

 „

I 0
Σ´122 Σ21 I


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whose inverse is
„

K11 K12

K21 K22



“

„

I 0
´Σ´122 Σ21 I

 „

Σ´11|2 0

0 Σ´122

 „

I ´Σ12Σ
´1
22

0 I



“

„

Σ´11|2 0

´Σ´122 Σ21Σ
´1
1|2 Σ´122

 „

I ´Σ12Σ
´1
22

0 I



“

„

Σ´11|2 ´Σ´11|2Σ12Σ
´1
22

´Σ´122 Σ21Σ
´1
1|2 Σ´122 Σ21Σ

´1
1|2Σ12Σ

´1
22 ` Σ´122



In particular, we have K11 “ Σ´11|2 and K´1
11 K12 “ ´Σ12Σ

´1
22 , hence

Y1|pY2 “ y2q „ Nn1

`

b1 ´K
´1K12py2 ´ b2q, K

´1
11

˘

so that the exponent of the Gaussian density has the factor

py1 ´ b1 `K
´1
11 K12py2 ´ b2qq

TK11py1 ´ b1 `K
´1
11 K12py2 ´ b2qq

�

5. Conditional independence

Conditional independence is a key property in Statistics e.g. Graphical Models, in
Stochastic Processes e.g., Markov processes, in Random Fields, in Machine Learning.

Definition 1.

(1) The nonzero events A,B,C are such that A and C are independent given B,
AKKC|B, if each one of the following equivalent conditions are satisfied:

P pAX C|Bq “ P pA|BqP pC|Bq

P pA|B X Cq “ P pA|Bq

P pAXB X CqP pBq “ P pAXBqP pB X Cq

(2) Random variables Y1, Y3 are conditionally independent given the random variable
Y2, Y1KKY3|Y2 if each one of the following equivalent conditions are satisfied. If
fi, i “ 1, . . . , 3, are bounded,

E pf1pY1qf3pY3q|Y2q “ E pf1pY1q|Y2qE pf3pY3q|Y2q

E pf1pY1q|Y2, Y3q “ E pf1pY1q|Y2q

(3) A stochastic process Y1, . . . , YN is a Markov Process if pY1, . . . , YkqKKYk, . . . , YN |Yk,
k “ 1, 2, . . . , N .

Proposition 4. Let be given

Y “

»

–

Y1
Y2
Y3

fi

fl „ Nn1`n2`n3

¨

˝

»

–

b1
b2
b3

fi

fl ,

»

–

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

fi

fl

˛

‚

We have Y1KKY3|Y2 if, and only if, Σ13 “ Σ12Σ
`
22Σ23. In such a case,

(1)
„

Y1
Y3

ˇ

ˇ

ˇ

ˇ

pY2 “ y2q „ Nn1`n3

ˆ„

b1
b3



`

„

Σ12

Σ32



Σ`22py2 ´ b2q,

„

Σ1|2 0
0 Σ3|2

˙

(2)

Y1|pY2 “ y2, Y3 “ y3q “ Y1|pY2 “ y2q „ Nn1

`

b1 ` Σ1,2Σ
`
22py2 ´ b2q,Σ1|2

˘
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