PROBABILITY 2017 HANDOUT 2: GAUSSIAN DISTRIBUTION

GIOVANNI PISTONE

CONTENTS

Standard Gaussian Distribution	1
Positive Definite Matrices	3
General Gaussian Distribution	4
Conditioning of Jointly Gaussian Random Variables	5
Conditional independence	7
ferences	8
t	Standard Gaussian Distribution Positive Definite Matrices General Gaussian Distribution Conditioning of Jointly Gaussian Random Variables Conditional independence ferences

1. STANDARD GAUSSIAN DISTRIBUTION

1 (Change of variable formula in \mathbb{R}^d). Let $\mathcal{A}, \mathcal{B} \subset \mathbb{R}^d$ be open and ϕ be a diffeomerphism from \mathcal{A} onto \mathcal{B} . Let $J\phi: \mathcal{A} \to \text{Mat}(d \times d)$ be the Jacobian mapping of ϕ and $J\phi^{-1}: \mathcal{B} \to$ Mat $(d \times d)$ the Jacobian mapping of ϕ^{-1} , so that $J\phi^{-1} = (J\phi \circ \phi^{-1})^{-1}$. For each nonnegative $f: \mathcal{B} \to \mathbb{R}^n$,

(1)
$$\int_{\mathcal{B}} f(\boldsymbol{y}) \, d\boldsymbol{y} = \int_{\mathcal{A}} f \circ \phi(\boldsymbol{x}) \, \left| \det \left(J\phi(\boldsymbol{x}) \right) \right| \, d\boldsymbol{x}$$

Example. $\mathcal{A} =]0, 2\pi[\times]0, +\infty[, \mathcal{B} = \mathbb{R}^2_* = \mathbb{R}^2 \setminus \{(x, y) \in \mathbb{R}^2 | x \ge 0, y = 0\}, \phi(\theta, \rho) = (\rho \cos \theta, \rho \sin \theta).$

$$J\phi(\theta,\rho) = \begin{bmatrix} -\rho\sin\theta & \cos\theta\\ \rho\cos\theta & \sin\theta \end{bmatrix}, \quad \det\left(J\phi(\theta,\rho)\right) = -\rho$$

$$\iint_{\mathbb{R}^2_*} e^{-(x^2+y^2)/2} \, dx dy = \iint_{]0,2\pi[\times]0,+\infty[} e^{-(\rho^2 \cos^2\theta + \rho^2 \sin^2\theta)/2} \, \rho \, d\theta d\rho = \iint_{]0,2\pi[\times]0,+\infty[} e^{-\rho^2/2} \, \rho^2 \, d\theta d\rho = 2\pi$$

2. (Image of an absolutely continous measure) Let (S, \mathcal{F}, μ) be measure space, $p: S \to \mathbb{R}_{>0}$ a probability density, $(\mathbb{X}, \mathcal{G})$ a measurable space, $\phi: S \to \mathbb{X}$ a measurable function. If ϕ has a measurable inverse, then the image measure is characterised by

$$\int f \ d\phi_{\#}(p \cdot \mu) = \int (f \circ \phi)p \ d\mu = \int (f \circ \phi)(p \circ \phi^{-1} \circ \phi) \ d\mu = \int fp \circ \phi^{-1} \ d\phi_{\#}\mu$$

Date: Moncalieri, March 2017.

hence $\phi_{\#}(p \cdot \mu) = (p \circ \phi^{-1}) \cdot \mu$. Eq. (1) applied to $f \circ \phi$ and the diffeomorphism ϕ^{-1} gives

$$\int_{\mathcal{B}} f \ d(\phi_{\#}\ell) = \int_{\mathcal{A}} f \circ \phi(\boldsymbol{x}) \ d\boldsymbol{x} = \int_{\mathcal{B}} f \circ \phi \circ \phi^{-1}(\boldsymbol{y}) \ \left| \det \left(J\phi^{-1}(\boldsymbol{y}) \right) \right| \ d\boldsymbol{y} = \int_{\mathcal{B}} f(\boldsymbol{y}) \ \left| \det \left(J\phi^{-1}(\boldsymbol{y}) \right) \right| \ d\boldsymbol{y} = \int_{\mathcal{B}} f(\boldsymbol{y}) \ \left| \det \left(J\phi \circ \phi^{-1}(\boldsymbol{y}) \right) \right|^{-1} \ d\boldsymbol{y}$$

This shows that the image of the Lebesgue measure ℓ under a diffeomorphism is

(2)
$$\phi_{\#}\ell = \left|\det\left(J\phi^{-1}\right)\right| \cdot \ell = \left|\det\left(J\phi\circ\phi^{-1}\right)\right|^{-1} \cdot \ell$$

Example. $\mathcal{A} = [0, 1[\times]0, 1[, \mathcal{B} = \mathbb{R}^2_*, \phi(u, v) = (\sqrt{-2\log u}\cos(2\pi v), \sqrt{-2\log u}\sin(2\pi v)),$

$$J\phi(u,v) = \begin{bmatrix} -\frac{1}{2}(-2\log u)^{-1/2}\frac{2}{u}\cos(2\pi v) & -2\pi\sqrt{-2\log u}\sin(2\pi v) \\ -\frac{1}{2}(-2\log u)^{-1/2}\frac{2}{u}\sin(2\pi v) & 2\pi\sqrt{-2\log u}\cos(2\pi v) \end{bmatrix} ,$$
$$\det\left(J\phi(u,v)\right) = -\frac{2\pi}{u}, \quad \det\left(J\phi\circ\phi^{-1}(x,y)\right) = \frac{2\pi}{e^{(x^2+y^2)/2}} .$$

The image of the uniform probability measure on $]0,1[^2$ under ϕ is $(2\pi)^{-1}e^{-(x^2+y^2)/2} dxdy$.

3. The real random variable Z is standard Gaussian, $Z \sim N_1(0, 1)$, if its distribution ν has density

$$\mathbb{R} \ni z \mapsto \gamma(z) = (2\pi)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}z^2\right)$$

with respect to the Lebesgue measure. It is in fact a density, see above the computation of its two-fold product. All moments $\mu(n) = \int z^n \gamma(z) dz$ exists. If $f: \mathbb{R} \to \mathbb{R}$ absolutely continuous with $\int |f'(z)| \gamma(z) dz < +\infty$ then $\int |zf(z)| \gamma(z) dz < +\infty$ and $\int zf(z) \gamma(z) dz =$ $\int f'(z) \gamma(z) dz$. The Stein operator $\delta f(z) = z f(z) - f'(z)$. We have

$$\int f(z)g'(z)\gamma(z) \, dz = \int \delta f(z)g(z)\gamma(z)dz$$

It follows $(1+n)\mu(n) = \mu(n+2)$. We define the Hermite polynomials to be $H_n(z) = \delta^n 1$; they are orthogonal with respect to $\gamma \cdot \ell$.

4. Let $Z \sim N_1(0,1), Y = b + aZ, a, b \in \mathbb{R}$. Then $E(X) = b, E(X^2) = a^2 + b^2$, Var(X) = b a^2 . If $a \neq 0$, then $\phi(z) = b + az$ is a diffeomorphism with inverse $\phi^{-1}(x) = a^{-1}(x-b)$, hence the density of X is

$$\gamma(a^{-1}(x-b)) |a|^{-1} = (2\pi a^2)^{-1/2} \exp\left(\frac{1}{2a^2}(x-b)^2\right)$$

If a = 0 then the distribution of X = b is the Dirac measure at b. We say that X is Gaussian with mean b and variance a^2 , $X \sim N_1(b, a^2)$. Viceversa, if $X \sim N_1(\mu, \sigma^2)$ and $\sigma^2 \neq 1$, then $Z = \sigma^{-1}(X - \mu) \sim N_1(0, 1)$.

5. The *characteristic function* of a probability measure μ is

$$\widehat{\mu}(t) = \int e^{itx} \ \mu(dx) = \int \cos(tx) \ \mu(dx) + i \int \sin(tx) \ \mu(dx), \quad i = \sqrt{-1}$$

For the standard Gaussian measure we have

$$\hat{\nu}(t) = \int \cos(tz) \ \gamma(z) dz = e^{-\frac{t^2}{2}}$$

If two probability measure have the same characteristic function, then they are equal. See i.e., [2, Ch. 13]. The characteristic function is non-negative definite. The characteristic function of $X \sim N_1(\mu, \sigma^2)$ is

$$\mathbf{E}\left(\mathbf{e}^{itX}\right) = \mathbf{E}\left(\mathbf{e}^{it(\mu+\sigma Z)}\right) = \mathbf{e}^{it\mu} \mathbf{E}\left(\mathbf{e}^{i(\sigma^{t})Z}\right) = \mathbf{e}^{-t\mu+\frac{1}{2}\sigma^{2}t^{2}}$$

6. The product of absolutely continuous probability measures is

$$(p_1 \cdot \mu_1) \otimes (p_2 \cdot \mu_2) = (p_1 \otimes p_2) \cdot \mu_1 \otimes \mu_2$$

7. The \mathbb{R}^d -valued random variable $Z = (Z_1, \ldots, Z_d)$ is standard Gaussian, $Z \sim N_n(0_d, I_d)$ if its components are IID $N_1(0, 1)$. We write $\nu_d = \nu^{\otimes d}$ to denote the *d*-fold product measure. The distribution $\nu_d = \gamma^{\otimes d}$ of $Z \sim N_n(0, I)$ has the product density

$$\mathbb{R}^n \ni \boldsymbol{z} \mapsto \gamma(\boldsymbol{z}) = \prod_{j=1}^n \phi(z_j) = (2\pi)^{-\frac{n}{2}} \exp\left(-\frac{1}{2} \|\boldsymbol{z}\|^2\right)$$

8. The moment generating function $t \mapsto E(\exp(t \cdot Z)) \in \mathbb{R}_{>}$ is

$$\mathbb{R}^n \ni t \mapsto M_Z(t) = \prod_{j=1}^n \exp\left(\frac{1}{2}t_i^2\right) = \exp\left(\frac{1}{2}\left\|t\right\|^2\right)$$

 M_Z is everywhere strictly convex and analytic. The *characteristic function* $\zeta \mapsto \hat{\gamma}_n(\zeta) = E\left(\exp\left(\sqrt{-1}\zeta \cdot Z\right)\right) \in \mathbb{C}$ is

$$\mathbb{R}^n \ni \zeta \mapsto \widehat{\gamma}_n(\zeta) = \prod_{j=1}^2 \exp\left(-\frac{1}{2}\zeta_i^2\right) = \exp\left(\frac{1}{2}\left\|\zeta\right\|^2\right)$$

 $\hat{\gamma}_n$ is non-negative definite and analytic.

2. Positive Definite Matrices

We collect here useful properties of matrices. The algebra of matrices used in Gaussian statistical models is discussed in the monograph [1, Appendix A]. Calculus on the space of matrices is treated in [3]. Find below a check-list of relevant facts.

- (1) Denote by Mat $(m \times n)$ the vector space of $m \times n$ real matrices. We have $M_{n,1} \leftrightarrow \mathbb{R}^n$. Let Mat $(n \times n)$ be the vector space of $n \times n$ real matrices, $\operatorname{GL}(n)$ the group of invertible matrices, $\operatorname{Sym}(n)$ the vector space of real symmetric matrices.
- (2) By identifying each matrix $A \in Mat(m \times n)$ with its vectorized form $vec(A) \in \mathbb{R}^{mn}$, the vector space $Mat(m \times n)$ is an Hilbert space for the scalar product $\langle A, B \rangle = vec(A)^* vec(B) = Tr(AB^*)$. The general linear group GL(n) is an open subset of $Mat(n \times n)$.
- (3) The mapping $f: \operatorname{Mat}(n \times n) \to \mathbb{R}, f(A) = \det(A)$, has derivative at A in the direction H (that is derivative at zero of $t \mapsto \det(A + tH) \in \mathbb{R}$), equal to $\operatorname{Tr}(\operatorname{adj}(A)H)$.
- (4) The mapping $f: \operatorname{GL}(n) \to \operatorname{GL}(n), f(A) = A^{-1}$, has derivative at A in the direction H, that is the derivative at zero of $t \mapsto (A+tH) \in \operatorname{GL}_n$, equal to $-A^{-1}HA^{-1}$.
- (5) A square matrix whose columns form an orthonormal system, $S = [\mathbf{s}_1 \cdots \mathbf{s}_n]$, $\mathbf{s}_i^* \mathbf{s}_j = (i = j)$, has determinant ± 1 . The property is characterised by $S^* = S^{-1}$.
- (6) Each symmetric matrix $A \in \mathbb{S}_n$ has *n* real eigen-values λ_i , i = 1, ..., n and correspondingly an orthonormal basis of eigen-vectors u_i , i = 1, ..., n.

- (7) Let $A \in \text{Mat}(m \times n)$ and let r > 0 be its rank i.e., the dimension of the space generated by its columns, equivalently by its rows. There exist matrices $S \in$ $\text{Mat}(m \times r), T \in \text{Mat}(n \times r)$, and a positive diagonal $r \times r$ matrix Λ , such that $S^*S = T^*T = I_r$, and $A = S\Lambda^{1/2}T^*$. The matrix SS^* is the orthogonal projection onto Image A. In fact Image $SS^* = \text{Image } A, SS^*A = A$, and SS^* is a projection. Similarly, TT^* is the ortogonal projection unto Image A^* .
- (8) A symmetric matrix $A \in \text{Sym}(n)$ is positive definite, $A \in \text{Sym}_+(n)$, respectively strictly positive definite, $A \in \text{Sym}_{++}(n)$, if $\boldsymbol{x} \in \mathbb{R}^n \neq 0$ implies $\boldsymbol{x}'A\boldsymbol{x} \geq 0$, respectively > 0. $\text{Sym}_+(n)$ is a closed pointed cone of Sym(n), whose interior is $\text{Sym}_{++}(n)$. A positive definite matrix is strictly positive definite if it is invertible.
- (9) A symmetric matrix A is positive definite, respectively strictly positive definite, if, and only if, all eigen-values are non-negative, respectively positive.
- (10) A symmetric matrix B is positive definite if, and only if, A = B'B for some $B \in \mathbb{M}_n$. Moreover, $A \in \mathrm{GL}_n$ if, and only if, $B \in \mathrm{GL}_n$.
- (11) A symmetric matrix B is positive definite, if, and only if, there exist an upper triangular matrix T such that A = T'T. T can be chosen to have nonnegative diagonal entries and it is unique if A is invertible.
- (12) A symmetric matrix is positive definite, respectively strictly positive definite, if and only if all leading principal minors are nonnegative.
- (13) A symmetric matrix A is positive definite if, and only if $A = B^2$ and B is positive definite. We write $B = A^{\frac{1}{2}}$ and call B the positive square root of A.
- (14) A symmetric matrix A is positive definite, respectively strictly positive definite, if there exist an Hilbert space \mathbb{H} and vectors $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n$, respectively linear independent vectors, with $a_{ij} = \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle$.

3. General Gaussian Distribution

- **Proposition 1.** (1) Let $Z \sim N_n(0, I)$, $A \in Mat(m \times n)$, $b \in \mathbb{R}^m$, $\Sigma = AA^T$. Then Y = b + AZ has a distribution that depends on Σ and b only. The distribution of Y is called Gaussian with mean b and variance Σ , $N_m(b, \Sigma)$.
 - (2) Given any non-negative definite Σ , there exists matrices A such that $\Sigma = AA^T$.
 - (3) If det $(\Sigma) \neq 0$, then the distribution of $Y = b + AZ \sim N_m(b, \Sigma)$, $A \in \mathbb{R}^{m \times m}$, $AA^T = \Sigma$, has a density given by

$$\mathbb{R}^{m} \ni y \mapsto p_{Y}(y) = \left| \det \left(A^{-1} \right) \right| p_{Z}(A^{-1}(y-b)) = (2\pi)^{-\frac{m}{2}} \det \left(\Sigma \right)^{-\frac{1}{2}} \exp \left(-\frac{1}{2} (y-b)^{T} \Sigma^{-1}(y-b) \right)$$

- (4) If the rank of Σ is r < m, then the distribution of $N_m(b, \Sigma)$ is supported by the image of Σ . In particular it has no density w.r.t. the Lebesgue measure on \mathbb{R}^m .
- (5) $Y \sim N_m(b, \Sigma)$ if, and only if, the characteristic function is

$$\mathbb{R}^m \ni t \mapsto \exp\left(-\frac{1}{2}t^*\Sigma t + ib^*t\right)$$

Proof. (1) Assume $b_1, b_2 \in \mathbb{R}^m$, $A_i \in \text{Mat}(m \times n_i)$, $Y_i = b_i + A_i Z_i$, $Z_i \sim N_{n_1}(0, I)$, i = 1, 2. If $b_1 \neq b_2$ then the expected values of Y_1 and Y_2 are different, hence the distribution is different. Assume $b_1 = b_2 = b$, and consider the distribution of $Y_i - b = A_i Z_i$, i = 1, 2. The singular value decomposition $A_i = S_i \Lambda_i^{1/2} T_i^*$ implies $\Sigma = S_i \Lambda S_i^*$, hence $S_1 = S_2 = S$ and $\Lambda_1 = \Lambda_2 = \Lambda$ (a part the order), and we are reduced to the case $Y_i - b = S\Lambda T_i^* Z_i$, $T_i \in Mat(n_i \times r)$ and orthogonal, i = 1, 2. The conclusion follows from $T_1^* Z_1 \sim T_2^* Z_2$.

- (2) Take $A = \Sigma^{1/2}$.
- (3) Use the change of variable formula.
- (4) From the singular value decomposition.
- (5) The "if" part is a computation, the "only if" part requires the injection property of characteristic function, see for example [2, Ch. 13].

4. CONDITIONING OF JOINTLY GAUSSIAN RANDOM VARIABLES

Proposition 2. Consider a partitioned Gaussian vector

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \sim \mathcal{N}_{n_1+n_2} \left(\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right) .$$

Let $r_i = \text{Rank}(\Sigma_{ii})$ and $\Sigma_{ii} = S_i \Lambda_i S_i^*$ with $S_i \in \text{Mat}(n_i \times r_i)$, $S_i^* S = I_{n_i}$, $\Lambda_i \in \text{Sym}_{++}(r_i)$ diagonal, i = 1, 2.

(1) The blocks Y_1 , Y_2 are independent, $Y_1 \perp Y_2$, if, and only if, $\Sigma_{12} = 0$, hence $\Sigma_{21} = \Sigma_{12}^* = 0$. More precisely, if, and only if, there exist two independent standard Gaussian $Z_i \sim N_{r_i}(0, I)$ and matrices $A_i \in Mat(n_i \times r_i), i = 1, 2$, such that

$$\begin{cases} Y_1 = b_1 + A_1 Z_1 , \\ Y_2 = b_2 + A_2 Z_2 . \end{cases}$$

(2) (The following property is sometimes called Schur complement lemma.) Write $\Sigma_{22}^+ = S_2 \Lambda_2^{-1} S_2^*$. Then,

$$\begin{bmatrix} I & -\Sigma_{12}\Sigma_{22}^{+} \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \begin{bmatrix} I & 0 \\ -\Sigma_{22}^{+}\Sigma_{21} & I \end{bmatrix} = \begin{bmatrix} \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{+}\Sigma_{21} & 0 \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \begin{bmatrix} I & 0 \\ -\Sigma_{22}^{+}\Sigma_{21} & I \end{bmatrix} = \begin{bmatrix} \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{+}\Sigma_{21} & 0 \\ 0 & \Sigma_{22} \end{bmatrix} ,$$

hence the last matrix is non-negative definite. The Shur complement of the partitioned covariance matrix Σ is

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^+ \Sigma_{21} \in \operatorname{Sym}_+(n_1)$$
.

(3) Assume det $(\Sigma) \neq 0$. Then both det $(\Sigma_{1|2}) \neq 0$ and det $(\Sigma)_{22} \neq 0$. If we define the partitioned concentration to be

$$K = \Sigma^{-1} = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} ,$$

then
$$K_{11} = \sum_{1|2}^{-1}$$
 and $K_{11}^{-1}K_{12} = -\sum_{12}\sum_{22}^{-1}$

Proof. (1) If the blocks are independent, they are uncorrelated. Viceversa,

$$\Sigma = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}^* \,.$$

(2) Computations.

(3) From the computation above we see that the Schur complement is positive definite and that

$$\det \left(\begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right) = \det \left(\Sigma_{1|2} \right) \det \left(\Sigma_{22} \right) .$$

It follows that det $(\Sigma) \neq 0$ implies both det $(\Sigma_{1|2}) \neq 0$ and det $(\Sigma_{22}) \neq 0$.

Proposition 3. (1) Define The Gaussian random vector with components

$$\widetilde{Y}_1 = Y_1 - (b_1 + L_{12}(Y_2 - b_2)), \quad L_{12} = \Sigma_{12}\Sigma_{22}^+$$

 $\widetilde{Y}_2 = Y_2 - b_2$

is such that $\operatorname{E}\left(\widetilde{Y}_{1}\right) = 0$, $\operatorname{Var}\left(\widetilde{Y}_{1}\right) = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{+}\Sigma_{21}$, and $\widetilde{Y}_{1} \perp \widetilde{Y}_{2}$. It follows $\operatorname{E}\left(Y_{1}|Y_{2}\right) = b_{1} + L_{12}(Y_{2} - b_{2})$

(2) The conditional distribution of Y_1 given $Y_2 = y_2$ is Gaussian with

$$Y_1|(Y_2 = y_2) \sim N_{n_1} (b_1 + L_{12}(y_2 - b_2), \Sigma_{11} - L_{12}\Sigma_{21})$$

(3) The conditional density of Y_1 given $Y_2 = y_2$ in terms of the partitioned concentration is

$$p_{Y_1|Y_2}(y_1|y_2) = (2\pi)^{-\frac{n_1}{2}} \det \left(K_{1|2}\right)^{\frac{1}{2}} \times \\ \exp \left(-\frac{1}{2}(y_1 - b_1 - K_{11}^{-1}K_{12}(y_2 - b_2))^T K_{11}(y_1 - b_1 - K_{11}^{-1}K_{12}(y_2 - b_2))\right)$$

Proof. (1) We have

$$\begin{bmatrix} \widetilde{Y}_1\\ \widetilde{Y}_2 \end{bmatrix} = \begin{bmatrix} I & -\Sigma_{12}\Sigma_{22}^+\\ 0 & I \end{bmatrix} \begin{bmatrix} Y_1 - b_1\\ Y_2 - b_2 \end{bmatrix} \sim \mathcal{N}_{n_1+n_2} \left(0, \begin{bmatrix} \Sigma_{1|2} & 0\\ 0 & \Sigma_{22} \end{bmatrix} \right)$$

It follows

$$E(Y_1|Y_2) = E\left(\widetilde{Y}_1 + b_1 + L_{12}(Y_2 - b_2) \middle| Y_2\right) = E\left(\widetilde{Y}_1\right) + b_1 + L_{12}(Y_2 - b_2)$$

(2) The conditional distribution of Y_1 given Y_2 is a transition probability $\mu_{Y_1|Y_2} \colon \mathcal{B}(\mathbb{R}^{n_1}) \times \mathbb{R}^{n_2}$ such that for all bounded $f \colon \mathbb{R}^{n_1}$

$$E(f(Y_1)|Y_2) = \int f(y_1) \ \mu_{Y_1|Y_2}(dy_1|Y_2).$$

We have

$$E(f(Y_1)|Y_2) = E\left(f(\widetilde{Y}_1 + E(Y_1|Y_2))|Y_2\right) = \int f(x + E(Y_1|Y_2)) \gamma(dx; 0, \Sigma_{1|2})$$

where $\gamma(dx; 0, \Sigma_{1|2})$ is the measure of $N_{n_1}(0, \Sigma_{1|2})$. We obtain the statement by considering the effect on the distribution $N_{n_1}(0, \Sigma_{1|2})$ of the translation $x \mapsto x + (b_1 + L_{12}(y_2 - b_2))$.

(3) A further application of the Schur complement gives

$$\begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} = \begin{bmatrix} I & \Sigma_{12} \Sigma_{22}^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma_{1|2} & 0 \\ 0 & \Sigma_{22} \end{bmatrix} \begin{bmatrix} I & 0 \\ \Sigma_{22}^{-1} \Sigma_{21} & I \end{bmatrix}$$

whose inverse is

$$\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} = \begin{bmatrix} I & 0 \\ -\Sigma_{22}^{-1}\Sigma_{21} & I \end{bmatrix} \begin{bmatrix} \Sigma_{1|2}^{-1} & 0 \\ 0 & \Sigma_{22}^{-1} \end{bmatrix} \begin{bmatrix} I & -\Sigma_{12}\Sigma_{22}^{-1} \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} \Sigma_{1|2}^{-1} & 0 \\ -\Sigma_{22}^{-1}\Sigma_{21}\Sigma_{1|2}^{-1} & \Sigma_{22}^{-1} \end{bmatrix} \begin{bmatrix} I & -\Sigma_{12}\Sigma_{22}^{-1} \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} \Sigma_{1|2}^{-1} & -\Sigma_{12}^{-1}\Sigma_{22}^{-1} \\ -\Sigma_{22}^{-1}\Sigma_{21}\Sigma_{1|2}^{-1} & \Sigma_{22}^{-1} \\ \Sigma_{22}^{-1}\Sigma_{21}\Sigma_{21}\Sigma_{22}^{-1} + \Sigma_{22}^{-1} \end{bmatrix}$$

In particular, we have $K_{11} = \sum_{1|2}^{-1}$ and $K_{11}^{-1}K_{12} = -\sum_{12}\sum_{22}^{-1}$, hence

$$Y_1|(Y_2 = y_2) \sim N_{n_1} (b_1 - K^{-1}K_{12}(y_2 - b_2), K_{11}^{-1})$$

so that the exponent of the Gaussian density has the factor

$$(y_1 - b_1 + K_{11}^{-1}K_{12}(y_2 - b_2))^T K_{11}(y_1 - b_1 + K_{11}^{-1}K_{12}(y_2 - b_2))$$

5. Conditional independence

Conditional independence is a key property in Statistics e.g. Graphical Models, in Stochastic Processes e.g., Markov processes, in Random Fields, in Machine Learning.

Definition 1.

(1) The nonzero events A, B, C are such that A and C are independent given B, $A \perp C \mid B$, if each one of the following equivalent conditions are satisfied:

$$P(A \cap C|B) = P(A|B) P(C|B)$$
$$P(A|B \cap C) = P(A|B)$$
$$P(A \cap B \cap C) P(B) = P(A \cap B) P(B \cap C)$$

(2) Random variables Y_1, Y_3 are conditionally independent given the random variable $Y_2, Y_1 \perp \!\!\!\perp Y_3 \mid Y_2$ if each one of the following equivalent conditions are satisfied. If $f_i, i = 1, \ldots, 3$, are bounded,

$$E(f_1(Y_1)f_3(Y_3)|Y_2) = E(f_1(Y_1)|Y_2) E(f_3(Y_3)|Y_2)$$

$$E(f_1(Y_1)|Y_2, Y_3) = E(f_1(Y_1)|Y_2)$$

(3) A stochastic process Y_1, \ldots, Y_N is a *Markov Process* if $(Y_1, \ldots, Y_k) \perp \!\!\!\perp Y_k, \ldots, Y_N | Y_k, k = 1, 2, \ldots, N$.

Proposition 4. Let be given

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} \sim \mathcal{N}_{n_1+n_2+n_3} \left(\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} & \Sigma_{13} \\ \Sigma_{21} & \Sigma_{22} & \Sigma_{23} \\ \Sigma_{31} & \Sigma_{32} & \Sigma_{33} \end{bmatrix} \right)$$

We have $Y_1 \perp \!\!\perp Y_3 \mid Y_2$ if, and only if, $\Sigma_{13} = \Sigma_{12} \Sigma_{22}^+ \Sigma_{23}$. In such a case, (1)

$$\begin{bmatrix} Y_1 \\ Y_3 \end{bmatrix} | (Y_2 = y_2) \sim \mathcal{N}_{n_1 + n_3} \left(\begin{bmatrix} b_1 \\ b_3 \end{bmatrix} + \begin{bmatrix} \Sigma_{12} \\ \Sigma_{32} \end{bmatrix} \Sigma_{22}^+ (y_2 - b_2), \begin{bmatrix} \Sigma_{1|2} & 0 \\ 0 & \Sigma_{3|2} \end{bmatrix} \right)$$
(2)
$$Y_1 | (Y_2 = y_2, Y_3 = y_3) = Y_1 | (Y_2 = y_2) \sim \mathcal{N}_{n_1} \left(b_1 + \Sigma_{1,2} \Sigma_{22}^+ (y_2 - b_2), \Sigma_{1|2} \right)$$

References

- T. W. Anderson, An introduction to multivariate statistical analysis, third ed., Wiley Series in Probability and Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2003. MR 1990662
- [2] Jean Jacod and Philip Protter, Probability essentials, second ed., Universitext, Springer-Verlag, Berlin, 2003.
- [3] Jan R. Magnus and Heinz Neudecker, Matrix differential calculus with applications in statistics and econometrics, Wiley Series in Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 1999, Revised reprint of the 1988 original. MR 1698873

COLLEGIO CARLO ALBERTO E-mail address: giovanni.pistone@carloalberto.org