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1. STANDARD GAUSSIAN DISTRIBUTION

1 (Change of variable formula in R%). Let A, B = R? be open and ¢ be a diffeomerphism
from A onto B. Let J¢p: A — Mat (d x d) be the Jacobian mapping of ¢ and J¢~': B —
Mat (d x d) the Jacobian mapping of ¢, so that J¢— = (Jpo¢)~'. For each non-
negative f: B — R",

1) Lf(y) dy = Lf o §(a) |det (Jo(@))| da

Example. A =]0,27[x]0, +[, B = R2 = R*\ {(z,y) e R*|x = 0,y = 0}, ¢(0,p) =
(pcosf, psinb).

_ [—psing coso .
soto.0) = | o, Smg], det (J(0. p)) = —p
J:f e_($2+y2)/2 d[['dy _ J(‘ e_(,02 cos? 0+p? sin? 0)/2 p dep _
R2 ]0,27r[><jJ0,+oo[

Jj e/ p* dfdp = 21

10,27 [ x]0,+00[

2. (Image of an absolutely continous measure) Let (S, F, 1) be measure space, p: S —
R.( a probability density, (X, G) a measurable space, ¢: S — X a measurable function.
If ¢ has a measurable inverse, then the image measure is characterised by

[ 7 douto-) = (oo au= [(rooiwes o) du= [ spo0 dopn
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hence ¢4 (p-p) = (pod™') - u. Eq. (1) applied to f o ¢ and the diffeomorphism ¢~! gives
| Faest) = | foot@ do = | fooooy) et (107 @) dy -
B A B
| 1) Jaet o )| ay = | 7w Jaer (7000 ) [ ay

This shows that the image of the Lebesgue measure ¢ under a diffeomorphism is
2) ol = |det (Jo )| - € = |det (Jopo o V)| -4
Example. A =]0,1[x]0,1[, B = R2, ¢(u,v) = (v/—2logu cos(2mv), v/—2log u sin(27v)),
—1(—210gu)’1/zgcos(27rv) —274/—2log usin(2mv)
st = —5(—210g u)*ma sin(2mv)  2my/—21og u cos(27v)
det (Jo(u,v)) = —2—7T, det (ngo gb‘l(:x,y)) = % )
u e

The image of the uniform probability measure on |0, 1[% under ¢ is (27) e~ (" +¥")/2 dzdy.

3. The real random variable Z is standard Gaussian, Z ~ Ny (0, 1), if its distribution v
has density

R 5 2 y(2) = (271)% exp (—%f)

with respect to the Lebesgue measure. It is in fact a density, see above the computation

of its two-fold product. All moments p(n) = { 2" 7 ) dz exists. If f: R — R absolutely
contlnuous with {[f/(2)] v(z)dz <+ then §12f(2)] v(2)dz < +o0 and § 2f(2) v(2)dz =
§ /() v(z)dz. The Stein operator §f(z) = zf(z) — f’( ). We have

ff dz_faf

It follows (1+n)u(n) = pu(n+2). We define the Hermite polynomials to be H,(z) = d"1;
they are orthogonal Wlth respect to v - /.

4. Let Z ~ N, (0,1),Y = b+aZ, a,beR. Then E(X) = b, E(X2) = a® + 12, Var (X) =
a’. If a # 0, then ¢(z) = b + az is a diffeomorphism with inverse ¢~ '(z) = a~!(z — b),
hence the density of X is

(e (w =)o " = (2ma®) 2 exp <2L<w - b>2)

If a = 0 then the distribution of X = b is the Dirac measure at b. We say that X is
Gaussian with mean b and variance a?, X ~ Ny (b, a?). Viceversa, if X ~ N (i, 0?) and
02 # 1, then Z = o7 1(X — ) ~ Ny (0,1).

5. The characteristic function of a probability measure p is
At) — f & p(dx) = fcos(ta:) 0(dz) + i f sin(tz) p(dz), i—v—1
For the standard Gaussian measure we have

v(t) = fcos(tz) v(2)dz = e
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If two probability measure have the same characteristic function, then they are equal. See
i.e., [2, Ch. 13]. The characteristic function is non-negative definite. The characteristic
function of X ~ Ny (i, 0?) is

E (eitX) - E (eit(u+aZ)) _ it R (ei(at)z> R L
6. The product of absolutely continuous probability measures is

(P1-111) ® (P2 - p2) = (P1 @ p2) - 1 @ a2

7. The R%valued random variable Z = (Z1, ..., Zy) is standard Gaussian, Z ~ Ny, (04, I4)
if its components are IID Ny (0,1). We write v; = v®? to denote the d-fold product
measure. The distribution v4 = v®? of Z ~ N,, (0, I) has the product density

R 320 9(2) = [ol) = (2m) Fexp (5 1)

j=1

8. The moment generating function t — E (exp (t - Z)) € R. is

= 1 1
R" st — My(t) = Eexp <§tf) = exp (5 ||t||2)

My is everywhere strictly convex and analytic. The characteristic function ¢ — 7,(¢) =

E (exp (\/le . Z)) e Cis

2
n ~ 1 1
R3¢ 50(6) = [ eww (—5¢2) = e (161
j=1
~n is non-negative definite and analytic.

2. POSITIVE DEFINITE MATRICES

We collect here useful properties of matrices. The algebra of matrices used in Gaussian
statistical models is discussed in the monograph [1, Appendix A]. Calculus on the space
of matrices is treated in [3]. Find below a check-list of relevant facts.

(1) Denote by Mat (m x n) the vector space of m x n real matrices. We have M,, ; <
R™. Let Mat (n x n) be the vector space of n x n real matrices, GL(n) the group
of invertible matrices, Sym(n) the vector space of real symmetric matrices.

(2) By identifying each matrix A € Mat (m x n) with its vectorized form vec(A) €
R™" the vector space Mat (m x n) is an Hilbert space for the scalar product
(A, B) = vec(A)* vec(B) = Tr (AB*). The general linear group GL(n) is an open
subset of Mat (n x n).

(3) The mapping f: Mat(n xn) — R, f(A) = det(A), has derivative at A in
the direction H (that is derivative at zero of ¢ — det (A +tH) € R), equal to
Tr (adj(A)H).

(4) The mapping f: GL(n) — GL(n), f(A) = A7, has derivative at A in the direc-
tion H, that is the derivative at zero of t — (A+tH) € GL,, equal to —A'HA™L.

(5) A square matrix whose columns form an orthonormal system, S = [s1---8,],
sfs; = (i = j), has determinant +1. The property is characterised by S* = S~1.

(6) Each symmetric matrix A € S,, has n real eigen-values \;, i = 1,...,n and corre-

spondingly an orthonormal basis of eigen-vectors u;, i = 1,...,n.
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(7) Let A € Mat (m x n) and let » > 0 be its rank i.e., the dimension of the space
generated by its columns, equivalently by its rows. There exist matrices S €
Mat (m x r), T € Mat (n x r), and a positive diagonal r x r matrix A, such that
S*S = T*T = I,, and A = SAY2T*. The matrix SS* is the orthogonal projection
onto Image A. In fact Image SS* = Image A, SS*A = A, and SS5* is a projection.
Similarly, TT* is the ortogonal projection unto Image A*.

(8) A symmetric matrix A € Sym(n) is positive definite, A € Sym, (n), respectively
strictly positive definite, A € Sym_,(n), if x € R* # 0 implies ’Ax > 0,
respectively > 0. Sym, (n) is a closed pointed cone of Sym(n), whose interior is
Sym, . (n). A positive definite matrix is strictly positive definite if it is invertible.

(9) A symmetric matrix A is positive definite, respectively strictly positive definite,
if, and only if, all eigen-values are non-negative, respectively positive.

(10) A symmetric matrix B is positive definite if, and only if, A = B'B for some
B € M,,. Moreover, A € GL,, if, and only if, B € GL,,.

(11) A symmetric matrix B is positive definite, if, and only if, there exist an upper
triangular matrix 7" such that A = T"T". T can be chosen to have nonnegative
diagonal entries and it is unique if A is invertible.

(12) A symmetric matrix is positive definite, respectively strictly positive definite, if
and only if all leading principal minors are nonnegative.

(13) A symmetric matrix A is positive definite if, and only if A = B? and B is positive
definite. We write B = Az and call B the positive square oot of A.

(14) A symmetric matrix A is positive definite, respectively strictly positive definite,
if there exist an Hilbert space H and vectors @1, ..., x,, respectively linear inde-
pendent vectors, with a;; = (x;, x;).

3. GENERAL GAUSSIAN DISTRIBUTION

Proposition 1. (1) Let Z ~ N, (0,1), A€ Mat (m xn), be R™, ¥ = AAT. Then
Y =b+ AZ has a distribution that depends on ¥ and b only. The distribution of
Y is called Gaussian with mean b and variance X, N,, (b,%).
(2) Given any non-negative definite 3, there exists matrices A such that ¥ = AAT.
(3) If det (X) # 0, then the distribution of Y = b+ AZ ~ N, (b,X), A € R™™
AAT =X, has a density given by

R™ sy w— py(y) = ‘det (A_l)‘PZ(A_l(?J —b)) =

m 1
()% det () exp (30— 075 - 0)
(4) If the rank of ¥ is r < m, then the distribution of N,, (b,%) is supported by the
image of X2. In particular it has no density w.r.t. the Lebesque measure on R™.
(5) Y ~ N, (b, %) if, and only if, the characteristic function is

1
R™ 5t — exp (—ﬁt*gt + ib*t)

Proof. (1) Assume by, by € R™ A; € Mat (m xn;), Vi = b; + A Z;, Z; ~ Ny, (0,1),
i = 1,2. If by # by then the expected values of Y; and Y5 are different, hence
the distribution is different. Assume b; = by = b, and consider the distribution of

Y, —b=A;Z;, i =1,2. The singular value decomposition A; = SiAg/ 2Ti’" implies

Y = S;AS}, hence S; = Sy = S and A; = Ay = A (a part the order), and we are
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reduced to the case Y; — b = SATZ;, T; € Mat (n; x r) and orthogonal, i = 1, 2.
The conclusion follows from 772y ~ 15 Zs.

(2) Take A = %12,

(3) Use the change of variable formula.

(4) From the singular value decomposition.

(5) The “if” part is a computation, the “only if” part requires the injection property
of characteristic function, see for example [2, Ch. 13].

O

4. CONDITIONING OF JOINTLY GAUSSIAN RANDOM VARIABLES

Proposition 2. Consider a partitioned Gaussian vector

e by Y1 X2
=[] e (] 2 22])
Let r; = Rank (Em) and 2“ = SzAzSz* with Sz € Mat (’I’I,Z X T’z’), SZ*S = Im; Az S Sym++(7’i)
diagonal, i = 1,2.

(1) The blocks Y1, Ys are independent, Y1 1L Y, if, and only if, X153 = 0, hence
Yo = Xy, = 0. More precisely, if, and only if, there exist two independent
standard Gaussian Z; ~ N,. (0,1) and matrices A; € Mat (n; x r;), i = 1,2, such
that

Yi=b+ A2,
5/2 = bg + A2Z2 .

(2) (The following property is sometimes called Schur complement lemma.) Write

Yy = SoA;1SE. Then,

I -Yu3h] [Sn S I 0]
0o I So1 Sao| |-ShSa 1| T

211—2122;2221 0 1 0 _
221 E22 _2;2221 I

Y1 — XXXy 0
0 Yol

hence the last matrix is non-negative definite. The Shur complement of the parti-
tioned covariance matriz X is

Vg = X1 — T1p¥gp Y0 € Sym (ng) .
(3) Assume det (X) # 0. Then both det (y2) # 0 and det (X),, # 0. If we define the

partitioned concentration to be

K = 2—1 _ |:K].l K12:|

Ko Ko
then K11 = X5 and K7 K1z = —S19%5,
Proof. (1) If the blocks are independent, they are uncorrelated. Viceversa,
E:lAl oHA1 o]*'
0 A0 A

(2) Computations.



(3) From the computation above we see that the Schur complement is positive definite

and that
Y11 X
‘M<b;2ﬂ):““&@@“&”'

It follows that det (¥) # 0 implies both det (312) # 0 and det (295) # 0.

Proposition 3. (1) Define The Gaussian random vector with components
371 =Y1 — (b1 + Lio(Ya — b2)), L1z = E12%3,
Yy =Yy — by
s such that E (ﬁ) =0, Var (ﬁ) =Y — X195, and 171 A }72 It follows
E (Y1]Y2) = by + L12(Ys — o)
(2) The conditional distribution of Y1 given Yy = yo is Gaussian with
Y1|(Ya = y2) ~ Ny, (b1 + Lia(y2 — b2), 11 — L12X91)

(3) The conditional density of Y1 given Ya = yo in terms of the partitioned concentra-
tion s

pyl\Yg(?Jl’Zﬂ) = (27r)’%1 det (KHQ)% X
exXp <*%(y1 — by — K" Kia(y2 — b2)) " Ki1(y1 — by — K1y Koy — bz)))
Proof. (1) We have
-7t 2
7l "o 1 Yo—by| Tt (Ul 00 5y,
It follows

E(Vi|Ys) = E (fq by + Lia(Ya — bQ)‘Y2> _FE (fq) 4 by + Lio(Ya — by)

(2) The conditional distribution of Y} given Y5 is a transition probability jiy,|y, : B(R™)x
R™ such that for all bounded f: R™

E(f(Y)]Ys) = j F(01) ovipma(din|Ya).
We have

E(FORIY2) = E (7 + E0ilYa)|¥a) = [ fo + E(¥i1¥2)) 2(des0, Bi)

where (dz;0,X;) is the measure of Ny, (O, 21‘2). We obtain the statement by

considering the effect on the distribution N,,, (0,21‘2) of the translation =z —
xr + <b1 + L12<y2 — bg))
(3) A further application of the Schur complement gives

Y | _ |1 Te¥n | [T 0 I 0
221 222 O I 0 222 2521221 [
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whose inverse is

Ky K| _[ T 0][Z 0 ][I —Sud
Ky Ko -5 I|| 0 3|0 I
_ lzl_lé X 01 I Sy
| —X XXy, X | [0 I
[ e =3 Y12 Y
| —TnTnY; TnTalpTntn + Ty
In particular, we have K;; = El_é and K1_11K12 = —21222_21, hence

Yi|(Ya = y2) ~ Ny, (b1 — K" Koo (y2 — bo), K1)
so that the exponent of the Gaussian density has the factor
(y1 — b1 + K" Kia(y2 — b)) Kui(y1 — b1 + K7 Kia(ya — bo))

5. CONDITIONAL INDEPENDENCE

Conditional independence is a key property in Statistics e.g. Graphical Models, in
Stochastic Processes e.g., Markov processes, in Random Fields, in Machine Learning.

Definition 1.

(1) The nonzero events A, B,C are such that A and C are independent given B,
AlLC| B, if each one of the following equivalent conditions are satisfied:

P(AnC|B) =P (A|B)P(C|B)
P(A|BnC) =P (A|B)
P(AnBnC)P(B)=P(AnB)P(BnC(C)
(2) Random variables Y7, Y5 are conditionally independent given the random variable

Ys, Y1 1LY3|Y5 if each one of the following equivalent conditions are satisfied. If
fi,i=1,...,3, are bounded,

E(fl(iﬁ)fs(iﬁ)ﬂfz) = E(fl(n)‘Yz)E(ﬁ%(Yé)‘YZ)
E (fi(Y1)[Y2,Y3) = E(f1(Y1)]Y2)

(3) A stochastic process Y7, ..., Yy isa Markov Process if (Y1,...,Ye) LY, ..., Yn| Y4,

k=1,2,... N.
Proposition 4. Let be given
Y1 by Yo Y2 i3
Y = |Yo] ~Npingins ba |, [ 221 a2 Yo
Ys bs Y31 Y3z Mag

We have Y11LY3|Ys if, and only if, X153 = X1235,%03. In such a case,

(1)
lé] (Ya = 92) ~ Npy g ([Z;’] + E;z] Y5 (y2 — ba), [26'2 22|2D

Yl’(YQ =12, Y3 = 93) = Y1|(Y2 = yz) ~ N, (bl + Z31,2235r2(y2 - 52), E1|2)
7
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