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Martingale convergence: example |

On the probability space (2, F, u) let X1, Xz,... be lID with
P(X;=0)=P(Xy=2)=1/2.

Define F, = 0(X1,...,X,), n=1,2,.... Because of E(Y,,) =1
and the independence, Y, = [[,_; X1 is a martingale for the
filtration (Fp,)nN-

Define Qo = {X, = 2: n € N}, so that P (£g) = 0. For each
w ¢ Qg the sequence Y,(w), n=1,2,... is eventually 0, hence
lim, 500 Yo=Y =0 as.

However,

lim E (Y, — Yoo) = lim E(Y,)=1#0.

n—oo



Martingale convergence: example |l

On the filtered probability space (2, F, i, (Ft)tez.. ), consider a
square-integrable random variable X and the martingale
Xi = E(X|F:). It follows from Jensen inequality

E(X?) = E (E(XIR)?) <E(E(X?F)) =E(X?) .

We have

t
E(X?) =E(X3) + > _E((Xs — X:1)?) <E(X?) ,
s=1
hence the positive series Yo~ E ((Xs — Xs—1)?) is convergent.
For t; < t, we have

%]

E ((th - Xf1)2) = Z E ((XS - XS—l)z)

s=t;+1

and limp_ 0o X; = Xs in L2-norm exists.

Ch 12 of D. Williams. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge
University Press, Cambridge, 1991



Martingale convergence: example Il - bis

e We have

E ((E(Xeo — X|F2))?) =
E ((E (Xsol F2) = Xe)®) = E ((E (Xoo — Xel Fe))?) <
E (X — X:)?) =0
hence E (Xo — X|F:) =0 and E(X|F:) = X,

o Let Foo = 0(Fi: t € Z>). Fuo is generated by the 7-system
Utez, Fr. It follows that X = E (X|Fw).

o |t is possible to prove with Borel-Cantelli lemma that
limp—oo X¢ = X a.s.



Uniform integrability

e If E(|X]) < oo, then limc_,o0 E (1)x)>c |X|) = 0 by monotone
convergence.

Definition
The sequence (X;)¢en is uniformly integrable if

CILrT;Osup{E(1|X|>C |Xt\)|t € N} =0.

e Example | is not uniformly integrable. E (1y,~.Y,) is zero if
2" < C, otherwise is equal to Y.

e Example Il is uniformly integrable.

E(Ljxsc [Xel) S cTE(XE) < cTE(X?)



Uniform integrability and convergence

Theorem
Iflimp_ oo X» = X a.s., then the limit holds il L1 if, and only if, the
sequence is uniformly integrable.

® See Ch 13 of D. Williams. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge
University Press, Cambridge, 1991



Upcrossing

e Consider the discrete trajectory x: 0,1,..., N — R and fix two real
numbers a < b. There is an upcrossing if there exists two times
s < t such that x(s) < a and b < x(t).

o Let us find the maximum number U of upcrossing as follows:

e wait until the first time s; when the the trajectory comes
below a i.e.
s1 = inf {s > 0|x(s) < a} ;

e wait until the first time when the trajectory comes above b i.e.,
ty = inf {s > s1|x(s) > b} ;

e start again with
s, =inf {s > t1|x(s) < a} ;

e and so on.

e The number of upcrossing Uyla, b] is the greatest integer u such
that t, < +oo. It is finite.



Upcrossing inequality
Let u = Up[a, b]. For each 1 < j < u we have
x(t;) — x(s;) > (b — a), hence

u

> (x(5) = x(s) > (b— a)u

j=1
Let us complete the previous sum to a possible s, 1 < N adding the

corresponding increment

u

D 0x(5) = x(5)) + (x(N) = x(su41) > (b — a)u — (x(N) — a)

j=1
If the trajectory is infinite, x: Z> — R, we can define an infinite
increasing sequence in Z> U {oo} such that for each N € N we have

Z(X(tj A N) —x(s; A N)) > (b—a)Unla, b] — (x(N) — a)~

j=1

limy— oo Un[a, b] = Ux|a, b] is the (possibly infinite) total number
of upcrossings.



Upcrossings of an adapted process

Let (X)tez. be a real process adapted to (F¢)icz.. If Aisa
stopping time and / a real interval, then

B=inf{t>AlX; €}
is a stopping time. In fact

{B=t}=U._y{A=s,B=t}=
U ofA=sin{X,e}niZt{X, ¢ 1} e F, .

All S AN, T; AN, j € N are stopping times and

Z E (Xyan — Xsan) + E((Xnw —a)7) > (b— a) E(Unla, b))



Doob a.s. convergence

Theorem
Let (X)tez. be an integrable real process adapted to (Ft)iez. such that

1. For each couple A < B of bounded stopping times it holds
E(Xg — Xa) <0 i.e., the process is a supermartingale, and

2. sup;e E(|Xe]) < o0.
Then
E(Usxla, b]) < |a| +supE (| X¢]) -
teN

In particular, for all a, b the number of upcrossing U |a, b] is finite a.s.
so that lim,_,oc X; exists a.s.

Proof.

A real sequence (x(t))tez. is confergent to a finite limit if, and only if,
the number of upcrossings is finite for each a, b € Q (assumption 1) and
liminf; o [x(t)| # +oo (assumption 2). O



