Probability 2017 4

Giovanni Pistone

April 6, 2017

Martingale

Definition (Stochastic process)

A discrete-time stochastic process on the probability space $(\Omega, \mathcal{F}, \mu)$ is a family $(X_t)_{t \in I}$, $I \subset \mathbb{Z}$, of random variables.

Definition (Markov process)

A stochastic process is a Markov process if for each bounded measurable real function ϕ and all $t \in I$ it holds

$$\mathsf{E}_{\mu}\left(\phi \circ X_{t} | X_{s} \colon s < t\right) = \mathsf{E}_{\mu}\left(\phi \circ X_{t} | X_{t-}\right), \quad t-= \sup\left\{s \in I | s < t\right\}$$

Definition (Martingale)

A martingale is a real stochastic process $(X_t)_{t \in I}$ such that

1.
$$\mathsf{E}_{\mu}(|X_t|) < +\infty$$
,

2.
$$\mathsf{E}_{\mu}(X_t | X_s: s < t) = X_{t-}, t, t - \in I.$$

Filtration

Definition

- 1. Given a probability space $(\Omega, \mathcal{F}, \mu)$ and a set of discrete times $I \subset \mathbb{Z}$, a filtration is an increasing family $(\mathcal{F}_t)_{t \in I}$ of sub- σ -algebras of \mathcal{F} . The tuple $(\Omega, \mathcal{F}, \mu, (\mathcal{F}_t)_{t \in I})$ is a filtered probability space.
- 2. The natural filtration the stochastic process $(X_t)_{t \in I}$ is the filtration (\mathcal{F}_t) with $\mathcal{F}_t = \sigma \{X_s | s \leq t\}$.
- Given a filtered probability space (Ω, F, μ, (F_t)_{t∈I}), a stocastic process (X_t)_{t∈I} is adapted if X_t is F_t-measurable for all t ∈ I.

Ch. 10 of D. Williams. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.

Basic facts about martingales

- If $(X_t)_{t \in I}$ is a martingale, then $t \mapsto \mathsf{E}_{\mu}(X_t)$ is constant.
- $(X_t)_{t\in I}$ with $\mathsf{E}_{\mu}\left(|X_t|\right)<\infty$, $t\in I$, is a martingale if, and only if

$$\mathsf{E}_{\mu}\left(X_t-X_{t-}|X_s\colon s\leq t-
ight)=0, \quad t,t-\in I$$
 .

 Let (X_t)_{t∈I} be adapted to (Ω, F, μ, (F_t)_{t∈I}), real and integrable. Then (X_t)_{t∈I} is a martingale if, and only if,

$$\mathsf{E}_{\mu}\left(X_{t}|\mathcal{F}_{f}
ight)=X_{t-},\quad t,t-\in I$$
.

- A process (A_t)_{t∈I} is previsible if each A_t is F_{t−}-measurable or constant if t− is not defined. In particular, a previsible process is adapted. A previsible martingale is constant.
- Let (Y_t)ⁿ_{t=0} be a real integrable stochastic process adapted to (Ω, F, μ, (F_t)ⁿ_{t=0}). There exists a previsible real integrable stochastic process (A_t)ⁿ_{t=0} such that X_t = Y_t − A_t is a martingale. Such a process A is called a compensator of Y.

Examples of martingales

- 1. Let X_t , t = 1, 2, ..., N be independent with $\mathsf{E}_{\mu}(X_t) = 0$. Then $S_t = \sum_{s < t} X_t$, t = 1, 2, ..., n is a martingale.
- 2. Let X_1, X_2, \ldots, X_N be a Gaussian martingale. Then $(X_{t+1} X_t)$, $t = 1, 2, \ldots, (N-1)$ are independent.
- 3. Let X_t , t = 1, 2, ..., N be nonnegative and independent with $\mathsf{E}_{\mu}(X_t) = 1$. Then $Y_t = \prod_{s \leq t} X_t$, t = 1, 2, ..., n is a martingale.
- 4. Let $(X_t)_{t=0}^{\infty}$ be a martingale and $(C_t)_{t=1}^{\infty}$ previsible and bounded. Then $Y_t = \sum_{s=1}^t C_s(X_s - X_{s-1})$ is a martingale.
- 5. Let $(X_t)_{t=0}^n$ be a Markov process and write $E_{\mu}(\phi(X_t)|X_0,\ldots,X_{t-1}) = (P_t\phi)(X_{t-1})$. Then for each ϕ bounded

$$\phi(X_t) - \sum_{s=1}^t (P_s - I)\phi(X_{s-1})$$

is a martingale.

Examples of martingales: proofs

1. As
$$S_1 = X_1$$
 and $S_t - S_{t-1} = X_t$, we have
 $\mathcal{F}_t = \sigma(S_s: s \le t) = \sigma(X_s: s \le t)$, hence
 $\mathsf{E}(S_t - S_{t-1}|\mathcal{F}_{t-1}) = \mathsf{E}(X_t|X_s: s < t) = \mathsf{E}(X_t) = 0.$

2. As
$$E(X_t - X_{t-1}) = 0$$
, then
 $Cov(X_s - X_{s-1}, X_t - X_{t-1}) = E((X_s - X_{s-1})(X_t - X_{t-1}))$. Choose
 $s < t$. Then $Cov(X_s - X_{s-1}, X_t - X_{t-1}) =$
 $E((X_s - X_{s-1})E(X_t - X_{t-1}|X_u: u \le (t-1))) = 0$, hence
 $X_s - X_{s-1} \perp X_t - X_{t-1}$.

3. Take
$$\mathcal{F}_t = \sigma(X_s : s \le t)$$
. Then
 $\mathsf{E}(Y_t | \mathcal{F}_{t-1}) = Y_{t-1} \mathsf{E}(X_t | X_s : s < t) = Y_{t-1}$.

4.
$$\mathsf{E}(Y_t - Y_{t-1}|\mathcal{F}_{t-1}) = \mathsf{E}(C_t(X_t - X_{t-1})|\mathcal{F}_{t-1}) = C_t \mathsf{E}(X_t - X_{t-1}|\mathcal{F}_{t-1}) = 0.$$

5.
$$\mathsf{E}(\phi(X_t)|X_s: s < t) = \mathsf{E}(\phi(X_t) - \phi(X_t - 1)|X_s: s < t) + \phi(X_t - 1) = \mathsf{E}((P_t - I)\phi(X_{t-1}|X_s: s < t) + \phi(X_t - 1) = P_t(X_{t-1}).$$
 [And conversely!]

Stopping time

Definition

Given the filtered probability space $(\Omega, \mathcal{F}, \mu, (\mathcal{F}_t)_{t \in I}), I \subset \mathbb{Z}$, a random time is an \mathcal{F} -measurable mapping $T \colon \Omega \to I \cup \{+\infty\}$. A random time is a stopping time (or an optional time) if

$$\{T \leq t\} = \{\omega \in \Omega | T(\omega) \leq t\} \in \mathcal{F}_t, \quad t \in I.$$

Equivalently, $\{T = t\} \in \mathcal{F}_t$ or $\{T > t\} \in \mathcal{F}_t$.

First visit

Let $(X_t)_{t\in I}$ be adapted, $X_t\colon\Omega o S$, and $B\subset S$ measurable. The random time

$$T(\omega) = \inf \{ s \in I | X_s(\omega) \in B \}, \quad \inf \emptyset = +\infty,$$

is a stopping time. In fact,

$$\{\omega \in \Omega | T(\omega) \leq t\} = \cup_{s \leq t} \{\omega \in \Omega | X_s(\omega) \in B\}$$
.

Properties of stopping times

By recoding $I \subset \mathbb{Z}$ we can assume I to be an interval of \mathbb{Z} .

- A constant time $T = \overline{t}$ is a stopping time. In fact, $\{\omega \in \Omega | T \le t\}$ is either \emptyset or ω .
- Given B ∈ F_t the time T(ω) = t if ω ∈ B and +∞ otherwise is a stopping time. In fact, {ω ∈ Ω|T ≤ t} if Ø if t < t and B if t ≥ t.
- If S and T are stopping times, then $S \wedge T$ and $S \vee T$ are stopping times. In fact, $\{\omega \in \Omega | S \wedge T \leq t\} = \{\omega \in \Omega | S \leq t\} \cup \{\omega \in \Omega | T \leq t\}$ and $\{\omega \in \Omega | S \vee T \leq t\} = \{\omega \in \Omega | S \leq t\} \cap \{\omega \in \Omega | T \leq t\}$
- If *I* ⊂ ℤ_≥ and both *S* and *T* are stopping times, then *S* + *T* (defined to take value *S*(ω) + *T*(ω) if in *I*, +∞ otherwise) is a stopping time. In fact, for each *u* ∈ *I*,

$$\{S+T=u\}=\cup_{s,t\in I,s+t=u}\left(\{S=s\}\cap\{T=t\}\right)\in\mathcal{F}_u\ ,$$

because $s, t \ge 0$ and s + t = u implies $s, t \le u$.

Stopped process

Definition

Let $(X_t)_{t \in I}$ be an adapted process and T a finite stopping time.

- X_T = (ω → X_{T(ω)}(ω)) is a random variable, which is integrable if T is bounded;
- the stopped process X^T is the adapted process defined by $(X^T)_t(\omega) = X_{T(\omega) \wedge t}(\omega)$, and it is integrable if T is bounded below.
- It is better to think to the stochastic process as a function
 X: Ω × I, (ω, t) → X(ω, t) = X_t(ω). Then X_T is the composed
 function ω → (ω, T(ω)) → X(ω, T(ω)) and the stopped process is
 defined by X^T = X on the set {(ω, t)|T(ω) ≥ t} and equal to X_T
 otherwise.
- For any stopping time T, the real process $C_t = \mathbf{1}_{\{T \leq t\}}$ is adapted.
- For any stopping time T, the real process $C_t = \mathbf{1}_{\{T \ge t\}}$ is previsible.

Martingales and stopping times I Theorem (Doob)

- 1. A process $(X_t)_{t \in I}$ is a martingale if, and only if, $E(X_T)$ is constant for each bounded stopping time T.
- 2. If $(X_t)_{t \in I}$ is a martingale, and T is a stopping time bounded below, then the stopped process is a martingale.

Proof of 1.

Let X be a martingale and T a stopping time with $t_0 \leq T \leq t_1$. Then

$$\mathsf{E}\left(\sum_{t=t_0}^{t_1} X_t \mathbf{1}_{\{T=t\}}\right) = \sum_{t=t_0}^{t_1} \mathsf{E}\left(X_t \mathbf{1}_{\{T=t\}}\right) = \sum_{t=t_0}^{t_1} \mathsf{E}\left(X_{t_1} \mathbf{1}_{\{T=t\}}\right) = \mathsf{E}(X_{t_1}) .$$

Conversely, for each $t, t-1 \in I$ and $B \in \mathcal{F}_{t-1}$ consider the stopping times $S = (t-1)\mathbf{1}_B + t\mathbf{1}_{B^c}$ and T = t.

$$0 = \mathsf{E}(X_T) - \mathsf{E}(X_S) = \mathsf{E}(X_T - X_S) = \mathsf{E}(\mathbf{1}_B(X_t - X_{t-1})) .$$

Martingales and stopping times II

Proof of 2. We check that for each bounded stopping time S,

$$\mathsf{E}\left((X^{\mathsf{T}})_{\mathsf{S}}\right) = \mathsf{E}\left(X_{\mathsf{S}\wedge\mathsf{T}}\right)$$

is constant. Other proof: If $t_0 \leq T$, then

$$egin{aligned} X^{ au}(t) &= \sum_{s=t_0+1}^t \left((X^{ au})_s - (X^{ au})_{s-1}
ight) \ &= \sum_{s=t_0+1}^t \mathbf{1}_{ au \geq s} (X_s - X_{s-1}) \end{aligned}$$

and the process $C_t = \mathbf{1}_{\{T \ge t\}}$ is previsible and bounded.

Exercise: If $(X_t)_{t=0}^{\infty}$ is Markov and T is a stopping time, then X^T is Markov.

Sub-martingale

Definition

An adapted real integrable stochastic process $(X_i)_{t \in I}$ is a sub-martingale if $s \leq t$ implies $E(X_t | \mathcal{F}_s) \geq X_s$. Equivalently, a previsible compensator of X is increasing.

• Assume X is a L^2 martingale and consider the integrable process $Y_t = (X_t)^2$. Then for $s \le t$ Jensen implies

$$\mathsf{E}\left(Y_t|\mathcal{F}_s\right) = \mathsf{E}\left((X_t)^2\big|\mathcal{F}_s\right) \ge \left(\mathsf{E}\left(X_t|\mathcal{F}_s\right)\right)^2 = (X_s)^2 = Y_s$$

 If X is a sub-martingale with previsible compensator A and S, T are bounded stopping times with S ≤ T, then

$$\mathsf{E}\left(X_{\mathcal{T}}-X_{\mathcal{S}}\right)=\mathsf{E}\left(A_{\mathcal{T}}-A_{\mathcal{S}}\right)\geq0\;.$$