Probability 2017 1

Giovanni Pistone

www.giannidiorestino.it

February 13, 2017

Measurable space

Definition

- A family \mathcal{B} of subsets of S is an algebra on S if it contains \emptyset and S, and it is stable for the complements, finite unions, and finite intersection.
- A family \mathcal{F} of subsets of S is a σ -algebra on S if it is an algebra on S and it is stable for denumerable unions and intersections.
- A measurable space is a couple (S, \mathcal{F}) , where S is a set and \mathcal{F} is a σ -algebra on S.
- Given the family C of subsets of S, the σ -algebra generated by C is $\sigma(C) = \cap \{A | C \subset A \text{ and } A \text{ is a } \sigma\text{-algebra}\}.$
- Examples: the algebra generated by a finite partition; the algebra generated on a finite set S by a function f: S; the Borel σ-algebra of ℝ is generated by the open intervals, or by the closed intervals, or by the intervals, or by the open sets, or by semi-infinite intervals.

§1.1 of D. Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991

Measure space

Definition

- A measure μ of the measurable space (S, F) is a mapping
 μ: F → [0, +∞] such that μ(∅) = 0 and for each sequence (A_n)_{n∈ℕ}
 of disjoint elements of F, μ(∪_{n∈ℕ}A_n) = ∑_{i=1}[∞] μ(A_n).
- A measure is finite if µ(S) < +∞; a measure is σ-finite if there is a sequence (S_n)_{n∈N} in F such that ∪_{n∈N}S_n = S and µ(S_n) < +∞ for all n∈N.
- A probability measure is a finite measure such that μ(S) = 1; a probability space is the triple (S, F, μ), where μ is a probability measure.
- Examples: probability measure on a partition; probability measure on a denumerable set.
- Equivalently, a probability measure is finitely additive and sequentially continuous at \emptyset

§1.3-5 of D. Williams. *Probability with martingales.* Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991

π -system

Definition

Let S be a set. A π -system on S is a family \mathcal{I} of subsets of S which is stable under finite intersection.

- Examples: the family of all points of a finite set and the empty set; the family of open intervals of R; the familily of closed intervals of R; the family of cadlàg intervals of R; the family of convex (resp. open convex, closed convex) subsets of R²; the family of open (resp. closed) set in a topological space.
- If \mathcal{I}_i is a π -system of S_i , i = 1, ..., n, then $\{\times_{i=1}^n I_i | I_i \in \mathcal{I}_i\}$ is a π -system of $\times_{i=1}^n S_i$.
- The family of all real functions of the form α₀ + ∑_{j=1}ⁿ α_j**1**_{l_i}, n ∈ N, α_j ∈ ℝ, j = 0,..., n is a vector space and it is stable for multiplication.

 $\S1.6$ of D. Williams. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991

d-system

Definition

Let S be a set. A *d*-system on S is a family \mathcal{D} of subsets of S such that

- 1. $S \in D$
- 2. If $A, B \in \mathcal{D}$ and $A \subset B$, then $B \setminus A \in \mathcal{D}$. (Notice that $S \setminus A = A^c$)
- 3. If $(A_n)_{n \in \mathbb{N}}$ is an increasing sequence in \mathcal{D} , then $\cup_{n \in \mathbb{N}} \in \mathcal{D}$
- Given probabilities μ_i and i = 1, 2 on the measurable space (S, \mathcal{F}) , the family $\mathcal{D} = \{A \in \mathcal{F} | \mu_1(A) = \mu_2(A)\}$ in a *d*-system.
- Given measurable spaces (S_i, \mathcal{F}_i) , i = 1, 2, the product space $(S, \mathcal{F}) = (S_1 \times S_2, \mathcal{F}_1 \otimes \mathcal{F}_2)$, $\mathcal{F}_1 \otimes \mathcal{F}_2 = \sigma \{A_1 \times A_2 | A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\}$, and $x \in S_1$, the family $\mathcal{D} = \{A \in \mathcal{F}_1 \otimes \mathcal{F}_2 | A \cap \{x\} \times S_2 = \{x\} \times A_x, A_x \in \mathcal{F}_2\}$ is a *d*-system.

A1.2 of D. Williams. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991

Dynkin's lemma

Theorem

- 1. A family of subsets of S is a σ -algebra if, and only if, it is both a d-system and a π -system.
- 2. If \mathcal{I} is a π -system, then $d(\mathcal{I}) = \sigma(\mathcal{I})$.
- 3. Any *d*-system that contains a π-system contains the *σ*-algebra generated by the π-system.

Theorem

If two probability measures on the same measurable space agree on a π -system they are equal.

A1.3 of D. Williams. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991