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1. Poisson Process (Formal construction)
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3. Infinitely divisible distributions (Lévy-Khinchin formula)

4. Lévy processes (Generalities)

5. Stochastic analysis of Lévy processes (Generalities)
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1. C

`

ADL

`

AG trajectory

• A trajectory x : R
+

! R is right continuous and with left limits
(CÀDLÀG ) if

lim
h#0

x(t + h) = x(t), lim
h,k#0

(x(t � h)� x(t � k)) = 0.

We write

lim
h#0

x(t � h) = x(t�), �x(t) = x(t)� x(t�).

If �x(t) 6= 0, we say that (t,�x(t)) is a jump. In the couple
(t,�x(t)), t is the jump time, �x(t) is the marker of the jump.

• For any given a finite time interval [0,T [ and for each ✏ > 0 the
CÀDLÀG trajectory x has a finite number of jumps with t 2 [0,T [
and �x(t) > ✏. The set of all jumps is countable.

• The set of jumps is best described as a the �-finite measureP
�
(t,�x(t))

on R
+

⇥ R⇤, R⇤ = R \ {0}, defined on rectangles by

µx(I ⇥ B) = # {t 2 I |�x(t) 2 B} .
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4. C

`

ADL

`

AG trajectory: removing the jumps

• Assume
R
t

0

R
R⇤

|y | µx(ds, dy) < 1 for all t. Then the sum of jumps
R
t

0

R
R⇤

y µx(ds, dy) is finite for all t and CÀDLÀG .

• In such a case the trajectory t 7! x(t)�
R
t

0

R
R⇤

y µx(ds, dy) is
continuous.

• If
R
t

0

R
R⇤

|y | µx(ds, dy) < 1 for some t, then the sum of jumps is
not defined, but the sum of jumps larger then ✏ > 0,
t 7!

R
t

0

R
|y |>✏ y µx(ds, dy) is finite for all t and CÀDLÀG .

• In such a case the trajectory t 7! x(t)�
R
t

0

R
|y |>✏ y µx(ds, dy) is

CÀDLÀG with jumps smaller or equal to ✏ is absolute value.

• Note that this constructions are non-anticipative.

• If x is increasing, then all jumps have a positive marking and the
sum of jumps exists.
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5. C

`

ADL

`

AG trajectory: variation

• The variation of a CÀDLÀG trajectory x is the increasing function

t 7! x(t) = lim
t

0

=0<t

1

<···<t

n

=t

nX

i=1

|x(t
i

)� x(t
i�1

)| .

• The quadratic variation t 7! [x ](t) of the CÀDLÀG trajectory x is
the increasing function

t 7! [x ](t) = lim
t

0

=0<t

1

<···<t

n

=t

nX

i=1

(x(t
i

)� x(t
i�1

))2

• The two variations are related by the inequality
nX

i=1

(x(t
i

)� x(t
i�1

))2  max {|x(t
i

)� x(t
i�1

)|} x(t).

• Note that from (a� b)2 = �2b(a� b) + (a2 � b2) follows

[x ](t) = x(t)2�x(0)2�2 lim
t

0

=0<t

1

<···<t

n

=t

nX

i=1

x(t
i�1

)(x(t
i

)�x(t
i�1

)).
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6. Continuous L2 martingales

Definition

A continuous process M is an L2 martingale if

1. E
�
M2

t

�
< +1, and

2. E (M
t

|F
s

) = M
s

, 0  s < t.

Theorem

Let M
n

, n = 1, 2, . . . be a sequence of L2 continuous martingales.Let T
be a finite horizon and assume that the L2 limit of M

n

(T ) exists, i.e.
there exists a random variable M such that

lim
n!1

E
�
(M

n

(T )�M(T ))2
�
= 0.

Then there exist an L2 continuous martingale M
t

, t 2 [0,T ] such that

lim
n!1

E
�
sup

t2[0,T ]

(M
n

(t)�M
t

)2
�
= 0.

[Williams] 14.11
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7. Predictable process

A basis (⌦,F ,P, (F(t)
t�0

)) is given.

• A left continuous predictable interval is a subset of ⌦⇥ R
+

of the
form A⇥]a, b], with 0  a < b and A 2 F

a

.

• The set of all left continuous predictable intervals is ⇡-class that
generates a �-algebra P called predictable �-algebra.

• The process (!, t) 7! (! 2 A, a < t  b) is a left continuous
adapted process. Let us call such a process an elementary
predictable process. A linear combination of elementary predictable
processes is a simple predictable process.

• If a process is adapted and left continuous, then it is predictable.
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9. Stochastic integral: simple integrand

A CÀDLÀG process on the basis (⌦,F ,P, (F(t)
t�0

)) is given.

• If Y is elementary predictable Y
t

(!) = (! 2 A, a < t  b), define
the stochastic integral

R
Y dX to be the process with trajectories

t 7! (! 2 A)(X
min(b,t) � X

min(a,t), ! 2 ⌦.

We write
R
t

0

Y
s

dX
s

=
�R

Y dx
�
t

.

• If ! /2 A, then
�R

Y dX
�
(!) = 0.

• If ! 2 A and t  a, then
�R

Y dX
�
t

(!) = 0.

• If ! 2 A and a  t  b, then
�R

Y dX
�
t

(!) = X
t

(!)� X
a

(!).

• If ! 2 A and b  t, then
�R

Y dX
�
t

(!) = X
b

(!)� X
a

(!).

• The definition easily extend to simple predictable process by
linearity.
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10. Ito integral of the simple process �(t) = Y1(t1  t),
t � 0

• For �(t) = Y
1

(t
1

 t), define the Ito integral

Z
t

0

�(s)dW (s) =

(
0 for t < t

1

Y
1

(W (t)�W (t
1

)) for t
1

 t

= Y
1

(W (t)�W (t ^ t
1

))

• The Ito integral is a continuous martingale

E
✓Z

t

0

�(u)dW (u)

����F(s)

◆
=

Z
s

0

�(u)dW (u), s  t.

• The Ito integral is isometric

E
 ✓Z

t

0

�(u)dW (u)

◆
2

!
= E

✓Z
t

0

�2(u)du

◆
.

• The quadratic variation of the Ito integral is
R
t

0

�2(s)ds.
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11. Ito integral of a simple process �

• For �(t) =
P

n

j=1

Y
j

(t
j

 t), define the Ito integral by linearity. If
the interval [0, t] contains the jumps 0  t

1

< · · · t
m

 t,
Z

t

0

�(s)dW (s) =
nX

j=1

Y
j

(W (t)�W (t ^ t
j

)

=
mX

j=1

Y
j

(W (t)�W (t
j

))

=
mX

j=1

Y
j

(
mX

i=j+1

W (t
i+1

)�W (t
i

))

=
mX

i=1

�(t
i

)(W (t
i+1

)�W (t
i

))

• The Ito integral is a continuous martingale.

• The Ito integral is isometric.

• The quadratic variation of the Ito integral is
R
t

0

�2(s)ds.
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12. Ito integral of an L2 process

• If � is a process of class L2, there exists a sequence �
n

,
n = 1, 2, . . . of simple processes such that

lim
n!1

E
 Z

T

0

|�(u)��
n

(u)|2 du
!

= 0.

• The Ito integral of a process of class L2 is defined by continuity.

• The Ito integral is a linear operator mapping L2 processes into
continuous martingale.

• The Ito integral is isometric.

• The quadratic variation of the Ito integral is

Z
�dW

�
(t) =

Z
t

0

�2(u)du
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13. Continuous martingales

If M is a continuous bounded martingale, the computation

M2(t)�M2(s) =
nX

j=1

M2(t
j

)�M2(t
j�1

)

=
nX

j=1

2M(t
j�1

)(M(t
j

)�M(t
j�1

)) +
nX

j=1

(M(t
j

)�M(t
j�1

))2

produces the decomposition

M2(t) = M2(0) + 2

Z
t

0

M(u)dM(u) + [M] (t)

and, for an Ito integral,

✓Z
t

0

�dW

◆
2

= 2

Z
t

0

✓Z
s

0

�(u)dW (u)

◆
dW (s) +

Z
t

0

�2(s)ds
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14. Ito-Doeblin formula

Definition (Ito process)

An Ito process is a process of the form

X (t) = X (0) +

Z
t

0

�(s)dW (s) +

Z
t

0

⇥(s)ds.

Theorem (Ito-Doeblin formula for the Brownian Motion)

• If f 2 C 1,2(R
+

,R2) and

• f
x

(t,W (t)), t � 0, is an L2 process,

then f (t,W (t)), t � 0, is an Ito process, and

f (t,W (t)) = f (0,W (0)) +

Z
t

0

f
t

(s,W (s))ds+

Z
t

0

f
x

(s,W (s))dW (s) +
1

2

Z
t

0

f
xx

(s,W (s))ds.
14 / 22

15. Proof of Ito-Doeblin formula

We write for 0  s < t  T
Z

t

s

�(u)dW (u) =

Z
t

0

�(u)dW (u)�
Z

s

0

�(u)dW (u)

=

Z
T

0

(s < u  t)�(u)dW (u).

In particular,

(W (t)�W (s))2 = W (t)2 �W (s)2 � 2W (s)(W (t)�W (s))

= 2

Z
t

s

W (u)dW (u) + (t � s)� 2W (s)(W (t)�W (s))

= (t � s) + 2

Z
t

s

(W (u)�W (s))dW (u)

The Taylor formula of order 1,2 for f gives

f (t,W (t))� f (s,W (s)) =f
t

(s,W (s))(t � s)

+f
x

(s,W (s))(W (t)�W (s))

+
1

2
f
xx

(s,W (s))(W (t)�W (s))2

+R
1,2(s, t,W (s),W (t))

=f
t

(s,W (s))(t � s)

+f
x

(s,W (s))(W (t)�W (s))

+
1

2
f
xx

(s,W (s))(t � s)

+f
xx

(s,W (s))

Z
t

s

(W (u)�W (s))dW (u)

+R
1,2(s, t,W (s),W (t))

Summing over a partition, the first tree term go to the Ito formula, the

last two terms go to zero.
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16. Ito-Doeblin formula: Applications

• The process f (t,W (t)) is a martingale if f
10

(t, x) + 1

2

f
02

(t, x) = 0.

• Let H
n

(x) be a polynomial of degree n and define
f (t, x) = tn/2H

n

(t�1/2x). We have

f
1,0(t, x) = tn/2�1(

1

2
H

n

(t�1/2x)� x

2
H 0

n

(t�1/2x)),

f
02

(t, x) = tn/2�1H 00
n

(t�1/2x).

• The martingale condition is satisfied if

nH
n

(y)� yH 0
n

(y) + H 00
n

(y) = 0.

• We can take the Hermite polynomials

H
n

(y) = (�1)ne
y

2

2

dn

dyn

e�
y

2

2

to obtain the Hermite martingales

M
n

(t) =

Z
t

0

u
n

2H
n

(u�
1

2W (u))dW (u).

[Hint: the n-th derivative of yg(y) is yg (n)(y) + ng (n�1)(y)]

• As H 0
n

(y) = nH
n�1

(y), if f
n

(t, x) = tn/2H
n

(t�1/2x), the x-derivative
is

d

dx
f
n

(t, x) = t
n

2

� 1

2H 0
n

(t�1/2x) = nf
n�1

(t, x),

and we have the iterated Ito integrals

M
n

(t) =

Z
t

0

M
n�1

(u)dW (u).
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17. Lévy process

The basis of process (⌦,F ,P, (F(t)
t�0

)) is given. The set of trajectories
D(R

+

) is the set of continuous to the right, with left limits, functions
x : R

+

! R, CÀDLÀG .

Definition

X is a Lévy process on (⌦,F ,P, (F(t)
t�0

)) if it is is a CÀDLÀG process,
X : ⌦ ! D(R

+

), such that

1. X is adapted, i.e. X
t

is F
t

-measurable, t � 0;

2. X starts from 0, i.e. X
0

= 0 a.s.;

3. the increments are independent from the past history, i.e. (X
t

� X
s

)
is independent of F

s

, 0  s < t;

4. the increments are homogeneous, namely the distribution of
(X

t

� X
s

) depends on (t � s) only;

5. R
+

: t 7! X
t

is continuous in probability, i.e.

lim
t!s

P (|X
s

� X
t

| > ✏) = 0, ✏ > 0.

.
17 / 22



18. Distribution of a Lévy process

Distribution

1. The distribution µ
1

of X
1

is infinitely divisible, hence the
characteristic function has the exponential form µ̌

1

(✓) = e (✓) with
cumulant function given by th Lévy-Khinchin formula:

 (✓) = i�✓ � 1

2
�2✓2 +

Z �
ei✓y � 1� i✓h(y)

�
⌫(dy).

2. The characteristic function of the distribution µ
t

is µ̌
t

(✓) = et (✓).

3. The finite-dimensional distributions of X depend on µ
1

only.

Note: Because of the independent increments and homogenuity,

µ̌
s

(✓)µ̌
t

(✓) = µ̌
s+t

(✓), hence µ̌
t

(✓) = (µ̌
1

(✓))t . Given h, the generating

triple (�,�2, ⌫) is unique.
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19. Poisson random measure

Definition ([Sato] Ch. 4. [Applebaum] Ch. 2)

Let (⌦,F ,P) be a probability space and let (R ,R, ⌫) be a �-finite
measure space.

• A random variable N with values in Z
+

= {0, 1, 2, . . . ,1} is a
(generalised) Poisson random variable with mean (intensity)
� 2 R

+

= [0,1] in cases: � = 0, then N = 0 a.s.; 0 < � < 1,
N ⇠ Poi(�); � = 1, N = 1 a.s.

• A mapping N : R⇥ ⌦ with values in Z
+

is a Poisson random
measure if

1. N is a transition measure, i.e. for each fixed ! 2 ⌦, the
mapping A 7! N(A,!) is a measure;

2. ! 7! N(A,!) is a Poisson random variable, denoted by N(A),
with intensity ⇢(A), A 2 R, where ⇢ is a positive measure
called the intensity measure of N;

3. If A
1

, . . . ,A
n

2 R are disjoint, then N(A
1

), . . . ,N(A
n

) are
indepemdent.
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20. Lévy-Itô decomposition

Measure of the jumps

Let X be a Lévy process.

• On the measurable space (R
+

,⇥R⇤,B(R+

,⇥R⇤)) consider for each
! 2 ⌦ the CÀDLÀG trajectory t 7! X

t

(!) and the countable set of
jumps J(!) = {(t,�X

t

(!))} of that trajectory.

• The measure N(·,!) : A 7! N(A,!) = # {(t,�X
t

(!)) 2 A},
A 2 B(R

+

,⇥R⇤)) is Z+

-valued and �-finite, because it is finite on
each set [0,T [⇥ {y ||y | > ✏}, T , ✏ > 0.

The measure of the jumps is Poisson

Let X be a Lévy process with generating triple (�,�2, ⌫) and measure of
jumps N. Let us define e⌫(ds, dy) = ds⌫(dy). Then
N is a Poisson measure with intensity measure e⌫.
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21. Examples I

1. Let W be a Wiener process. Then the generating triple is � = 0,
�2 = 1, ⌫ = 0, and there are no jumps, hence N = 0.

2. The process X
t

= �t + �W
t

, � 2 R, � � 0, is Lévy without jumps
and generating triple (�,�2, 0).

3. Let Z be a Poisson prosess with intensity � and jump times
T
1

,T
2

, . . . . The generating triple is � = ih(1), �2 = 0, ⌫ = ��
1

.
The measure e⌫ defines the integralR
f (s, y) e⌫(ds, dy) = �

R
f (s, 1) ds, in particularR

t

0

R
B

f (y) e(ds, dy) = tf (1)(1 2 B). The set of jumps for the
trajectory X·(!) is J(!) = {(T

j

(!), 1)|j 2 N} and
N(A,!) = # {(T

j

(!), 1)|(T
j

(!), 1) 2 A}. In particular, for
A = [0, t]⇥ B , we have for 1 /2 B that
N([0, t]⇥ B ,!) = # {(T

j

(!), 1)|T
j

 t, 1 2 B} = 0, othewise
N([0, t]⇥ B ,!) = # {(T

j

(!), 1)|T
j

 t, 1 2 B} =
# {j 2 N|T

j

 t} = Z
t

, that is N([0, t]⇥ B) is a Poisson random
variable with intensity e⌫([0, t]⇥ B) = t⌫(B). For each ! the
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22. Examples II

trajectory t 7! N([0, t]⇥ B ,!) = N
t

(B ,!) is CÀDLÀG and N(B) is
a Poisson process, precisely N(B) = 0 if 1 /2 B , otherwise
N(B) = Z . This implies independence on disjoint intervals.

4. X = W + Z is the prototype of the general case.

5. If X has a compound Poisson triple, we obtain a non-trivial example
of the contruction.

Conclusion

Go to [Applebaum] Ch. 2 or [Sato] Ch. 4 if you want to read the end of
the story.
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