COLLEGIO CARLO ALBERTO
STOCHASTIC PROCESSES 2014

3. INFINITELY DIVISIBLE DISTRIBUTIONS

GIOVANNI PISTONE

The following lecture notes are based on Sasvari [2] and Sato [3].

1. Definition (Convolution). Let X, Y be independent random variables with values in
R" and distributions pux, py, respectively. The convolution px * py is the distribution of

X +Y, that is for all bounded f: R" - R

j F(2) (s py)(d2) = E(F(X +Y)) = j Pz + ) s (da)yay (dy).

2. Proposition (Convolution).
(1) If py has density py with respect to the Lebesgue measure, then py * pe has density

p1* pa given by
Py # pia(2) = j iz — y) paldy).

(2) If both have densities py, pa, respectively, with respect to the Lebesque measure,
then py * o has density py = pa given by

(p1#p2)(2) = fm(z —y)p2(y) dy = Jpl(x)pg(z — ) du.

(3) If the measurable function f: R" — R, and p is a measure, define f = p(z) =
§ f(z — ) p(dz) if the integral exists a.e, i.e. §|f(z — )| p(dz) < oo a.sin z. If
the measure  is finite and f € L*(dx), 1 < a < oo, then then f = u exists and

1= plla < 1o

Exercise.
(1) For each bounded f: R" - R

j F(2) (ur » p2) (d2) = j F(@ + ) pa(x) de paldy) =

J(ffxﬂl)pl( )dy> pa(dy) = J(Jf pi(z — ) z) o (dy) =
ff (f pi(z—y )ug(dy)> dz.
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(2) For each bounded f: R" — R

| ) e itaz) = [[ 160+ 0) m)de o)y -

f Uf(x +y) pg(y)dy> p1(z)de = J (Jf(z) po(z — ac)dz> pi(z)dz =
ff(z) (Jpl(x)pg(z — x)dx) dz.

(3) From {{[f(z — )" dzpu(dz) = §If(y)|" dy.

3. Exercise.
(1) Compute x = f for x = 0, and f € Cy.
(2) Compute x = f for x = (04 — 0p)*", n=1,2,3 and f € Cy. If f is a polynomial of
degree n — 1, then (64 — 0)*" = f = 0.
(3) Compute x = f for x(dx) = A71(0 < x < A)dx. If x is a complex measure, define
X(B) = x(=B). Compute x =X and x =X * f, f € C,.
(4) Let mu, = N(0,0%I), and f € Cy. Then lim,_q [ * us(2) = f(2).
Solution.
(1) 60 * f(y) =§ fly — @) du(dx) = f(y — a) is the translation of f.
(2) (6a—0p)* f(y) = f(y—a)— f(y—0b). I [ is constant, then f(y—a)— f(y—b) = 0.
(0o — )2 fly) = fly —2a) =2f(y —a —b) + f(y —2b). If f=wuly+visa
polynomial of degree 1, then f(y—a)— f(y—b) = u'(y —a) —u'(y —b) = u'(b—a)
is constant. In general, if f is a polynomial of degree n, then (6, — &) * f(y) =
fly—a)—fly—b) =X5_, %f®(y—b)(b—a)" is a polynomial of degree at most
n—1eg (y—a)*—(y—>0*=aly —b)(b—a)+ (a—b)%
(3) Continuity and dominated convergence:

Joo(y) = f Fy — £)(2m) 20 ne- 1ol 20% gy _

f fly — o2)(2m) 22 gy f Fy)(2m) e 2 gz = f(y).
]

4. Definition (Characteristic function, inverse Fourier tranform).

(1) Let X be a random variable in R™, with distribution px. The characteristic func-
tion of X is the function ¢px: R™ — C defined by

ox(t) = E () = [0 o), i =L

(2) The function jix(t) = §e"* pdzx) is also called inverse Fourier transform of .
If 1 has a density f with respect to the Lebesgue measure, then the inverse Fourier

transform of f is f(t) = (¥t f(x) dv = j(t). If f € L*(dx) then the Fourier
transform f(t) = (e b f(x) dx is defined for all t and HfH < | fl;-
1

5. Definition (Positive definite). A function f: R™ — C s positive definite if for all
meN, zq,..., 2, €R", ¢1,...,¢m € C it holds Z?Fl ciG; f(z; —x;) = 0. In other words,
forallm e N, xy,...,1,, € R" the matriz A = [f(x; — x;)]i"_, is positive definite, that

is for all w e C™, it holds u*Au > 0, u* = ul.
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6. Definition (Hermitian). A function f: R" — C is Hermitian if f(—t) = m, teR™

7. Proposition (Properties of positive definite functions).
(1) If f is positive definite, then f is Hermitian and f(0) =0
(2) For a complex measure i, define i by § f(z) fi(dz) = § f(—=x) p(dz). Analogously,

for each g: R" — C, define g(t) = g(—t). If f is continuous and positive definite,
then p = i f is positive definite. Similarly for g = g+ f(t).

(3) If g € L*(R™, \;C), that is §|g(x)]> dx < oo, then g+ § exists and is positive
definite.

(4) Let Xy, t € R™ be a family of random variables such that Cov (X, Xi) = p(t — s).
Then p is positive definite.

(5) If f is positive definite, then x — et f(x) is positive definite.

(6) If f is positive definite and integrable, the § f(x) dz = 0.

Exercise.
(1) Take m =1 1= 1, 2y = 0: &1 f(0—0) = f(0) = 0. Take m = 2, 27 = 0,
Ty = I |cl\ f(0) + c1caf(—x) + cotif(z) + |c2| f(0) = 0. In particular, with
g = cg = 1, we have f(—z) + f(z) € R, and, with ¢; = 1, ¢o = 4, we have
i(f(l’) ~ f(~2)) € R. It follows f(x) = [(f(~a) + f(2)) — i -i(f(x) — [(~a))]/2
andf(—z) = [(f (=) + f(x)) +1-i(f(x) = f(=2))]/2.
(2) It is enough to consider = >7", ¢y, Ji = Z;"Zl Cj0_z,;. In such a case

m

A= [ 16— o - ) utdoitdn) = Y} ecisle - wit ay)
ij=1
We check the positive definiteness with
M —
> it i £2) = [[ 12— - ) udn)itay) -
hk=1
M _om
Z dpdy Z ciGif(zn — 2 —xi +15) = Z Z dhdkclc] (zn — ;) — (2, — ) =
h k=1 ij=1 hk=14,j=1
7 (edn)(eidi) (f (ni = yrs) = 0.
(h,i),(k.5)
(3) The existence of g = g(y) = § g(y ) dx follows from

9+ 3(0) \/f\g ~ ) dx\/ﬂg e = [gl}.

The positive definiteness is

Z czcjf —y; —x)g(—x) do = f i citig(ys — y; — x)g(—x) dx =

i,7=1 2,7=1

Jchc]g (-——x)dajzj

i,7=1

dr = 0.

D ciglys — )
=1

(4) From the definition.
(5) From the definition.



(6) Let g, be a a sequence of triangular functions such that f(z)g,(z) — f(z). Write
gn = hy, = E;, h,, being uniform, and compute § f(x)7,(z) dz as the value at 0
of a positive convolution. L.e. (n—l) let h,(z) = n"Y2(0 < x < n) and define
gn—h *?L Then g,(0) = < go(x) < 1 and g,(z) — 1, n — 0. From

§ f(x) ) dr = f*gn*gn (O) > 0 we obtain the result.

g

8. Proposition.

(1) The characteristic function is uniformly continuous and f1(0) = 1.

(2) If X is a random variable in R™ with characteristic function ¢x, for each A €
R™™ and a € R™, the random variable Y = a + AX has characteristic function
(by(s) = ei<a’5>¢X (ATS>.

(3) If X1 and Xy are independent random variables with values in R™ and R", and
characteristic functions ¢y, ¢o, respectively, then X = (X, X3) has characteristic
function ¢x(t1,t2) = 1(t1)p2(ta).

(4) The characteristic function is Hermitian.

(5) The characteristic function is positive definite.

Exercise.
(1) We have |etHhe) — eiltar] — |eita) (ihe) — )| = |eih®) — 1] < 2, and limy_.g O(h)
§ [e"® — 1| p(dz) = 0 by dominated convergence.
) From (s,a + Az) = (s,a) + (ATs, x).
) From 1ndependence and ((t1,t2), (71, 72)), 4, = <t1,71),, + {t2,72),,. .
) fi
)

(
(
E = § et p(dr) = § @ p(dr) = flt).

2
3
4
5

Z ¢ty —t) Jche Ly (dr) =
i,j=1 i,j=1
J Z G5 Ceitim ity @) pu(dr) = J

i,7=1

n 2

Z Ciei<ti )

i=1

p(dx) >0

g

The following proposition requires the use of complex logarithms, which are not easily
defined because the complex exponential function e* = e®?e’%% = 3%(cos(Jz) + i sin(Jz2))

is not invertible as e* = e*T2™¢ L e Z.

9. Proposition (Cumulant function). Let ¢: R™ — C be the characteristic function of
the probability measure p and assume that ¢(t) # 0, t € R™. There exists a unique
continuous function 1: R* — C such that ¢(t) = e¥) and k(0) = 0. Such a function is
Hermatian. It is called the cumulant function of w.

Proof. In steps.

(1) The cumulant function is unique. In fact, if ¢(t) = e¥1®) = e¥2(®) then R);(t) =
log (|¢(t)]), @ = 1,2, hence 51 = ei3%2() hence Sv;(t) — She(t) = 2mk(t).
The function ¢ — k(t) is continuous and integer valued on R™, then constant and
equal 0 at ¢t = 0.

(2) The cumulant function is Hermitian. From ¢(—t) = ¢(t) it follows e3¢0 —
e S¥®) hence S(—t) + SU(t) = 2mk(t).
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(3) Continuous argument. As ¢ is never zero, we can define define f(t) = ¢(t)/|o(t)]

so that f: R" - T = {z € C||z| = 1} is continuous and f(0) = 1. A continuous
argument of f is a continuous 6: R" — R such that f(t) = e?® and 0(0) = 0. If
a continuous argument exist, then ¢(t) = |¢(t)|e??® = elos(eON+0() — VO yith

Y = log |¢| + i6 continuous and ¥ (0) = log 1 + 9(0) =0.

(4) Consider a continuous f: B — T, B < R", such that f(B) # T. Choose e €
T\ f(B). Then the function z — arg(e™"*z)+a is a continuous bijection of T\ {e**}
onto |, 427, hence f(t) = '@l f()+a) g5 that t — O(t) = arg(e ™ f(t)) +
is a continuous argument of f on B.

(5) Let fi1, fo: B— T, B < R™, be continuous. Assume f; has a continuous argument
on B, fi = e, and fi(t) + f2(t) # 0, t € B. Then f,/fy: R® — C never equals
—1, hence it has a continuous argument on B, fi/f, = €, so that f, = ¢/ (10,

(6) Consider the function f#: B(R) = {t‘HtH2 < R} x [0,1] 5 (t,a) — f(at). The
function f7 is continuous on a compact set, hence uniformly continuous, so that
there exists a n € N such that |f#(a;t) — f#(ast)| < 1 for all ¢ if |a; — an| < 1/n.
Consider the sequence f;(t) = f% (%t), j =0,1,...,n. We proceed by finite
induction on j. if j = 0 then fy(t) = f(0) = 1 and the continuous argument
is 6 = 0. If there exist a continuous argument on B(R) for f;, j < n, as
|fi+1(t) — f;(t)] < 1, the relation f;.1(¢)+ f;(t) = 0is impossible, and the previous
item shows that f;i; has a continuous argument on B(R). Finally, note that
fn = fR-

(7) Each f has a continuous argument 6z on B(R) and 0g,(t) = 0Og,(t) for all
t € B(min(Ry, Ry)) because B(min(R;, R2)) is connected and the uniqueness argu-
ment applies. Then the global continuous argument is defined by its restrictions.

U

10. Exercise.

(1) Let u, v, be probability measures on R™ with characteristic function respectively
i, . Then

J2<ty> (t) v(dt) = JD(:chy) p(dz)

(2) Let X ~ p independent of Y ~ N(0,1) and v ~ X + oY . Let g, be the density of
oY. Then v = u =g, has density

polt) = [gn(t ) ) = (2) 0" gy ) = [P (g ) d

Proof.
(1) We have e % ji(t) = et (el y(dy) = (et 1(dy) and we can take the
integral with respect to v to get § (e“"¥(t)) v(dt) = (§e’t*Tv p(dy)v(dt) =

§o(x +y) p(dr).
(2) From the properties of the Gaussian density and the previous equality.

g

11. Proposition (Inversion theorems). Let denote by p be a probability measure on R™
with inverse Fourier transform [i.

(1) For all f: R™ > R continuous and with bounded support, f € Coo(R™),

ff(l") p(dz) = ”Tlgrgcf J (Jf ket ds> fi(t) dt.



(2) The mapping p— fi is 1-to-1.
(3) If v is integrable, that is §|fa(t)] dt < oo, then pu has a bounded and uniformly
continuous density p with respect to the Lebesgue measure \, and

plz) = (2m)" j Aty dt = (2m) " fu(h).

FEzercise.

(1) We have

[ ([row ) ([ )
stf J dyf J dt = _

2”stf f (dy) Hsm N —si) _
> ( | f<s>ﬁSi“<T‘(yifsi” ds> W) = Ty—s)=u

See another version in [4, §16.6].

(2) Follows from the previous inversion formula and the monotone class theorem. See
also a direct proof based on Ex. . in [1, 14.1]

(3) Use the approximation with the Gaussian kernel of Ex. ., see [2, Th 1.3.6]

12. Definition (Weak convergence, convergence in distribution).

(1) A sequence (fin)nen of probability measure on R™ converges weakly to a probability
measure p if for all bounded and continuous f: R™ — R we have

n—a0

lim | f(x) pn(dx) Jf u(dx), fe Cy(R™).

(2) If (Xp)new and X are random variables in R™ we say that lim, . X, = X in
distribution if lim,, ., E (f(X,)) = E(f(X)), f € Co(R™).

13. Proposition. Let u, v, u,, n € N, be probability measures on R™. If lim, o p, = p
weakly, then lim, o v * p, = v * u weakly.
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Proof. If f € Cy(R™), then for all x we have (y — f(z +y) € Cp(R™), and dominated
convergence implies that

i | 1) (2 pa)d2) = T ([ £+ 9) vl (dy) -
Tlim (ff(:r + ) un(dy)) v(dz) = J (giggoff(x +y) un(dy)> v(dr) =

f (f fl@+y) ﬂ<d@/>) v(dz) = f F(2) (v p)(dz).
Ol

14. Proposition (Lévy continuity theorem). Let (¢, )nen the the sequence of characteris-
tic functions of the sequence of probability measures (jin)nez- If there exist the pointwise
limit ¢(t) = lim, o dn(t), t € R™, and the limit function ¢ is continuous at 0, then ¢
1s a characteristic function of a probability measure p. In such a case, for all bounded
continuous function f: R"™ — R, we have lim,, o, § f dp, = § f dp, that is the sequence
(tn )nen weakly converges to .

Proof. See [4, 18.1] or [1, Th. 19.1]. O

15. Proposition. The mapping p — fi is 1-to-1 from probability measure to positive
definite functions whose value is 1 at 0.

Proof. U

16. Proposition (Bochner theorem). If the function ¢: R™ — C is continuous, positive
definite, and such that ¢(0) = 1, then there ezists a probability measure . such that ¢ = fi.

FEzercise. Assume first that ¢ is integrable. Let g, be the density of the Gaussian N (0, 0%1)
with characteristic function g,,

go(z) = (2ma2) 2 e /20" o 4y = o M2

Note that §,(t) = (2)"2g1/sigma(t). Let us compute

6+ 30(t) = [ ()30t — 5) ds
- Pgb(s) < f I g (2) dw) ds
- [t ([ee2o0) do

~

— [ gn(@)ita) da

As ngﬁ is nonnegative being the Fourier transform of a positive definite function, and
¢ < {|¢|, we can renormalize g, - ¢ to get a probability density, so that

¢ got) _ &% 910w
¢*Gs(0) &+ g1/6(0)

is a characteristic function. As ¢ — 0, letting os = u,

¢ = gy(t) = J¢(t _ S>e—g2llsll2/2d8 — 5! fqb(t . J_lu)e_H“H2/2du,
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6% go(t) _ St —o e M 2du  (2m)2 (1)

¢+ 0:(0)  (p(—otu)ell*2dy  (2m) /2 f(0)

If ¢ is not integrable, for each n the function ¢, : t — ¢(t)g1/n(t) are positive definite,
integrable, 1 at 0, and lim,, o, ¢,,(t) = ¢(1). 0

- f(0).

17. Definition (Infinite divisibility).

e A random variable X is infinitely divisible if for all n € N there exist IID random
variables X4, ..., X, such that X ~ X; +---+ X,,.

e Equivalently, a probability measure p is infinitely divisible if for all n € N there
exists a probability measure p, such that p = (pi,)*".

e Equivalently, a characteristic function ¢ is infinitely divisible if for alln € N there
exists a characteristic function ¢, such that ¢ = (¢,)".

18. Proposition.
(1) If the characteristic functions ¢, ¢, are infinitely divisible, then ¢, |¢]2, oP1 are
infinitely divisible.
(2) Each infinite divisible characteristic function ¢ has a cumulant function, ¢ = e¥.

FEzxercise.

(1) If ¢ and ¢, are the characteristic functions of the random variables X and Xj,
respectively, then ¢ is the characteristic function of —X, [¢|* of X — X, X’ being
an independent copy of X, ¢¢; of X + X7, X and X, independent.

(2) Because of Proposition 9 we want ¢(t) # 0, t € R". For all n € N, let ¢ = (¢,,)".
Then |¢|* = |¢n]>", hence |¢|™ = |pn|? is a characteristic function for all n. The
lmit ¢y (£) = lim,o | fI7™ is ¢u(t) = 1if ¢(t) # 0 and ¢,(t) = 0 if (t) = 0. As
¢(t) =# 0 in a neighborhood of 0, then ¢, is a characteristic function equal to 1
in a neighborhood of 0, hence it is a characteristic function, hence continuous, so
that the case ¢(t) = 0 is impossible.

O
19. Exercise (Table of infinitely divisible characteristic functions).
Sampling. If ¢;, i = 1,...,n, are infinitely divisible, then ¢; ® --- ® ¢, is infinitely
divisible.

Affine transformation. If ¢ is infinitely divisible, then s +— e“®"¢(ATs) is infinitely
divisible. If 1) is the cumulant function, the transformed cumulant is s +— i (s, uy+1(A’s).

Dirac. The Dirac distribution §, has characteristic function ¢(t) = e** and cumulant
function (t) = i {t, u).

Poisson. If X ~ Poisson()\), then X has characteristic function ¢(t) = M =D It is
infinitely divisible. The cumulant function is

0(t) = A" = 1) = [( = 1) 08)(dy) = [( = 1) vldy

Gaussian. If X ~ Normal, (0, ), then X has characteristic function ¢(t) = e ItI/2, Tt is

infinitely divisible. The cumulant function is ¢ (t) = —1 [¢].
8



Gamma. If X ~ Gamma(v, \), then X has characteristic function ¢(¢) = (1—iA7'¢)™7. Tt
is infinitely divisible with n-th root ¢, (t) = (1—iA™'t)™"™ and ¥ (t) = lim,, . n(Pn(t)—1).
Let us consider the measure

v(dy) = (vy) e (y > 0) dy.

We have
it N e —1 .Y
(e —1) v(dy) = v ——e Vdy
0 Y
(O ity 1
= m_lj ¢ - e NV dy
0 Y
[0 t ]
= w’lj <J e"? ds) e N dy
0 0
rt 00 )
=iyt J dsf dy e~
0 0
rt
=iyt J (A —is)" ! ds
0
= 7 og (A — )|
=log (1 —4iA""t)7").
Hence

ww=fMW—muww

Note that the measure p is infinite, but y — €% — 1 is integrable, because
ty )

1 f e du
0

o0
J‘eity — 1‘ v(dy) < v 't f e M dy = t| [y
0

An other integral form is of interest. Let h: R — R be bounded, continuous, asymmetric
h(—y) = —h(y), equal to the identity h(y) = y if |y| < 1 and constant for |y| = 1. Then

e — 1] = < |ty

so that

1 o0

e dy + itv‘lj yle ™V dy =

Jith(y) v(dy) = itv‘lf
it (A He = 1) + Ey(N) = itp

0
so that

ult) = it -+ [(@ = 1~ ith(y) v(dy).
The integrand in this form is a function that equals the Taylor remainder of order 2. In
fact, if |y| < 1, then
) ) t2 2 t2
e — 1 ith(y)| = e — 1 —ity| < —- < .

With the same function as above,

f ith(y) v(dy) = ith J

lyl<1

y o(dy) + itkf sign(y) o(dy) = itp,

ly[=1



so that
B(t) = it + f( 1 ith(y)) v(dy).

Compound Poisson. Let N be a Poisson process with intensity A and (X,,),en be 11D
with distribution o. Assume N and (X,,)en independent. The process defined by Y; =
Z,ivil X, is called compound Poisson. The characteristic function of Y] is

0

6(t) = E (eit(ZiVile)) - i E (e“(Z?:IXk) (N = n)) - Z(é(t))”%e_’\ = ME@)"-D),

The cumulant function is
b(t) = MG — 1) = f (€™ — 1) (Ao)(dy) = f (€ — 1) v(dy).

Approzimation by Compound Poisson. Let g; be the Gaussian density N(0,1). Then
g1(z) = e 1#I°/2 with cumulant function v(z) = —3 |z|*. Consider the infinite divis-
ibility, Te(z) = 5= |z|?, with is the cumulant function of e~l#l*/2m — g . (2), i.e.
N(0,m™!). Consider the distribution Compound Poisson CP(m, g,,,-1/2), i.e. the distri-
bution of Y5, X;, with N ~ Poi(m), (Xz)z IID N(0,m~1). The characteristic function
is

t s ™y, -12(0-1) em(e—"fl“m”2/2—1)

Y

and cumulant function

t 77‘L(e_7”71H9""‘2/2 —-1) = f(ei@’g”> —1) (mgp,-12)(x)dx.

The left hand side converges to — |z|* /2. Note the peculiar convergence of the right
hand side, were g,,,-1/2(x)dz converges weakly tody, while mg,,,~1/2(x)dx does not converge
weakly, as for all f integrable

Jf(x)mgm—lﬂ (x) do = Jmf(m_mx) g1(z) de.

20. Definition. A function f: R™ — C is conditionally positive definite if it is Hermitian
and ZZ;ZI ciGif(t;—t;) =0 forallty,... .t eR" ¢1,...,c, €C, 2" ¢ =0.

21. Proposition (Lévy-Kinchin formula). Let the u be a probability measure on R™ with
characteristic function ji and cumulant function 1, ji(t) = e?®. The following conditions
are equivalent:

1) The probability measure is infinitely divisible.

2) For allm € N the function t — en?® g positive definite.

3) The cumulant function is conditionally positive definite.

4) The cumulant function has the following form

(
(
(
(

(1 0(E) = ity = 5 Tty + [ (00 = 1= it h(u)) v(dy)

where

(a) h: R™ —» R™ is bounded, continuous, antisymmetric h(—t) = —h(t), equal to
the identity h(t) =t in a neighborhood of 0';

(b) a,peR;

(c) T is a symmetric and positive definite n x n matriz;

!Other choices are possible, cf [2], [3].
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(d) v is a positive measure on R™ such that v({0}) = 0, for alla > 0, v {t||t| > a} <
o, and § |y|* v(dy) < .

Given h, the decomposition is unique and it is called Lévy-Khinchin formula. The

triple (p, I, v) is called the Lévy triple and v is called the Lévy measure.

Elements of the proof.

(1 =4) As ¢ is infinitely divisible, there exists characteristic functions ¢, such that
o(t) = (pn(t))™, n=1,2,.... From the existence and uniqueness of the cumulant
function, ¢ = €%, as ¢(t) = (¢,(t))" = (e?)" = ™) we obtain 1, = 1¢.
The function t — e™?»(®=1) ig the characteristic function of the compound Pois-
son CP(n, uy,), fin = ¢n, that is the characteristic function of Zgﬁo X, with
N, ~ Poi(n), Xo =0, Xy, Xo,... IID p,, N,, X1, Xo,... independent. As

20(t) _
On(0-1) _ oxpy (n(e%w(w _ 1)> — exp <w

1/n
we have obtained that every infinitely divisible distribution is the limit of com-
pound Poisson distribution, which are themselves infinitely divisible.
The cumulant function of the compound Poisson is

$O(t) = f (€ — 1) v(dy) = it um) + f (€~ 1~ i¢t,h(y))) valdy),

with v,(dy) = np,(dy) and p, = §h(y) va(dy). Note that the Gaussian term is
missing. It is possibly produced in the limit as n — 0.

(4 = 3) The function g(t) = i{t, uy — 3 (T'¢t,t) is such that for all & > 0 the function
f(t) = e*9® is the characteristic function of N(au,al'), hence positive definite.
It follows that (e®9® — 1)/a is conditionally positive definite and so is g(t) =
limgo(e*9® — 1)/a. A direct computation shows that the integral part of (1) is
conditionally positive definite.

) — e’ = ¢(t), n— o,

(3 = 2) The function f(t) = L¢(t) is conditionally positive definite for all n and f(0) = 0.
Let us show that for all ¢y, ...,t,, € R the matrix [f(¢; —t;) — f(t:) — f(t;)]7521 =
[f(ti—t;)— f(t:) — f(=t;)]7, is positive definite. Chose cy,...,cm € C, ty1 =0,

and ¢, 41 such that Zfﬁll ¢; = 0. We have

Z Czq(f(tl - t]) - f(tl) - f(t])> =

m m m

Z cicif(ti —t;) — Z cicif(ti) — Z cicif(—t;) =
ig=1 ij=1 ij=1
Z cici f(ti — t;) + mZ cif (ti) + cms Z G f(—t;) =
ig=1 i-1 i=1
m+1
Z Czqf(tZ — tj) = 0.
ij=1

The matrix [e*/] is positive definite if the matrix [a;;] is positive definite, then

the matrix [ef =) =FE)=TE)]m _ s positive definite and also

Z Cic—jef(ti—tj) _ Z (Cief(ti))Cjef(tj)ef(ti—tj)—f(ti)—m >0
ig=1 ig=1
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which shows that the function t — ef(¢) = ex¥® is positive definite.
(2 = 1) The characteristic function ¢(t) = e¥® is infinitely divisible because for all n
o(1) = (exV D).

Uniqueness Assume there are two representations, so that

ity — %(Flt, ty + f (M — 1 — it h(y))) vi(dy) =

i<t7 :u>2 - %<F2ta t> + J (ei<t,y> —-1- i<t? h(y)>) VQ(dy)a
hence
F0) = [ (9 = 1= it b)) wildy) = [ (0 =1 it b)) valdy),

where f(t) is a polynomial of degree at most 2. The convolution of of this equality
with x = (6 — 6,)*® gives

f LW)E 1y (dy) = f UW)E vy(dy),

that is (1 — e“®¥)3p(dy) = (1 — e“®¥)3vy(dy), which implies v; = vy. If the
integrals are equal, then the first parts are equal.
O
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