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3. INFINITELY DIVISIBLE DISTRIBUTIONS

GIOVANNI PISTONE

The following lecture notes are based on Sasvári [2] and Sato [3].

1. Definition (Convolution). Let X, Y be independent random variables with values in
Rn and distributions µX , µY , respectively. The convolution µX ˚µY is the distribution of
X ` Y , that is for all bounded f : Rn Ñ R

ż

fpzq pµX ˚ µY qpdzq “ E pfpX ` Y qq “

ĳ

fpx` yq µXpdxqµY pdyq.

2. Proposition (Convolution).

(1) If µ1 has density p1 with respect to the Lebesgue measure, then µ1 ˚µ2 has density
p1 ˚ µ2 given by

p1 ˚ µ2pzq “

ż

p1pz ´ yq µ2pdyq.

(2) If both have densities p1, p2, respectively, with respect to the Lebesgue measure,
then µ1 ˚ µ2 has density p1 ˚ p2 given by

pp1 ˚ p2qpzq “

ż

p1pz ´ yqp2pyq dy “

ż

p1pxqp2pz ´ xq dx.

(3) If the measurable function f : Rn Ñ R, and µ is a measure, define f ˚ µpzq “
ş

fpz ´ xq µpdxq if the integral exists a.e, i.e.
ş

|fpz ´ xq| µpdxq ă 8 a.s in z. If
the measure µ is finite and f P Lapdxq, 1 ď a ď 8, then then f ˚ µ exists and
}f ˚ µ}a ď }f}a.

Exercise.

(1) For each bounded f : Rn Ñ R

ż

fpzq pµ1 ˚ µ2qpdzq “

ĳ

fpx` yq p1pxq dx µ2pdyq “

ż
ˆ
ż

fpx` yq p1pxq dy

˙

µ2pdyq “

ż
ˆ
ż

fpzq p1pz ´ xq dz

˙

µ2pdyq “

ż

fpzq

ˆ
ż

p1pz ´ yq µ2pdyq

˙

dz.
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(2) For each bounded f : Rn Ñ R
ż

fpzq pµ1 ˚ µ2qpdzq “

ĳ

fpx` yq p1pxqdx p2pyqdy “

ż
ˆ
ż

fpx` yq p2pyqdy

˙

p1pxqdx “

ż
ˆ
ż

fpzq p2pz ´ xqdz

˙

p1pxqdx “

ż

fpzq

ˆ
ż

p1pxqp2pz ´ xqdx

˙

dz.

(3) From
ť

|fpz ´ xq|a dxµpdzq “
ş

|fpyq|a dy.

�

3. Exercise.

(1) Compute χ ˚ f for χ “ δa and f P Cb.
(2) Compute χ ˚ f for χ “ pδa ´ δbq

˚n, n “ 1, 2, 3 and f P Cb. If f is a polynomial of
degree n´ 1, then pδa ´ δbq

˚n ˚ f “ 0.
(3) Compute χ ˚ f for χpdxq “ A´1p0 ď x ď Aqdx. If χ is a complex measure, define

rχpBq “ χp´Bq. Compute χ ˚ rχ and χ ˚ rχ ˚ f , f P Cb.
(4) Let muσ “ Np0, σ2Iq, and f P Cb. Then limσÑ0 f ˚ µσpzq “ fpzq.

Solution.

(1) δa ˚ fpyq “
ş

fpy ´ xq δapdxq “ fpy ´ aq is the translation of f .
(2) pδa´δbq ˚fpyq “ fpy´aq´fpy´ bq. If f is constant, then fpy´aq´fpy´ bq “ 0.

pδa ´ δbq
˚2 ˚ fpyq “ fpy ´ 2aq ´ 2fpy ´ a ´ bq ` fpy ´ 2bq. If f “ uty ` v is a

polynomial of degree 1, then fpy´aq´fpy´ bq “ utpy´aq´utpy´ bq “ utpb´aq
is constant. In general, if f is a polynomial of degree n, then pδa ´ δbq ˚ fpyq “
fpy´ aq ´ fpy´ bq “

řx
k“1

1
k!
f pkqpy´ bqpb´ aqk is a polynomial of degree at most

n´ 1, e.g. py ´ aq2 ´ py ´ bq2 “ apy ´ bqpb´ aq ` pa´ bq2.
(3) Continuity and dominated convergence:

f ˚ µσpyq “

ż

fpy ´ xqp2πq´n{2σ´ne´}x}
2
{2σ2

dy “
ż

fpy ´ σzqp2πq´n{2e´}x}
2
{2 dz Ñ

ż

fpyqp2πq´n{2e´}x}
2
{2 dz “ fpyq.

�

4. Definition (Characteristic function, inverse Fourier tranform).

(1) Let X be a random variable in Rn, with distribution µX . The characteristic func-
tion of X is the function φX : Rn Ñ C defined by

φXptq “ E
`

eixt,Xy
˘

“

ż

eixt,xy µpdxq, i “
?
´1.

(2) The function µ̌Xptq “
ş

eixt,xy µpdxq is also called inverse Fourier transform of µ.
If µ has a density f with respect to the Lebesgue measure, then the inverse Fourier
transform of f is f̌ptq “

ş

eixt,xyfpxq dx “ µ̌ptq. If f P L1pdxq then the Fourier

transform f̂ptq “
ş

e´ixt,xyfpxq dx is defined for all t and
›

›

›
f̂
›

›

›

1
ď }f}1.

5. Definition (Positive definite). A function f : Rn Ñ C is positive definite if for all
m P N, x1, . . . , xm P Rn, c1, . . . , cm P C it holds

řn
i,j“1 cicjfpxi´ xjq ě 0. In other words,

for all m P N, x1, . . . , xm P Rn the matrix A “ rfpxi ´ xjqs
m
i,j“1 is positive definite, that

is for all u P Cm, it holds u˚Au ě 0, u˚ “ ut.
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6. Definition (Hermitian). A function f : Rn Ñ C is Hermitian if fp´tq “ fptq, t P Rn.

7. Proposition (Properties of positive definite functions).

(1) If f is positive definite, then f is Hermitian and fp0q ě 0.

(2) For a complex measure µ, define rµ by
ş

fpxq rµpdxq “
ş

fp´xq µpdxq. Analogously,

for each g : Rn Ñ C, define rgptq “ gp´tq. If f is continuous and positive definite,
then µ ˚ rµ ˚ f is positive definite. Similarly for g ˚ rg ˚ fptq.

(3) If g P L2pRn, λ;Cq, that is
ş

|gpxq|2 dx ă 8, then g ˚ rg exists and is positive
definite.

(4) Let Xt, t P Rn be a family of random variables such that Cov pXt, Xsq “ ρpt´ sq.
Then ρ is positive definite.

(5) If f is positive definite, then x ÞÑ eixt,xyfpxq is positive definite.
(6) If f is positive definite and integrable, the

ş

fpxq dx ě 0.

Exercise.

(1) Take m “ 1 c1 “ 1, x1 “ 0: c1c1fp0 ´ 0q “ fp0q ě 0. Take m “ 2, x1 “ 0,
x2 “ x: |c1|

2 fp0q ` c1c2fp´xq ` c2c1fpxq ` |c2| fp0q ě 0. In particular, with
c1 “ c2 “ 1, we have fp´xq ` fpxq P R, and, with c1 “ 1, c2 “ i, we have
ipfpxq ´ fp´xqq P R. It follows fpxq “ rpfp´xq ` fpxqq ´ i ¨ ipfpxq ´ fp´xqqs{2
andfp´xq “ rpfp´xq ` fpxqq ` i ¨ ipfpxq ´ fp´xqqs{2.

(2) It is enough to consider µ “
řm
i“1 ciδxj , rµ “

řm
j“1 cjδ´xj . In such a case

µ ˚ rµ ˚ fpzq “

ĳ

fpz ´ x´ yq µpdxqrµpdyq “
m
ÿ

i,j“1

cicjfpz ´ xi ` xjq.

We check the positive definiteness with

M
ÿ

h,k“1

dhdkµ ˚ rµ ˚ fpzq “

ĳ

fpz ´ x´ yq µpdxqrµpdyq “

M
ÿ

h,k“1

dhdk

m
ÿ

i,j“1

cicjfpzh ´ zk ´ xi ` xjq “
M
ÿ

h,k“1

m
ÿ

i,j“1

dhdkcicjfppzh ´ xiq ´ pzk ´ xjqq “

ÿ

ph,iq,pk,jq

pcidhqpcjdkqpfpyh,i ´ yk,jq ě 0.

(3) The existence of g ˚ rgpyq “
ş

gpy ´ xqgp´xq dx follows from

|g ˚ rgpyq| ď

d

ż

|gpy ´ xq|2 dx

d

ż

ˇ

ˇ

ˇ
gp´xq

ˇ

ˇ

ˇ

2

dx “ }g}22 .

The positive definiteness is

m
ÿ

i,j“1

cicj

ż

gpyi ´ yj ´ xqgp´xq dx “

ż m
ÿ

i,j“1

cicjgpyi ´ yj ´ xqgp´xq dx “

ż m
ÿ

i,j“1

cicjgpyi ´ xqgpyj ´ xq dx “

ż

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

cigpyi ´ xq

ˇ

ˇ

ˇ

ˇ

ˇ

dx ě 0.

(4) From the definition.
(5) From the definition.
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(6) Let gn be a a sequence of triangular functions such that fpzqgnpzq Ñ fpzq. Write

gn “ hn ˚Ăhn, hn being uniform, and compute
ş

fpxqτnpxq dx as the value at 0

of a positive convolution. I.e. (n=1) let hnpxq “ n´1{2p0 ď x ď nq and define

gn “ hn ˚ rhn. Then gnp0q “ 1, 0 ď gnpxq ď 1 and gnpxq Ñ 1, n Ñ 8. From
ş

fpxqgnpxq dx “ f ˚ gn ˚ rgnp0q ě 0 we obtain the result.

�

8. Proposition.

(1) The characteristic function is uniformly continuous and µ̌p0q “ 1.
(2) If X is a random variable in Rn with characteristic function φX , for each A P

Rmˆn and a P Rm, the random variable Y “ a ` AX has characteristic function
φY psq “ eixa,syφXpA

T sq.
(3) If X1 and X2 are independent random variables with values in Rn1 and Rn2, and

characteristic functions φ1, φ2, respectively, then X “ pX1, X2q has characteristic
function φXpt1, t2q “ φ1pt1qφ2pt2q.

(4) The characteristic function is Hermitian.
(5) The characteristic function is positive definite.

Exercise.

(1) We have
ˇ

ˇeixt`h,xy ´ eixt,xy
ˇ

ˇ “
ˇ

ˇeixt,xypeixh,xy ´ 1q
ˇ

ˇ “
ˇ

ˇeixh,xy ´ 1
ˇ

ˇ ď 2, and limhÑ0 Ophq “
ş
ˇ

ˇeixh,xy ´ 1
ˇ

ˇ µpdxq “ 0 by dominated convergence.

(2) From xs, a` Axy “ xs, ay `
@

AT s, x
D

.
(3) From independence and xpt1, t2q, px1, x2qyn1`n2

“ xt1, x1yn1
` xt2, x2yn2

.

(4) µ̌p´tq “
ş

eix´t,xy µpdxq “
ş

eixt,xy µpdxq “ µ̌ptq.
(5)

n
ÿ

i,j“1

cicjµ̌pt1 ´ tjq “

ż n
ÿ

i,j“1

cicje
ixti´tj ,xy µpdxq “

ż n
ÿ

i,j“1

cicje
ixti,xyeixtj ,xy µpdxq “

ż

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

cie
ixti,xy

ˇ

ˇ

ˇ

ˇ

ˇ

2

µpdxq ą 0

�

The following proposition requires the use of complex logarithms, which are not easily
defined because the complex exponential function ez “ e<zei=z “ e=zpcosp=zq` i sinp=zqq
is not invertible as ez “ ez`i2πk, k P Z.

9. Proposition (Cumulant function). Let φ : Rn Ñ C be the characteristic function of
the probability measure µ and assume that φptq ‰ 0, t P Rn. There exists a unique
continuous function ψ : Rn Ñ C such that φptq “ eψptq and κp0q “ 0. Such a function is
Hermitian. It is called the cumulant function of µ.

Proof. In steps.

(1) The cumulant function is unique. In fact, if φptq “ eψ1ptq “ eψ2ptq, then <ψiptq “
log p|φptq|q, i “ 1, 2, hence ei=ψ1ptq “ ei=ψ2ptq, hence =ψiptq ´ =ψ2ptq “ 2πkptq.
The function t ÞÑ kptq is continuous and integer valued on Rn, then constant and
equal 0 at t “ 0.

(2) The cumulant function is Hermitian. From φp´tq “ φptq it follows ei=ψp´tq “
e´i=ψptq, hence =ψp´tq ` =ψptq “ 2πkptq.
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(3) Continuous argument. As φ is never zero, we can define define fptq “ φptq{ |φptq|
so that f : Rn Ñ T “ tz P C||z| “ 1u is continuous and fp0q “ 1. A continuous
argument of f is a continuous θ : Rn Ñ R such that fptq “ eiθptq and θp0q “ 0. If
a continuous argument exist, then φptq “ |φptq| eiθptq “ elogp|φptq|q`iθptq “ eψptq, with
ψ “ log |φ| ` iθ continuous and ψp0q “ log 1` θp0q “ 0.

(4) Consider a continuous f : B Ñ T, B Ă Rn, such that fpBq ‰ T. Choose eiα P
TzfpBq. Then the function z ÞÑ argpe´iαzq`α is a continuous bijection of Tz teiαu
onto sα, α`2πr, hence fptq “ eipargpe´iαfptqq`αq so that t ÞÑ θptq “ argpe´iαfptqq`α
is a continuous argument of f on B.

(5) Let f1, f2 : B Ñ T, B Ă Rn, be continuous. Assume f1 has a continuous argument
on B, f1 “ eiθ1 , and f1ptq ` f2ptq ‰ 0, t P B. Then f1{f2 : Rn Ñ C never equals
´1, hence it has a continuous argument on B, f1{f2 “ eiθ, so that f2 “ eipθ1´θq.

(6) Consider the function fR : BpRq “
 

t
ˇ

ˇ}t}2 ď R
(

ˆ r0, 1s Q pt, αq ÞÑ fpαtq. The

function fR is continuous on a compact set, hence uniformly continuous, so that
there exists a n P N such that

ˇ

ˇfRpα1tq ´ f
Rpα2tq

ˇ

ˇ ď 1 for all t if |α1 ´ α1| ď 1{n.

Consider the sequence fjptq “ fR
`

j
n
t
˘

, j “ 0, 1, . . . , n. We proceed by finite
induction on j. if j “ 0 then f0ptq “ fp0q “ 1 and the continuous argument
is θ0 “ 0. If there exist a continuous argument on BpRq for fj, j ă n, as
|fj`1ptq ´ fjptq| ď 1, the relation fj`1ptq`fjptq “ 0 is impossible, and the previous
item shows that fj`1 has a continuous argument on BpRq. Finally, note that
fn “ fR.

(7) Each f has a continuous argument θR on BpRq and θR1ptq “ θR2ptq for all
t P BpminpR1, R2qq because BpminpR1, R2qq is connected and the uniqueness argu-
ment applies. Then the global continuous argument is defined by its restrictions.

�

10. Exercise.

(1) Let µ, ν, be probability measures on Rn with characteristic function respectively
µ̌, ν̌. Then

ż

eixt,yyµ̌ptq νpdtq “

ż

ν̌px` yq µpdxq

(2) Let X „ µ independent of Y „ Np0, 1q and ν „ X ` σY . Let gσ be the density of
σY . Then ν “ µ ˚ gσ has density

pσptq “

ż

gσpt´ xq µpdxq “ p2πq
´n{2σn

ż

ǧ1{σ µpdxq “

ż

e´ixx,yyµ̌pxqg1{σpxq dx.

Proof.

(1) We have eixt,yyµ̌ptq “ eixt,yy
ş

eixt,yyµpdyq “
ş

eixt,x`yy µpdyq and we can take the

integral with respect to ν to get
ş `

eixt,yyµ̌ptq
˘

νpdtq “
ť

eixt,x`yy µpdyqνpdtq “
ş

ν̌px` yq µpdxq.
(2) From the properties of the Gaussian density and the previous equality.

�

11. Proposition (Inversion theorems). Let denote by µ be a probability measure on Rn

with inverse Fourier transform µ̌.

(1) For all f : Rn Ñ R continuous and with bounded support, f P C00pRnq,
ż

fpxq µpdxq “ p2πq´n lim
TÑ8

ż T

´T

¨ ¨ ¨

ż T

´T

ˆ
ż

fpsqe´ixs,ty ds

˙

µ̌ptq dt.
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(2) The mapping µ ÞÑ µ̌ is 1-to-1.
(3) If µ̌ is integrable, that is

ş

|µ̌ptq| dt ă 8, then µ has a bounded and uniformly
continuous density p with respect to the Lebesgue measure λ, and

ppxq “ p2πq´n
ż

µ̌ptqe´ixi,xy dt “ p2πq´n ˆ̌µptq.

Exercise.

(1) We have

ż T

´T

¨ ¨ ¨

ż T

´T

ˆ
ż

fpsqe´ixs,ty ds

˙

µ̌ptq dt “

ż T

´T

¨ ¨ ¨

ż T

´T

ˆ
ż

fpsqe´ixs,ty ds

˙ˆ
ż

eixt,yy µpdyq

˙

dt “

ż

ds fpsq

ż

µpdyq

ż T

´T

¨ ¨ ¨

ż T

´T

dt eixt,y´sy “

2n
ż

ds fpsq

ż

µpdyq
n
ź

i“1

sinpT pyi ´ siqq

yi ´ si
“

2n
ż

˜

ż

fpsq
n
ź

i“1

sinpT pyi ´ siqq

yi ´ si
ds

¸

µpdyq “ T py ´ sq “ u

“ 2n
ż

fpy ´ T´1uq
n
ź

i“1

sinpuiq

ui
duÑ πn T Ñ 8

See another version in [4, §16.6].
(2) Follows from the previous inversion formula and the monotone class theorem. See

also a direct proof based on Ex. . in [1, 14.1]
(3) Use the approximation with the Gaussian kernel of Ex. ., see [2, Th 1.3.6]

�

12. Definition (Weak convergence, convergence in distribution).

(1) A sequence pµnqnPN of probability measure on Rn converges weakly to a probability
measure µ if for all bounded and continuous f : Rn Ñ R we have

lim
nÑ8

ż

fpxq µnpdxq “

ż

fpxq µpdxq, f P CbpRn
q.

(2) If pXnqnPN and X are random variables in Rn we say that limnÑ8Xn “ X in
distribution if limnÑ8 E pfpXnqq “ E pfpXqq, f P CbpRnq.

13. Proposition. Let µ, ν, µn, n P N, be probability measures on Rn. If limnÑ8 µn “ µ
weakly, then limnÑ8 ν ˚ µn “ ν ˚ µ weakly.
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Proof. If f P CbpRnq, then for all x we have py ÞÑ fpx ` yq P CbpRnq, and dominated
convergence implies that

lim
nÑ8

ż

fpzq pν ˚ µnqpdzq “ lim
nÑ8

ĳ

fpx` yq νpdxqµnpdyq “

lim
nÑ8

ż
ˆ
ż

fpx` yq µnpdyq

˙

νpdxq “

ż
ˆ

lim
nÑ8

ż

fpx` yq µnpdyq

˙

νpdxq “

ż
ˆ
ż

fpx` yq µpdyq

˙

νpdxq “

ż

fpzq pν ˚ µqpdzq.

�

14. Proposition (Lévy continuity theorem). Let pφnqnPN the the sequence of characteris-
tic functions of the sequence of probability measures pµnqnPZ. If there exist the pointwise
limit φptq “ limnÑ8 φnptq, t P Rn, and the limit function φ is continuous at 0, then φ
is a characteristic function of a probability measure µ. In such a case, for all bounded
continuous function f : Rn Ñ R, we have limnÑ8

ş

f dµn “
ş

f dµ, that is the sequence
pµnqnPN weakly converges to µ.

Proof. See [4, 18.1] or [1, Th. 19.1]. �

15. Proposition. The mapping µ ÞÑ µ̌ is 1-to-1 from probability measure to positive
definite functions whose value is 1 at 0.

Proof. �

16. Proposition (Bochner theorem). If the function φ : Rn Ñ C is continuous, positive
definite, and such that φp0q “ 1, then there exists a probability measure µ such that φ “ µ̌.

Exercise. Assume first that φ is integrable. Let gσ be the density of the Gaussian Np0, σ2Iq
with characteristic function ǧσ,

gσpxq “ p2πσ
2
q
´n{2e´}x}

2
{2σ2

, ǧσptq “ e´σ
2}t}2{2.

Note that ǧσptq “ p2πq
´n{2g1{sigmaptq. Let us compute

φ ˚ ǧσptq “

ż

φpsqǧσpt´ sq ds

“

ż

φpsq

ˆ
ż

eixt´s,xygσpxq dx

˙

ds

“

ż

eixt,xygσpxq

ˆ
ż

e´ixs,xyφpsq

˙

dx

“

ż

eixt,xygσpxqφ̂pxq dx

As φ̂ is nonnegative being the Fourier transform of a positive definite function, and
φ̂ ď

ş

|φ|, we can renormalize gσ ¨ φ̂ to get a probability density, so that

φ ˚ ǧσptq

φ ˚ ǧσp0q
“

φ ˚ g1{σptq

φ ˚ g1{σp0q

is a characteristic function. As σ Ñ 0, letting σs “ u,

φ ˚ ǧσptq “

ż

φpt´ sqe´σ
2}s}2{2ds “ σ´1

ż

φpt´ σ´1uqe´}u}
2
{2du,
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φ ˚ ǧσptq

φ ˚ ǧσp0q
“

ş

φpt´ σ´1qe´}u}
2
{2du

ş

φp´σ´1uqe´}u}
2
{2du

Ñ
p2πq´n{2fptq

p2πq´n{2fp0q
“ fptq.

If φ is not integrable, for each n the function φn : t ÞÑ φptqǧ1{nptq are positive definite,
integrable, 1 at 0, and limnÑ8 φnptq “ φptq. �

17. Definition (Infinite divisibility).

‚ A random variable X is infinitely divisible if for all n P N there exist IID random
variables X1, . . . , Xn such that X „ X1 ` ¨ ¨ ¨ `Xn.

‚ Equivalently, a probability measure µ is infinitely divisible if for all n P N there
exists a probability measure µn such that µ “ pµnq

˚n.
‚ Equivalently, a characteristic function φ is infinitely divisible if for all n P N there

exists a characteristic function φn such that φ “ pφnq
n.

18. Proposition.

(1) If the characteristic functions φ, φ1 are infinitely divisible, then φ, |φ|2, φφ1 are
infinitely divisible.

(2) Each infinite divisible characteristic function φ has a cumulant function, φ “ eψ.

Exercise.

(1) If φ and φ1 are the characteristic functions of the random variables X and X1,
respectively, then φ is the characteristic function of ´X, |φ|2 of X ´X 1, X 1 being
an independent copy of X, φφ1 of X `X1, X and X1 independent.

(2) Because of Proposition 9 we want φptq ‰ 0, t P Rn. For all n P N, let φ “ pφnq
n.

Then |φ|2 “ |φn|
2n, hence |φ|2{n “ |φn|

2 is a characteristic function for all n. The

limit φ˚ptq “ limnÑ8 |f |
2{n is φ˚ptq “ 1 if φptq ‰ 0 and φ˚ptq “ 0 if φptq “ 0. As

φptq “‰ 0 in a neighborhood of 0, then φ˚ is a characteristic function equal to 1
in a neighborhood of 0, hence it is a characteristic function, hence continuous, so
that the case φptq “ 0 is impossible.

�

19. Exercise (Table of infinitely divisible characteristic functions).

Sampling. If φi, i “ 1, . . . , n, are infinitely divisible, then φ1 b ¨ ¨ ¨ b φn is infinitely
divisible.

Affine transformation. If φ is infinitely divisible, then s ÞÑ eixs,µyφpAT sq is infinitely
divisible. If ψ is the cumulant function, the transformed cumulant is s ÞÑ i xs, µy`ψpAtsq.

Dirac. The Dirac distribution δµ has characteristic function φptq “ eixt,µy and cumulant
function ψptq “ i xt, µy.

Poisson. If X „ Poissonpλq, then X has characteristic function φptq “ eλpe
it´1q. It is

infinitely divisible. The cumulant function is

ψptq “ λpeit ´ 1q “

ż

peity ´ 1q pλδ1qpdyq “

ż

peity ´ 1q νpdyq

Gaussian. If X „ Normalnp0, Iq, then X has characteristic function φptq “ e´}t}{2. It is
infinitely divisible. The cumulant function is ψptq “ ´1

2
}t}.
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Gamma. If X „ Gammapγ, λq, then X has characteristic function φptq “ p1´iλ´1tq´γ. It
is infinitely divisible with n-th root φnptq “ p1´iλ

´1tq´γ{n and ψptq “ limnÑ8 npφnptq´1q.
Let us consider the measure

νpdyq “ pγyq´1e´λypy ą 0q dy.

We have
ż

peity ´ 1q νpdyq “ γ´1

ż 8

0

eity ´ 1

y
e´λy dy

“ iγ´1

ż 8

0

eity ´ 1

iy
e´λy dy

“ iγ´1

ż 8

0

ˆ
ż t

0

eisy ds

˙

e´λy dy

“ iγ´1

ż t

0

ds

ż 8

0

dy e´pλ´isqy

“ iγ´1

ż t

0

pλ´ isq´1 ds

“ ´γ´1 log pλ´ isq
ˇ

ˇ

s“t

s“0

“ log
`

p1´ iλ´1tq´γ
˘

.

Hence

ψptq “

ż

peity ´ 1q νpdyq.

Note that the measure µ is infinite, but y ÞÑ eity ´ 1 is integrable, because

ˇ

ˇeity ´ 1
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

i

ż ty

0

eiu du

ˇ

ˇ

ˇ

ˇ

ď |ty| ,

so that
ż

ˇ

ˇeity ´ 1
ˇ

ˇ νpdyq ď γ´1
|t|

ż 8

0

e´λy dy “ |t| {γλ.

An other integral form is of interest. Let h : RÑ R be bounded, continuous, asymmetric
hp´yq “ ´hpyq, equal to the identity hpyq “ y if |y| ă 1 and constant for |y| ě 1. Then

ż

ithpyq νpdyq “ itγ´1

ż 1

0

e´λy dy ` itγ´1

ż 8

1

y´1e´λy dy “

it
`

λ´1
pe´λ ´ 1q ` E1pλq

˘

“ itµ

so that

ψptq “ itµ`

ż

peity ´ 1´ ithpyqq νpdyq.

The integrand in this form is a function that equals the Taylor remainder of order 2. In
fact, if |y| ă 1, then

ˇ

ˇeity ´ 1´ ithpyq
ˇ

ˇ “
ˇ

ˇeity ´ 1´ ity
ˇ

ˇ ď
t2y2

2
ă
t2

2
.

With the same function as above,
ż

ithpyq νpdyq “ itλ

ż

|y|ă1

y σpdyq ` itλ

ż

|y|ě1

signpyq σpdyq “ itµ,
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so that

ψptq “ itµ`

ż

peity ´ 1´ ithpyqq νpdyq.

Compound Poisson. Let N be a Poisson process with intensity λ and pXnqnPN be IID
with distribution σ. Assume N and pXnqnPN independent. The process defined by Yt “
řNt
k“1Xk is called compound Poisson. The characteristic function of Y1 is

φptq “ E
´

eitp
řN1
k“1Xkq

¯

“

8
ÿ

n“0

E
´

eitp
řn
k“1Xkq pN1 “ nq

¯

“

8
ÿ

n“0

pσ̌ptqqn
λn

n!
e´λ “ eλppσ̌ptqq

n´1q.

The cumulant function is

ψptq “ λppσ̌ptqqn ´ 1q “

ż

peity ´ 1q pλσqpdyq “

ż

peity ´ 1q νpdyq.

Approximation by Compound Poisson. Let g1 be the Gaussian density Np0, 1q. Then

ǧ1pxq “ e´}x}
2
{2 with cumulant function ψpxq “ ´1

2
}x}2. Consider the infinite divis-

ibility, 1
m
ψpxq “ 1

2m
}x}2, with is the cumulant function of e´}x}

2
{2m “ ǧm´1{2pxq, i.e.

Np0,m´1q. Consider the distribution Compound Poisson CPpm, gm´1{2q, i.e. the distri-

bution of
řN
k“1Xi, with N „ Poipmq, pXkqk IID Np0,m´1q. The characteristic function

is

t ÞÑ empǧm´1{2 ptq´1q
“ empe

´m´1}x}2{2´1q,

and cumulant function

t ÞÑ mpe´m
´1}x}2{2

´ 1q “

ż

peixt,xy ´ 1q pmgm´1{2qpxqdx.

The left hand side converges to ´}x}2 {2. Note the peculiar convergence of the right
hand side, were gm´1{2pxqdx converges weakly toδ0, while mgm´1{2pxqdx does not converge
weakly, as for all f integrable

ż

fpxqmgm´1{2pxq dx “

ż

mfpm´1{2xq g1pxq dx.

20. Definition. A function f : Rn Ñ C is conditionally positive definite if it is Hermitian
and

řm
i,j“1 cicjfpti ´ tjq ě 0 for all t1, . . . , tm P Rn, c1, . . . , cn P C,

řm
i“1 ci “ 0.

21. Proposition (Lévy-Kinchin formula). Let the µ be a probability measure on Rn with
characteristic function µ̌ and cumulant function ψ, µ̌ptq “ eψptq. The following conditions
are equivalent:

(1) The probability measure is infinitely divisible.

(2) For all n P N the function t ÞÑ e
1
n
ψptq is positive definite.

(3) The cumulant function is conditionally positive definite.
(4) The cumulant function has the following form

(1) ψptq “ i xt, µy ´
1

2
xΓt, ty `

ż

`

eixt,yy ´ 1´ i xt, hpyqy
˘

νpdyq,

where
(a) h : Rn Ñ Rn is bounded, continuous, antisymmetric hp´tq “ ´hptq, equal to

the identity hptq “ t in a neighborhood of 01;
(b) a, µ P R;
(c) Γ is a symmetric and positive definite nˆ n matrix;

1Other choices are possible, cf [2], [3].
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(d) ν is a positive measure on Rn such that νpt0uq “ 0, for all a ą 0, ν tt|}t} ą au ă
8, and

ş

}y}2 νpdyq ă 8.
Given h, the decomposition is unique and it is called Lévy-Khinchin formula. The
triple pµ,Γ, νq is called the Lévy triple and ν is called the Lévy measure.

Elements of the proof.

(1 ñ 4) As φ is infinitely divisible, there exists characteristic functions φn such that
φptq “ pφnptqq

n, n “ 1, 2, . . . . From the existence and uniqueness of the cumulant
function, φ “ eψ, as φptq “ pφnptqq

n “ peφnqn “ enψnptq, we obtain ψn “
1
n
ψ.

The function t ÞÑ enpφnptq´1q is the characteristic function of the compound Pois-
son CPpn, µnq, µ̌n “ φn, that is the characteristic function of

řNn
k“0Xk, with

Nn „ Poipnq, X0 “ 0, X1, X2, . . . IID µn, Nn, X1, X2, . . . independent. As

enpφnptq´1q
“ exp

´

npe
1
n
ψptq

´ 1q
¯

“ exp

˜

e
1
n
ψptq ´ 1

1{n

¸

Ñ eψptq “ φptq, nÑ 8,

we have obtained that every infinitely divisible distribution is the limit of com-
pound Poisson distribution, which are themselves infinitely divisible.

The cumulant function of the compound Poisson is

ψpcqn ptq “

ż

peity ´ 1q νnpdyq “ i xt, µny `

ż

peity ´ 1´ i xt, hpyqyq νnpdyq,

with νnpdyq “ nµnpdyq and µn “
ş

hpyq νnpdyq. Note that the Gaussian term is
missing. It is possibly produced in the limit as nÑ 8.

(4 ñ 3) The function gptq “ i xt, µy ´ 1
2
xΓt, ty is such that for all α ą 0 the function

fptq “ eαgptq is the characteristic function of Npαµ, αΓq, hence positive definite.
It follows that peαgptq ´ 1q{α is conditionally positive definite and so is gptq “
limαÓ0pe

αgptq ´ 1q{α. A direct computation shows that the integral part of (1) is
conditionally positive definite.

(3 ñ 2) The function fptq “ 1
n
ψptq is conditionally positive definite for all n and fp0q “ 0.

Let us show that for all t1, . . . , tm P R the matrix rfpti´ tjq´ fptiq´ fptjqs
m
i.j“1 “

rfpti´tjq´fptiq´fp´tjqs
m
i.j“1 is positive definite. Chose c1, . . . , cm P C, tm`1 “ 0,

and cm`1 such that
řm`1
i“1 ci “ 0. We have

m
ÿ

i.j“1

cicjpfpti ´ tjq ´ fptiq ´ fptjqq “

m
ÿ

i.j“1

cicjfpti ´ tjq ´
m
ÿ

i.j“1

cicjfptiq ´
m
ÿ

i.j“1

cicjfp´tjq “

m
ÿ

i.j“1

cicjfpti ´ tjq ` cm`1

m
ÿ

i“1

cifptiq ` cm`1

m
ÿ

j“1

cjfp´tjq “

m`1
ÿ

i,j“1

cicjfpti ´ tjq ě 0.

The matrix reaij s is positive definite if the matrix raijs is positive definite, then

the matrix refpti´tjq´fptiq´fptjqsmi.j“1 s positive definite and also

m
ÿ

i,j“1

cicje
fpti´tjq “

m
ÿ

i,j“1

pcie
fptiqqcjefptjqe

fpti´tjq´fptiq´fptjq ě o
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which shows that the function t ÞÑ ef ptq “ e
1
n
ψptq is positive definite.

(2 ñ 1) The characteristic function φptq “ eψptq is infinitely divisible because for all n

φptq “ pe
1
n
ψptqqn.

Uniqueness Assume there are two representations, so that

i xt, µy1 ´
1

2
xΓ1t, ty `

ż

`

eixt,yy ´ 1´ i xt, hpyqy
˘

ν1pdyq “

i xt, µy2 ´
1

2
xΓ2t, ty `

ż

`

eixt,yy ´ 1´ i xt, hpyqy
˘

ν2pdyq,

hence

fptq “

ż

`

eixt,yy ´ 1´ i xt, hpyqy
˘

ν1pdyq ´

ż

`

eixt,yy ´ 1´ i xt, hpyqy
˘

ν2pdyq,

where fptq is a polynomial of degree at most 2. The convolution of of this equality
with χ “ pδ0 ´ δxq

˚3 gives
ż

χ̂pyqeixx,yy ν1pdyq “

ż

χ̂pyqeixx,yy ν2pdyq,

that is p1 ´ eixx,yyq3ν1pdyq “ p1 ´ eixx,yyq3ν2pdyq, which implies ν1 “ ν2. If the
integrals are equal, then the first parts are equal.

�
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