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Information Geometry

The Information Geometry structure as it is defined in
Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry.
American Mathematical Society, Providence, RI, 2000. ISBN 0-8218-0531-2.
Translated from the 1993 Japanese original by Daishi Harada

has been extended to the non parametric case, see e.g
Giovanni Pistone and Carlo Sempi. An infinite-dimensional geometric
structure on the space of all the probability measures equivalent to a given
one. Ann. Statist., 23(5):1543–1561, October 1995. ISSN 0090-5364;
Giovanni Pistone and Maria Piera Rogantin. The exponential statistical
manifold: mean parameters, orthogonality and space transformations.
Bernoulli, 5(4):721–760, August 1999. ISSN 1350-7265;
Paolo Gibilisco and Giovanni Pistone. Connections on non-parametric
statistical manifolds by Orlicz space geometry. IDAQP, 1(2):325–347, 1998.
ISSN 0219-0257;
Alberto Cena. Geometric structures on the non-parametric statistical
manifold. PhD thesis, Dottorato in Matematica, Università di Milano, 2002;
Alberto Cena and Giovanni Pistone. Exponential statistical manifold. AISM,
59:27–56, 2007. ISSN 0020-3157. doi10.1007/s10463-006-0096-y. On line
since December 16, 2006.
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Algebraic Statistics

The finite state space case does not require any special functional
framework but exibits interesting algebraic features, e.g. polynomial
invariants.

Persi Diaconis and Bernd Sturmfels. Algebraic algorithms for sampling
from conditional distributions. Ann. Statist., 26(1):363–397, 1998.
ISSN 0090-5364;
Giovanni Pistone, Eva Riccomagno, and Henry P. Wynn. Algebraic
Statistics: Computational Commutative Algebra in Statistics.
Chapman&Hall, 2001;
Lior Pachter and Bert Sturmfels, editors. Algebraic Statistics for
Computational Biology. Cambridge University Press, 2005;
Dan Geiger, Christopher Meek, and Bernd Sturmfels. On the toric
algebra of graphical models. Ann. Statist., 34:1463–1492, 2006;

Look for the state of the art in IG and AS in a forthcoming book
edited by P. Gibilisco, E. Riccomagno, M.-P. Rogantin, H. Wynn, to
be published by OUP.
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An example: the Gibbs model

Ω a finite sample space with N points. E : Ω→ R≥0, such that
E (x) = 0 for some x ∈ Ω, but not everywhere zero.

p(x ;β) =
e−βE(x)

Z (β)
, Z (β) =

∑
x∈Ω

e−βE(x), β > 0. (1)

In Statistical Physics, E is the energy, β is the inverse temperature, Z
is the partition function, eβE is the Boltzmann factor, p(β), β > 0, is
theGibbs model or canonical ensemble.

This model is not weakly closed: for β →∞, then
Z (β)→ #{x : E (x) = 0} and e−βE(x) → (x : E (x) = 0). I.e. the
weak limit of p(β) as β →∞ is the uniform distribution on the states
x ∈ Ω with zero energy. The limit distribution is not part of the Gibbs
model, because it has a reduced support with respect to (1).
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Changing E → max E − E and β → θ = −β we get a parametrisation
of a model extending the Gibbs model to negative β’s:

p(x ; θ) =
eθ(max E−E(x))

e−θmax E Z (−θ)
(2)

Such an extended model is convergent the the uniform distribution on
the set {E (x) = max E} as θ →∞.

A more canonical presentation is the exponential model

p(x ; θ) = eθu(x)−K(θu) · p(x ; 0) (3)

where p0 = p(·; 0) is the uniform distribution on Ω, the random
variable u is centered for p0 and K (θu) is the cumulant generating
function.

We shall derive both a geometric and an algebraic description of the
Gibbs model. The geometric picture is useful to further clarify the
way in which the limits are obtained. The algebraic description will be
given by equations that are satisfied by the Gibbs model, the extended
parameter model, and also by its two limits.
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Partition function and Entropy

The partition function Z function it is convex, together with its
logarithm log Z (β). Moreover,

d

dβ
log Z (β) = −Eβ [E ] , (4)

d2

dβ2
log Z (β) = Varβ (E ) . (5)

From
− log p(x ;β) = βE (x) + log Z (β), (6)

we derive another well known formula for the entropy:

S(β) = −Eβ [log p(x ;β)] = βEβ [E ] + log Z (β), (7)

Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-Interscience [John Wiley & Sons],
Hoboken, NJ, second edition, 2006. ISBN 978-0-471-24195-9; 0-471-24195-4.
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Equations (6) and (4) give

− d

dβ
log p(x ;β) = E (x)− Eβ [E ] (8)

where the right-end-side is an estimating function.

Equations (4), (5) and (7) give important variational results:

d

dβ
Eβ [E ] = −Varβ (E ) (9)

d

dβ
S(β) = −β Varβ (E ) (10)

The derivative of the continuous function β 7→ Eβ [E ] is negative,
therefore the expected value of the energy E decrease monotonically
to its minimum value 0 for β → +∞.

The function β 7→ S(β) is decreasing, and limβ→∞ β
−1S(β) = 0.
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Algebra

Let V⊥ be the orthogonal space of the space V = Span (1,E ):∑
x∈Ω

k(x) = 0,
∑
x∈Ω

k(x)E (x) = 0. (11)

For each probability density p = p(β) in the Gibbs model, that∑
x∈Ω

k(x) log p(x) = 0, k ∈ V⊥ (12)

Vice versa, if a positive probability density function p satisfies
Equation (12), then

log p = θE + C (13)

for suitable θ,C ∈ R. It follows that p belong to the larger model in
equation (2).

G.Pistone, E.Riccomagno (POLITO, UNIGE) IG & AS Wednesday 30th July, 2008 8 / 21



Polynomial invariants

For each k in the orthogonal space, we can take its positive part k+

and its negative part k−, so that k = k+ − k− with k+k− = 0.
Equation (12) becames∏

x∈Ω

p(x)k+(x) =
∏
x∈Ω

p(x)k−(x) (14)

Equation (14) does not require the the strict positivity of each p(x).

When k has integer values, Equation (14) is a polynomial invariant
for the probabilities in the Gibbs model. This algebraic invariant has
the form of a binomial with unit coefficients.

Equation (14) does not require the strict positivity of the density p
and, in fact, the limit densitiy p(∞) = limβ→∞ p(β) satisfies
Equation (14) by continuity.
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A numerical example

When the energy function E takes its values on a regular grid, we can
assume integer valued random variables k1, . . . , kN−2 to be a basis of
the orthogonal space of E and the constants.

Consider e.g. a 5-points sample space Ω = {1, 2, 3, 4, 5} and the
energy function E (1) = E (2) = 0, E (3) = 1, E (4) = E (5) = 2.

Integer valued kj , j = 1, 2, 3 are



1 E k1 k2 k3

1 1 0 1 0 1
2 1 0 −1 0 1
3 1 1 0 0 −4
4 1 2 0 1 1
5 1 2 0 −1 1




k+
1 k−1 k+

2 k−2 k+
3 k−3

1 0 0 0 1 0
0 1 0 0 1 0
0 0 0 0 0 4
0 0 1 0 1 0
0 0 0 1 1 0
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Equation (14) in this case is the system of polynomial (binomial)
equations: 

p(1) = p(2)

p(4) = p(5)

p(1)p(2)p(4)p(5) = p(3)4

(15)

The set of all polynomial invariants is an ideal of the polynomial ring
Q[p(1), p(2), p(3), p(4), p(5)] and Equation (15) gives a set of
generators of the ideal.

If a non strictly positive density is a solution, then it is either
p(1) = p(2) = p(3) = 0, p(4) = p(5) = 1/2, or p(1) = p(2) = 1/2,
p(3) = p(4) = p(5) = 0. These two solutions are the uniform
distributions of the sets of values that respectively maximize or
minimize the energy function.
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Toric models

In the integer valued case, a further algebraic presentation is possible.
In the equation p(x : β) = e−βE(x)/Z (β) we could introduce the

parameters ζ0 = Z (β)−1 and ζ1 = e−β, so that p(x ; ζ0, ζ1) = ζ0ζ
E(x)
1 .

The probabilities are monomials in the parameters:

p(1) = p(2) = ζ0, p(3) = ζ0ζ1, p(4) = p(5) = ζ0ζ
2
1 (16)

In algebraic terms, such a model is called a toric model. In (16) the
parameter ζ0 is required to be stricly positive, while the parameter ζ1

could be zero. In such a case, Equation (16) gives the uniform
distribution on {1, 2} = {x : E (x) = 0}. The other limit solution is
not obtained by (16).

The algebraic elimination of the indeterminates ζ0, ζ1 in (16) will
produce back polynomial invariants.
David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1997. ISBN 0-387-94680-2. An introduction to computational algebraic
geometry and commutative algebra

Martin Kreuzer and Lorenzo Robbiano. Computational Commutative Algebra 1. Springer, Berlin-Heidelberg, 2000.
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Sets of densities

Definition

(Ω, µ) is a generic probability space, M1 is the set of real random
variables f such that

∫
f dµ = 1, M≥ the convex set of probability

densities, M> the convex set of strictly positive probability densities:

M> ⊂M≥ ⊂M1

We define the (differential) geometry of these spaces in a way which
is meant to be a non-parametric generalization of the theory
presented by Amari and Nagaoka (Jap. 1993, Eng. 2000).

We try to avoid the use of explicit parametrisation of the statistical
models and therefore we use a parameter free presentation of
differential geometry.

We construct a manifold modelled on an Orlicz space. In the N-state
space case, it is a subspace of dimension N − 1 of the ordinary
euclidean space
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Vector bundles

The convex sets M1 and M> are endowed with a structure of affine
manifold as follows:

At each f ∈M1 we associate the linear fiber ∗T (f ) which is a vector
space of random variables whose expected value at p is zero. In
general, it is an Orlicz space of L log L-type; in the finite state space
case, it is just the vector space of all random variables with zero
expectation at p.

At each p ∈M> we associate the fiber T (f ), which is an Orlicz
space of exponential type; in the finite state space case, it is just the
vector space of all random variables with zero expectation at p.

T (p) is the dual space of ∗T (p). The theory exploits the duality
scheme:

T (p) = (∗T (p))? ⊂ L2
0(p) ⊂ ∗T (p)
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e-charts

Definition

For each p ∈M>, consider the chart sp defined on M> by

q 7→ sp(q) = log

(
q

p

)
+ D(p‖q) = log

(
q

p

)
− Ep

[
log

(
q

p

)]
Theorem

The chart is defined for all q = eu−Kp(u) · p such that u belongs to the
interior Sp of the proper domain of Kp : u 7→ log (Ep [eu]) as a convex
mapping from T (p) to R≥0 ∪ {+∞}. This domain is called maximal
exponential model at p, and it is denoted by E(p). The atlas (sp,Sp),
p ∈M> defines a manifold on M>, called exponential manifold, briefly
e-manifold. Its tangent bundle is T (p), p ∈M>.

Remark One could replace exp, log with another couple of functions
of interest, e.g. expδ, lnδ. But see the following remark.
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m-charts

Definition

For each p ∈M>, consider a second type of chart on M1:

lp : f → lp(f ) =
f

p
− 1

Theorem

The chart is defined for all f ∈M1 such that f /p − 1 belongs to ∗T (p).
The atlas (lp,Lp), p ∈M> defines a manifold on M1, called mixture
manifold, briefly m-manifold. Its tangent bundle is ∗T (p), p ∈M>.

Remark Other types of mappings are used in the literature to derive
the Information Manifold. E.g. Amari uses q 7→ √q ∈ L2(µ).
However, such a map does not define charts on M>, nor on
M≥. In fact, the set L2

≥(µ) has empty interior.
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Connections

At each point p ∈M> of the statistical manifold there is one
reference system attached given by the e-chart and the m-chart at p.

A change of reference system from p1 to p2 is just the change of
reference measure.

The change-of-reference formulæ are affine functions.

The change-of-reference formulæ induce on the tangent spaces the
affine connections:

m-connection ∗T (p) 3 v 7→ p

q
v ∈ ∗T (q)

e-connection T (p) 3 u 7→ u − Eq [u] ∈ T (q)

The two connections are adjoint to each other.
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Cumulant functional

Theorem

The divergence q 7→ −D(p‖q) is represented in the frame at p by
Kp(u) = log Ep [eu], where q = eu−Kp(u) · p.

Kp : T (p)→ R≥ ∪ {+∞} is convex, infinitely Gâteaux-differentiable
on the interior of the proper domain, analytic on the unit ball of T (p).

For all v , v1 and v2 in T (p) the first two derivatives are:

D Kp (u) v = Eq [v ]

D2 Kp (u) (v1, v2) = Covq (v1, v2)

The divergence q 7→ D(q‖p) is represented in the frame at p by the
convex conjugate Hp : ∗T (p)→ R of Kp.
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Derivative

Given a one dimensional statistical model pθ ∈M>, θ ∈ I , I open
interval, 0 ∈ I , the local representation in the e-manifold is uθ with

pθ = euθ−Kp(uθ) · p.

The local representation in the m-manifold is

lθ =
pθ
p
− 1

To compute the velocity along a one-parameter statistical model in
the sp chart we use u̇θ.

To compute the velocity along a one-parameter statistical model in
the lp chart we use ṗθ/p.
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Relation between the two presentation

We get in the first case

ṗθ = pθ(u̇θ − Eθ [u̇θ])

so that
ṗθ
pθ

= u̇θ − Eθ [u̇θ] and u̇θ =
ṗθ
pθ
− Ep

[
ṗθ
pθ

]
In the second case we get

l̇θ =
ṗθ
p

Example

For pθ(x) = (2π)−
1
2 e−

1
2

(x−θ)2
, in the coordinates at p0, we have

pθ(x)/p0(x) = eθx−
1
2
θ2

, therefore uθ(x) = θx , u̇θ(x) = x ,

ṗθ(x)/p0(x) = (x − θ)eθx−
1
2
θ2

. Note: ṗθ(x)/pθ(x) = x − θ.
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Moving frame

Both in the e-manifold and the m-manifold there is one chart
centered at each density. A chart of this special type will be called a
frame. The two representations u̇θ and l̇θ are equal at θ = 0 and are
transported to the same random variable at θ:

ṗθ
pθ

= u̇θ − Eθ [u̇θ] = l̇θ
p

pθ
.

Theorem

The random variable ṗθ/pθ is the Fisher score at θ of the one-parameter
model pθ. The Fisher information at θ is the L2-norm of the score i.e. the
velocity vector of the statistical model in the moving frame centered at θ.
Moreover,

Eθ

[(
ṗθ
pθ

)2
]

= Eθ

[
(u̇θ − Eθ [u̇θ])

(
l̇θ

p

pθ

)]
= Ep

[
u̇θ l̇θ

]
.
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