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Introduction

Consider the following simple model on binary variables:

Carcinogenic genotype U −−→ Y Lung cancer




y

x





Smoking X −−→ Z tar deposit on lungs

U is unobservable, X, Y , Z are observable.

The question is: Is cigarettes’ smoking a cause of lung cancer?

The checking of

P {Y = 1|X = 1} > P {Y = 1|X = 0}

does not really answer the question. The present talk is devoted to
a preliminary discussion of the geometry of statistical models based
on this DAG. Most of the material I am discussing is taken from
various authors, but no proper references are given now. Particular
thanks are due to Eva Riccomagno, Jim Smith and Henry Wynn for
explaining to me some of the key concepts.



Philosophy

The discussion of causes of events, manipulability of reality, and of
responsibility post-hoc, is a major (unsolved) philosophical question
for mankind. A small sample of quotations:

• LORD God said: “Have you eaten from the tree of which I

commanded you not to eat?” The man said, “The woman whom

you gave to be with me, she gave me fruit from the tree, and I
ate.” Genesis 2:11b-12. Adam is suggesting the model

you −→ she −→ I

• As to the frequent use of the words, Force, Power, Energy, &c.,

which every where occur in common conversation, as well as in
philosophy; that is no proof . . . with the connecting principle be-

tween cause and effect, or can account ultimately for the produc-
tion of one thing to another. These words, as commonly used,

have very loose meanings annexed to them; and their ideas are

very uncertain and confused. D. Hume 1748 EHU. David Hume
suggests to avoid any mechanical explanation and to consider
correlations only. This is the modern way.

• Post-modern thinkers try to associate the idea of cause with the
idea of manipulability.



DAG’s and �

The previous DAG, together with the ordering

U = X1, X = X2, Z = X3, Y = X4

encodes the factorization

p(u, x, z, y) = p(u)p(x|u)p(z|x)p(y|u, z)

which, in turn, is equivalent to the following two statements of con-
ditional independence

U �Z|X X �Y |U,Z

Proof 1. Assume the conditional independence. Then

p(u, x, z, y) = p(u)p(x|u)p(z|u, x)p(y|u, x, z) = p(u)p(x|u)p(z|x)p(y|u, z)

2. Assume the factorization. Then

p(z|u, x) =
p(u, x, z,+)

p(u, x,+,+)
= p(z|x)

p(y|u, x, z) =
p(u, x, z, y)

p(u, x, z,+)
= p(y|u, x)



Intervention or experiment

There are at least two possible approaches to the observation of the
world in the perspective of drawing conclusions about cause-effect.

Passive Assume we sample from the population described by our
model for the variables U,X,Z, Y by stratifying along the values
of the observable variable X. In the stratum {X = 0}, i.e. the
smokers, the model will be the conditional probability

p(u, z, y|X = 0) =







p(u,1, z, y)

p(u,+, z, y)
on {X = 0}

0 on {X = 1}

Active Assume we sample from the whole population, but now we
force the sampled individuals to stop smoking. According some
authors, the intervention hides the influence of U on Z, and the
model becomes

p(u, z, y‖X = 0) =

{

p(u)p(z|0)p(y|u, z) on {X = 0}

0 on {X = 1}

which correspond, on the restricted set {X = 0}, to the new
DAG

U −→ Y ←− Z



Discussion of the factorization

• p(u, x, z) = p(u, x, z,+) = p(u)p(x|u)p(z|x) is a DAG model, ac-
tually a Markov Chain.

• p(x, z, y) = p(+, x, z, y) =
∑

u p(u)p(x|u)p(z|x)p(y|u, z) appears
not to be ad DAG model.

• The discussion of the correlation between X and Y is based
on p(x, y) = p(+, x,+, y) and the algebra is not nice. Non-
correlation and independence is the same in our example, be-
cause we deal with binary variables.

• It has been rediscovered recently that two discrete random vari-
ables X and Y are independent if and only if the 2-way table of
probabilities has all its 2× 2-minors equal to zero:

pxypx′y′ − pxy′px′y = 0 x 6= x′, y 6= y′

• The intervention is a mapping from a factorization to a factor-
ization. The new density is dominated by the original one and
the operation on the densities is multiplication by a factor.



DAG’s and quadrics

Assume for a moment that U,X,Z, Y are the canonical random vari-
ables on the sample space Ω = Ω1 × Ω2 × Ω3 × Ω4, with #Ω =
N = N1N2N3N4. Then the conditional independence statements are
equivalent to the following system of quadratic equations

U �Z|X







p(u, x, z,+)p(u′, x, z′,+)− p(u, x, z′,+)p(u′, x, z,+) = 0

u, u′ ∈ Ω1, x ∈ Ω2, z, z
′ ∈ Ω3 u 6= u′ and z 6= z′

X �Y |U,Z







p(u, x, z, y)p(u, x′, z, y′)− p(u, x, z, y′)p(u, x′, z, y′) = 0

u ∈ Ω1, x, x
′ ∈ Ω2, z ∈ Ω3, y, y

′ ∈ Ω4 x 6= x′ and y 6= y′

The total number of such equations is
(

(N1

2

)

N2

(N3

2

)

)

+

(

N1

(N2

2

)

N3

(N4

2

)

)

Considering algebraic dependencies, the number of sufficient equa-
tions can be smaller when the number of states is greater than 2.
Note that the equations are homogeneous of degree 2. The equations
of the second group are binomial i.e. consists of two monomial.



DAG’s and quadrics: binary case

If Ωi = {0,1}, then the equations are

U �Z|X







p(0,0,0,+)p(1,0,1,+)− p(0,0,1,+)p(1,0,0,+) = 0

p(0,1,0,+)p(1,1,1,+)− p(0,1,1,+)p(1,1,0,+) = 0

X �Y |U,Z































p(0,0,0,0)p(0,1,0,1)− p(0,0,0,1)p(0,1,0,0) = 0

p(0,0,1,0)p(0,1,1,1)− p(0,0,1,1)p(0,1,1,0) = 0

p(1,0,0,0)p(1,1,0,1)− p(1,0,0,1)p(1,1,0,0) = 0

p(1,0,1,0)p(1,1,1,1)− p(1,0,1,1)p(1,1,1,0) = 0

The total number of such equations is
(

(2

2

)

2
(2

2

)

)

+

(

2
(2

2

)

2
(2

2

)

)

= 6

and the number of degrees of freedom is df = 15− 6 = 9.



Intervention and quadrics

The conditional independence model after the intervention is

U �Z|Y







p(0,0,0,0)p(1,0,1,0)− p(0,0,1,0)p(1,0,0,0) = 0

p(0,0,0,1)p(1,0,1,1)− p(0,0,1,1)p(1,0,0,1) = 0

{X = 1}







p(u,1, z, y) = 0

for u, z, y = 0,1

I cannot see any relation between this system and the previous one.



DAG’s and algebraic varieties

In the ring of polynomials with rational coefficients and indetermi-
nates p(u, x, z, y), u, x, z, y ∈ {0,1} the previous equations define a
zero-set (algebraic variety). If we add the conditions

{

p(+,+,+,+)− 1 = 0

p(u, x, z, y) ≥ 0 u, x, z, y ∈ {0,1} ≥!

we get a description of the model as a manifold with borders.

The null hypothesis X �Y is obtained adding the equation

p(+,1,+,1)p(+,0,+,0)− p(+,0,+,1)p(+,1,+,0) = 0

Apart from the inequalities, all the equations can be studied with
the help a Computer Algebra software, such as Singular, CoCoA . . . .
Substitutions and eliminations can be done on the machine to ease
the algebraic computations.



Information geometry

The study of the geometry of statistical models that started in the
40’s with Rao’s paper on the interpretation of Fisher Information as
a metric tensor. An important further step was done by Efron in the
70’s by introducing the geometry of (curved)-exponential models.
Amari in the 80’ introduced a bigger picture including all previous
results in a unified theory he called IG.

Let (Ω,F , µ) (no assumptions) a probability space. We denote by P+

the set of all µ-a.s. positive probability densities w.r.t µ. It is possible
to show that there are two atlas of charts, each chart associated to
a p ∈ P+, both defining on P+ a manifold structure together with its
connections. The charts are

1. q 7→ u = ln
q

p
− Ep

(

ln
q

p

)

2. q 7→
q

p
− 1

The first atlas defines the exponential geometry, the second atlas
defines the mixture geometry.



Exponential models

An exponential model is a family of densities in P+ of the form

q ∝ exp(u) u ∈ V

where V is a linear subspace of µ-centered and exponentially inte-
grable random variables. Introducing the normalization constant, we
write

q = exp(u−K(u)) u ∈ V

where K is the cumulant functional. In the non parametric case, i.e.
V if infinite dimensional, the cumulant functional has all the usual
properties, e.g.

• K is convex and analytic.

• gradK(u) · v = Eq(v).

• hessK(u) · v ◦ w = Covq(v, w).

• The Jensen conjugate of K is the entropy of q.



Toric models

Let Ω be a finite sample space, n = #Ω. If we consider an exponential
model were the (finite dimensional) space V is spanned by integer
valued random variables Tj : Ω→ Z, j = 1, . . . , l, we have

p(ω) ∝ exp





l
∑

j=0

ψjTj(ω)



 (1)

As in this case the sufficient statistics Tj are integer valued, the model
can be given, by the parameters change

eψj = ζj, (2)

the following form, that we call toric.

p(ω) ∝

l
∏

j=0

ζ
Tj(ω)
j (3)

This name comes from Commutative Algebra. A statistical name
could be Generalized Multinomial. The exponential model and the
toric models are not exactly the same, because the toric model could
have zero probabilities. Precisely, if ζj = 0, the Tj(ω) 6= 0 implies
zero probability at ω.



Exponential vs toric vs algebraic

We can prove prove that

• The exponential model is the strictly positive part of the toric

model.

• Let T = [T1 · · ·Tl], let u1 · · ·uk be a integer valued vectors forming

a linear basis of ker T t, and let u = u+ − u−. Then the set of

probabilities described by the quadrics
∏

ω

p(ω)u
+(ω) −

∏

ω

p(ω)u
−(ω) = 0

is the closure of the exponential model. Let us call this model

the algebraic model.

• There exist a parameterization of the algebraic model as a toric

model.

• Toric models are “union” of exponential models with variable

support.



The exponential model of the DAG

The DAG model

p(u, x, z, y) = p(u)p(x|u)p(z|x)p(y|u, z)

is associated with the additive decomposition (the log-linear model)

ln p(u, x, z, y) = ln p(u) + ln p(x|u) + ln p(z|x) + ln p(y|u, z)

and the linear spaces of random variables involved are those generated
by

{U} , {U,X} , {X,Z} , {U,Z, Y }

On finite sample space each of these spaces of random variables
has a finite basis as vector spaces, e.g. the indicator functions of
points. The dimension of the space in the minimal exponential model
containing our DAG model is

df = (2 + 3 + 3 + 3)− 1 = 10

i.e. in the DAG model one degree of freedom is missing. The DAG
model is a curved exponential model



Simplicial complexes

The best way to represent the fact that our DAG model is not an
exponential model is the comparison between the two graphical rep-
resentation. In the directed graph representation one arrow, i.e. one
interaction is missing.

The use of simplicial complexes is even more useful in case we use
monomial bases as bases of the vector space in the exponential model.
The picture is a representation of the monomial basis

1, u, x, z, y, ux, xz, uy, zy, uzy



Probabilities in the mixture geometry

The mixture geometry is the geometry where the parameters are the
raw probabilities, or any linear transformation od the probabilities.
In the mixture geometry the geodesic between two probabilities is
the mixture model. In the exponential geometry the geodesic is a
1-dimensional exponential model connecting two probabilities (the
Hellinger arc).

In the mixture geometry it is highly convenient to change the coding
(0,1) 7→ (−1.1). In such a coding, the generic probability has the
form

p(u, x, z, y) =1+

µ1u+ µ2x+ µ3z+ µ4y+

µ12ux+ µ13uz+ µ14uy+ µ23xz + µ24xy+ µ34zy+

µ123uxz + µ124uxy+ µ134uzy+ µ234xzy+

µ1234uxzy

where µα is the α-moment in the uniform probability. The generic
conditional probability has the form

p(x|u) = 1 + (a0 + a1u)x

so that, in principle, the DAG model can be written in polynomial
form.



Discussion

• Statistical models have a very rich mathematical structure, and
many alternative frameworks are available: algebraic geometry,
differential geometry . . .

• The geometry of models used in modelling causal effect is of
interest from the conceptual point of view.

• Computational Algebra may help in small-to-medium problems.

• The differential geometric methods should suggest efficient nu-
merical methods.


