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Preliminary abstract

In the paper we consider Gaussian responses on a regular grid of a disk.
This peculiar experimental design appears in production process of
wafers, surfaces of disks used in electronic equipments, in order to
monitor the thickness of the SiO, deposition on their top. The circular
symmetry of the used design prompts for an algebraic description of the
Gaussian responses at each point of the grid. We discuss the relevant
mathematical properties in order to:

1. describe Gaussian processes on a circular grid;

2. study the properties of fractions of the grid and their aliasing
properties;

3. derive an algebraic form of the Kriging prediction in the unobserved
points.
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The data: training set and measurement.

The training set: algebraic theory of design.
Fractions of the training set and Kriging models.
Models for correlation.

Conclusions and future work.
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The training set

e The 49 training points for a design D of notable regularity.
e A measurement is taken at each point.

e 14 experiments are available, courtesy of professor Diego Zappa.
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The data

The 49 x 14 data matrix is represented below from a run of the
function Krig of the R package Fields.

The model is Y(¢) = 8+ Z({), Z Gaussian process with
exponential covariance.

Each of the 14 displays represents one experiment. The last one is a
picture of the mean data values.

A= =

c S O
G|




Clusters

e There is evidence of an interesting behavior both inter and infra.

Cluster A
Wafers 1, 4, 9, 12
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Cluster B
Wafers 2, 3, 5, 7, 8, 10, 11,

o Cluster B is less homogeneous than cluster A

o Clusters could come from external factors.

1900
1850
1800

1750

13, 14



Algebraic theory of design |

o A key feature of the algebraic approach to DoE is the representation
of the set of points as the set of solutions of a system of algebraic
equations.

e The design D is the union of sub-designs D;, i =0,1,2,3, i.e. the
central point and 3 set of multiples of roots of unity.
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e The computations are conveniently performed with a symbolic
software. E.g. CoCoA, from the University of Genoa



Algebraic theory of design Il

o |f the points of the plane are coded with complex numbers, the
design D is the set of solutions of the equation g({) = 0 with

g(¢) = ¢(¢® — 1)(¢*° = 21)(¢** - 3%%)
= (% — (% — 65536¢33 — 282420470945¢%
+ 282429536481¢" + 18509302102818816¢°
— 18509302102818816(

e The design ideal is the set of polynomials which are zero on the
given points. In the example, these are the polynomials that are
divisible by g.

e The possible advantage of this algebraic approach is a reduction of
complexity with special arrays of points. In such a case it is easy to
compute a monomial basis of the space of all responses on the
design. In the example, the monomial basis is 1,(, (2, ..., ¢%.



Algebraic theory of design IlI

In our example, each given function defined on C is interpolated on
the design D = {¢ € C: g(¢) = 0} by a polynomial of the form

bo + b1 + boC® + -+ - + bag(*e.

In particular, if the function itself is a polynomial of degree larger or
equal to 49, the computation of the interpolator is made by
recursively using the rewriting relation derived from g, i.e.

¢* = (" 465536¢% + - -

For example, the indicator polynomial of D; = {¢(® =1} in D is

<48(C48 _ 248)(<48 _ 348)
(1-2%)(1—-3%)
1 2048

48 32
18509019673216800C 578406864788025C
04143178827 o 192805230237696

6169673224405600 192802288262675
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Algebraic theory of design IV

The design D can be represented in cartesian coordinates, e.g,
real part, complex part x the imaginary unit as an ideal of
points whose generators have rational coefficients. Note the
increase in combinatorial complexity, from integers to
rationals.

A monomial basis of 49 terms is:
Loy yixrxt yixy? Py, x3
VA3 X323y xSt xS, X3y Xty x5
O x5, x2y4 533, x4y2 x5y, x5

and
7.6 2.5 34 4.3 5 2
Y Xy, XTYT,XTY L XY, XTYT
8 w7 2.6 3,5 4,4 90 8 27 3 6.
YOXY L XTYL,XTYT, XY YTLXY L, XY L, XY

IO x®x%y8 vyt y



Response surface model

e The available monomials are 0 o o

ooooo

e The Taylor expansion of a response surface z = f(x, y) up to order
nis

1 9kf(0,0) . 4
f(x,y) Z > T aegys <Y Ralx.y)
k=0 a+pB=k

e Terms in the Taylor expansion are identifiable up to order n = 6.



Example of symbolic computation

Use R::= Q[z,x,y]; -- Ring

Egs := [z78-1, 2x-(z+z"7), 2y-(z-z"7)];
I := Ideal(Egs); -- Ideal of points
QuotientBasis(I); -- Monomial basis

J := Elim(z,I); -- Elimination

Use S::=Q[x,y]; -- New ring

D:=Ideal (BringIn(Gens(J)));
ReducedGBasis(D); —-- Groebned basis
QuotientBasis(D); -- Monomial basis

® Design in complex notation Giovanni Pistone and Maria Piera Rogantin. Algebraic statistics of level
codings for fractional factorial designs. J. Statist. Plann. Inference, 138(1):234—244, 2008.



Response surface model + Gaussian field

o The list of terms in the monomial basis is complete up to the degree
6. This suggests the safe use of a response surface model up to
degree 6.

e This result cannot be improved because the first missing term of
degree 7 is x%y which is aliased with

3x*y3 —3x%y% 4+ yT 4+ 6xty — 12x%y3 + 6y° — 11x%y + 11y% + 6y.

e The model is

6
Y0oy)=> > x*y’n(a,B) + Z(x,y)

k=0 atpB=k



Degree 6, § =20, p=1

o The following panel is the image representation of the Kriging
prediction with a full regression model of degree 6, exponential
isotropic covariance with scale parameter 1/20 = .05 and
smoothness parameter p = 1.
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Degree 0 vs degree 6: Wafer 1

Degree 0

e Degree 6 is smoother
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Degree 0 vs degree 6: Wafer 8

Degree 0

e Degree 6 is smoother
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Degree 6, 6 = 0.2

o The following panel is the image representation of the Kriging
prediction with a full regression model of degree 6 and delta
covariance i.e. scale parameter 1/.2 = 5.




Criteria for a sub-sample

e The experiment consists in observing the response in any point of
the wafer surface and the aim is to investigate how the response
changes varying the locations: the two cartesian axis directions are
considered as two factors that affect the response.

e [f the designs proposed by DoE considering principles as replication,
blocking, randomization, orthogonality and optimality of different
alphabet letters are suitable for estimating the trend term of the
Kriging model, the Gaussian field term is better estimated by the
space-filling designs, i.e. designs based on measures of distance
between locations (to quantify how evenly the points are spread
out), designs based on the evenness of the locations throughout the
region, etc.



Minimax sample: random search

o The response surface argument suggests to try a random sample of

28 points.

e A random sample is generated with the function cover.design of

the library fields.
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The data: 28 points, degree 5, § = 20

e The following panel is the image of the Kriging prediction with 28
points, a full regression model of degree 5 and exponential isotropic
covariance with scale parameter 1/20 = .05 and smoothness
parameter p = 1.

e Degree 6 is not identifiable.
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Algebraic sample of 25 points
o If(®=1,then0=¢®—1=(¢*—-1)(¢*+1), so that
Dy={¢eC:*=-1}u{¢eC: ¢*=1}.
e Similarly on D5, Dj3.
e We define a fraction of D with the equation

§(<4 _ 1)((8 + 28)((12 _ 312) -0
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Kriging with the algebraic sample

e The following panel is the image representation of the Kriging
prediction with 25 points, a full regression model of degree 5
and exponential covariance.
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Why Kriging with spatial data

e Spatial data are not spatially independent in most of the physical
settings. They show a strong correlation when the data come from
spatially near observed points; and the correlation vanishes when
the points are far away from each other.

e The Kriging model is a parametric gaussian statistical model with
state-space representation Y of the form

Y(Q)=Ff(On+2(), (eRCR~C,

where

e f is a given linear model with regression parameters n;
e Z is a centered gaussian random field and Z is stationary with
respect to translations

Cov(Z(G1), Z(¢2)) = oZR(GL — G2):

° a% is the field variance, R is the real auto-correlation function
depending on the displacement vector h = {3 — (5 only,
R(Gi — G2) = R(h), R(h) = R(—h), R(0) = o3.



Modeling the variance

The spatial correlation has to be measured and modeled; George
Matheron (1962) has introduced the use of the variogram

27y (G — G2) = Var (Y(G1) = Y(¢2))
vy being the semivariogram.

In Matheron’s theory the variogram is assumed to be continuous at
0; if it is not the case, we have a nugget effect which is possibly the
case in our working example.

Let us consider n spatial locations
D = {G = (%, %): (%) € R CR?}
in the region R, together with the observations Y((;).

Yip = (Y(C1), Y(¢2), -, Y(Cn)) is a sample from a Gaussian field
with zero expected value and covariance Cov (Y(¢;), Y(¢)))
depending on the undirected displacements (;(; € (72)) only.

Seminal book: Georges Matheron. Traité de géostatistique appliqué. Number 14 in Mem. Bur. Rech. Geog.
Minieres. Editions Technip, 1962.

® Discussion: http://www.mail-archive.com/ai-geostats@jrc.it/msg01298.html

R: http://www.mail-archive.com/ai-geostats@jrc.it/msg01298.html



Variogram |

e Matheron suggested an empirical estimator of the variogram

1
2C(h) = — > Y (Q) = Y(Q)P
#(2) @e(?): h=¢—C

e This estimator is unbiased if the mean is constant; it lacks
robustness as it is badly affected by outliers due to the presence of
the 2 term.

e Materon discusses the following properties of the variogram.

1. It is positive except at the origin where it is zero.

2. It is assumed to be continuos at the origin.

3. If not, it does not approach 0 as the distance between (; and ¢
approaches zero, the discontinuity produces the nugget effect.

4. The presence of the nugget effect is usually due to
measurement error: repeating the measurements a number of
time, the measured values tend to fluctuate around the true
value.
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Two classes of variograms

e The 14 variograms obtained with the R library Gstat confirm the
classification already obtained.

e The variograms appears to be inconsistent with an isotropy
assumption, i.e. R(h) = R(||hl)).

e A nugget effect does not depend on measurement errors.
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Conclusions and future work

Given the Kriging model is favored, the two components, trend and
stochastic process, demand a careful specification and choice.

The algebraic theory is a very useful tool in detecting the response
surfaces for modeling the trend.

On the other hand, the use of the variograms, as geostatisticians
do, is advisable for modeling a possible covariance structure.

Also the choice of the experimental setting is crucial: a mixture
between principles proper of DoE and the space filling designs seem
to benefit the predictions.

Further investigations are demanded for less regular designs and for
the identification of the correlation function with possible anisotropy.



