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Preliminary

Let D be a design in d factors.

Let L(D) = {f : D −→ R}

Then L(D) ∼ R[x1, . . . , xd]/ Ideal(D) as vector spaces and as rings, even

if there are replicated runs in the design.

If the design points are distinct, then vector space bases of R[x1, . . . , xd]/ Ideal(D)

correspond to saturated models identified by the design. Moreover if there

are n runs in the design, then there are n terms in the saturated identifi-

able models (Pistone and Wynn, 1996).

Fan of a design, (sub)fan optimal designs: Hugo Maruri-Aguilar
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Set-up

A set of control factors {x1, . . . , xp}

A set of noise variables {Z1, . . . , Zq}

under the hypothesis Z ∼ Nq(0, VZ) where VZ = diag(σ2
i : i = 1, . . . , q)

A finite set of n (distinct) points in p+ q dimensions

D = {d1, . . . , dn}

A set of unidimensional responses {y1, . . . , yn} at the design points
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Identifiable models

A set of saturated polynomial hierarchical identifiable models

m1(x, Z), . . . ,mL(x, Z)

where for j = 1, . . . , L

mj(x, Z) = fj(x) + gj(Z) + hj(x, Z)

with gj(0) = 0 = hj(x,0) = hj(0, Z)

For m submodel of mj

Y (x, Z) = m(x, Z) + ε

with ε ∼ N1(0, σ
2)

Notes

If there are n distinct design points in D then each mj has n terms

The (full) list of models of the above type could be obtained by algebraic
statistics methods
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Examples

A. Polynomial regression models

Y = f(x) + ε

B. Random effect models

Y = f(0) + g(Z) + ε

C. Error in variable models

Y = l(x+ Z) + ε

D. Response surface models, in the notation of Myers, Khuri, Vining
(1992)

Y = β0 + g(x)Tβ + δTZ + g(x)TΛZ + ε

with f(x) = β0 + g(x)Tβ and g(Z) = δTZ and g(x, Z) = g(x)TΛZ
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Saturated model selection

m1, . . . ,mL

A. R. and Wynn (1997)

Hf =

[
∂2f(x)

∂xi∂xj

]
i,j=1,...,p

ρf =
∫
χ
trace(HT

f Hf)(x) dx

a measure of the curvature of the (fixed effect) model

min
j
ρj = ρ∗

argminj ρj = m∗
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B. Process mean

E(mj(0, Z)) = fj(0) + E(gj(Z))

is a known polynomial function of σ2
1, . . . , σ

2
q .

If σ2
i are known or estimated, then

m∗ = argminj E(gj(Z))

If σ2
i are unknown and σ2

i ∈ Ii, then

ρ∗ = min
j

max
σi∈Ii,i=1,...,q

E(gj(Z))

(supposed finite)

D. Myers et al. (1992) for Y = m(x, Z) + ε usually not saturated

R(x) = λV (x) + (1− λ)E((Ŷ (x, Z)− t)2)

with λ ∈ [0,1].
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mj(x, Z) = fj(x) + gj(Z) + hj(x, Z)

Φ1(mj) =
∫
χ
trace(HT

f Hf)(x) dx

Φ2(mj) =
∑

x∈Design
MSEfj(mj(x, Z))

=
∑

x∈Design
E
(
(gj(Z) + hj(x, Z))2

)
is a positive function of σ2

1, . . . , σ
2
q

If σ2
i are known or estimated, then Φ2(mj) is a known positive number

If σ2
i are unknown, then

Φ2(mj) := max
σi∈Ii,i=1,...,q

Φ2(mj)

(supposed finite)
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Choose the model that minimises curvature and MSE simultaneously

“Daniel’s plot:”
(
Φ1(mj),Φ2(mj)

)
for i = 1, . . . , L

“Single number criterion:” argminj
(
aΦ1(mj) + Φ2(mj)

)
with a ∈ R>0.
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Submodel selection

m∗(x, Z) = f∗(x) + g∗(Z) + h∗(x, Z)

A. Bates et al. (2003) for g∗ = h∗ = 0

argmin

(
λ
ρm

ρ∗
+ (1− λ)

RMSE(m)

SS∗

)
over all m hierarchical submodels of m∗ and for λ ∈ [0,1] and

RMSE(m) =

√√√√1

n

n∑
i=1

(yi − ŷi)
2

and

ρm = Φ1(m) =
∫
χ
trace(HT

f Hf)(x) dx
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For

Φ3(m) = SSm =
∑
i

(ŷi − ¯̂yi)
2

ψ(m) = λ
ρm

ρ∗
+ (1− λ)

Φ3(m)

Φ3(m∗)

and get submodels with maximal ψ(m)

If the computation of an internal minimum is preferred, then

Φ4(m) = SSres =
∑
i

(yi − ŷi)
2

ψ1(m) = λ
ρm

ρ∗
+ (1− λ)

Φ4(m)

Φ3(m∗)

and get submodels with minimal ψ1(m)
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Notes

Choice of λ

Plot of the number of terms in the submodel vs. ψ(m)

Coloured plot of ρm/ρ∗ vs. SSm/SS∗ (increasing in ρm/ρ∗)

indication of the relationship between model curvature, fitting quality

and number of terms

of possible values of λ

of need of substitution of functions of ρm/ρ∗ and SSm/SS∗ in ψ(m)

Extend ideas of Myers et al. to find a design to minimise submodel

variance
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Exploit polynomial nature of the problem to get explicit representation

of mean and variance process and to search in the class of hierarchical

submodels

Change distributional assumptions and use finitely generated cumulants

to obtain explicit representation of mean and variance process

Case study


