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Abstract
Computational methods based on polynomial algebra software such as
• CoCoATeam. CoCoA: a system for doing Computations in Commutative Algebra. Available at

cocoa.dima.unige.it, online, 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial
problems on linear spaces. Available at www.4ti2.de,

have been used in Statistics for Design of Experiments DoE and
Statistical Modeling. A recent overview, is
• Paolo Gibilisco, Eva Riccomagno, Maria Piera Rogantin, and Henry P. Wynn, editors. Algebraic and

geometric methods in statistics. Cambridge University Press, Cambridge, 2010.

In this approach to DoE the set of design points is described as the
solution of a system of polynomial equations and the identification of
various classes of models is computed by the use of special bases of the
vanishing ideal.
Here we present the first results of a research in progress in which we
explore the applicability of these ideas when the defining equations are
derived from Hermite polynomials, e.g. the system is

x3 − 3x = 0, y 3 − 3y = 0, x2 − 1 = y 2 − 1

Which polynomials are identified on the 5 points? What is the effect on
Gaussian quadrature?

Symbolic computations are not efficient, but provide extra insight.



Hermite polynomials

• Define δf (x) = xf (x)− f ′(x) = −ex2/2 d

dx

(
f (x)e−x

2/2
)

. If

Z ∼ N (0, 1),

E (g(Z )δf (Z )) = E (dg(Z )f (Z )) ,

i.e. δ is the transpose of the derivative w.r.t. the standard Gaussian
measure.

• Define H0 = 1, Hn(x) = δn1, n > 0, e.g.

H1(x) = x ,H2(x) = x2−1,H3(x) = x3−3x ,H4(x) = x4−6x2+3, . . .

Properties

1. The transposition formula shows that the Hn’s are orthogonal.

2. dδ − δd = id, dHn = nHn−1, Hn+1 = xHn − nHn−1.

• Paul Malliavin. Integration and probability, volume 157 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 1995. With the collaboration of Hélène Airault, Leslie Kay and Gérard Letac, Edited and
translated from the French by Kay, With a foreword by Mark Pinsky



Zeros of Hn.

Theorem

1. Each Hermite polynomial Hn, n ≥ 1, has n distinct real roots.

2. The roots of Hn+1 are separated by the roots of Hn, n ≥ 1.

Theorem

1. HkHn = Hn+k +
∑n∧k

i=1

(
n
i

)(
k
i

)
i !Hn+k−2i , n, k ≥ 1.

2. E(H2
n (Z )) = n!, n ≥ 0.

3. If Hn(x) = 0, then Hn+k(x) +
∑n∧k

i=1

(
n
i

)(
k
i

)
i !Hn+k−2i (x) = 0, n ≥ 1.

In statistical language, item 3 shows an aliasing relation on the design
D = {x : Hn(x) = 0}.
• Walter Gautschi. Orthogonal polynomials: computation and approximation. Numerical Mathematics and

Scientific Computation. Oxford University Press, New York, 2004. Oxford Science Publications



Algebraic DoE: basics
• Given univariate polynomials f1(x1), . . . , fm(xm) ∈ Q[x1, . . . , xm], we

consider the design ideal

Ideal (f1(x1), . . . , fm(xm)) =

{
m∑
i=1

ai fi : ai ∈ Q[x1, . . . , xm]

}
.

• We assume all zeros to be real and simple; they form the full design
D.

• Two polynomials h, k , are aliased if h− k is zero on D, i.e. if h− k
belong to the design ideal.

• A fraction is a subset F of D. It is obtained by adding new
equations g1, . . . , gl , called defining equations, to the design ideal.

• The indicator polynomial F of the fraction F is a polynomial whose
restriction to D is the indicator function of the fraction.

• The main interest of this setting is the availability of symbolic
software for the computation of ideals in the ring Q[x1, . . . , xm], e.g.
CoCoA, 4ti2, Maple, Macaulay2, . . .

• Giovanni Pistone, Eva Riccomagno, and Henry P. Wynn. Algebraic statistics, volume 89 of Monographs on
Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton, FL, 2001. Computational
commutative algebra in statistics.



Gröbner basis, normal form
• A term-order is a total order on terms xα compatible with the

product. Given a term-order, the leading term LT(f ) of each
polynomial f is defined and each polynomial is an ordered list of
coefficients.

• A finite subset {g1, . . . , gr} of an ideal I is a Gröbner basis if, and
only if, the leading terms LT(gi ), i = 1, . . . , r , generate the leading
terms of I .

Theorem

1. Given a term ordering and an ideal I , a Gröbner basis g1, . . . , gr can
be computed by a finite (and highly complex) algorithm.

2. For each polynomial f there exist a unique polynomial r such that
f − r ∈ I and none of its terms is divided by any LT(gi )’s.

3. Such a remainder r is called normal form of f , NF(f ) = r .

• David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms: An introduction to
computational algebraic geometry and commutative algebra. Undergraduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1997



CoCoA: Indicator polynomial

• x3 − 3x = 0, y 3 − 3y = 0 is the full design; x2 − y 2 = 0 is the
generating equation.

• 1− f = h(x2 − y 2) means 1 = f if the generating equation holds.

• f (x2 − y 2) = 0 means f = 0 if the generating equation is violated.

• We compute the h-elimination ideal I ∩Q[f , y , x ] of
I = Ideal

(
x3 − 3x , y 3 − 3y , 1− f − h(x2 − y 2), f (x2 − y 2)

)
.

Use R::= Q[h,f,y,x], Lex; Lex monomial order

L:=[x^3-3x,y^3-3y,1-f-h(x^2-y^2),f(x^2-y^2)];

I:=Ideal(L); --- the ideal generated by the list

J:=Elim(h,I); --- elimination ideal

ReducedGBasis(J); --- elimination ideal in Lex order

produces

x3 − 3x , y 3 − 3y , f − 2/9y 2x2 + 1/3y 2 + 1/3x2 − 1

where the last equation is the indicator polynomial.



Aliasing computation

• The computation of the normal form introduces a notion of
confounding. For example from Hn+1(x) = xHn(x)− nHn−1(x) and
for ≡ meaning equality holds over Dn = {x : Hn(x) = 0}, we obtain
Hn+1(x) ≡ −nHn−1(x).

• In general let Hn+k ≡
∑n−1

j=0 hn+k
j Hj be the representation of Hn+k

at Dn. Substituting in the product formula gives

NF(Hn+k) ≡ −
n∧k∑
i=1

(
n

i

)(
k

i

)
i ! NF(Hn+k−2i )

= −
n∧k∑
i=1

(
n

i

)(
k

i

)
i !

n−1∑
j=0

hn+k−2i
j Hj

Equating coefficients gives a general recursive formula

hn+k
j = −

n∧k∑
i=1

(
n

i

)(
k

i

)
i !hn+k−2i

j



Expectation and NF
• Let f be a polynomial in one variable with real coefficients and by

polynomial division f (x) = q(x)Hn(x) + r(x) where r has degree
smaller than Hn and r(x) = f (x) on Hn(x) = 0. The n − 1 degree
polynomial r is the remainder or normal form NF(f ) = r .

• Then

E (f (Z )) = E (q(Z )Hn(Z )) + E (r(Z ))

= E (q(Z ) δ1n) + E (r(Z ))

= E (dnq(Z )) + E (r(Z )) = E (r(Z )) iff E (dnq(Z )) = 0.

• Note that dnq(Z ) = 0 if and only if q has degree smaller than n
and this is only if f has degree smaller or equal to 2n − 1. But also

E (dnq(Z )) = E

(
dn
∞∑
i=0

ci (q)Hi

)

= 〈Hn,

∞∑
i=0

ci (q)Hi 〉 = n!cn(q) = 0

iff cn(q) = 0.



Gaussian quadrature
• For k = 1, . . . , n and x1, . . . , xn ∈ R pairwise distinct, define the

Lagrange polynomials lk(x) =
∏

i :i 6=k
x−xi
xk−xi . These are indicator

polynomial functions of degree n − 1, namely lk(xi ) = δik , and form
a R-vector space basis of the set of polynomials of degree at most
(n − 1), Pn−1.

• If r has degree smaller than n then r(x) =
∑n

k=1 r(xk)lk(x) and for
λk = E(lk(Z )) by linearity
E(r(Z )) =

∑n
k=1 r(xk) E(lk(Z )) =

∑n
k=1 r(xk)λk .

• Putting all together, on Dn = {x : Hn(x) = 0} = {x1, . . . , xn} and
for f polynomial of degree at most (2n − 1) or s.t. cn( f−r

Hn
) = 0,

E (f (Z )) = E (r(Z )) =
n∑

k=1

r(xk) E (lk(Z ))

=
n∑

k=1

f (xk) E (lk(Z )) = En (f (X )) ,

where Pn (X = xk) = E (lk(Z )) = λk is a probability on D.



Algebraic computation of the weights λk
Theorem
Let λ be the polynomial of degree n − 1 such that λ(xk) = λk then

λ(x)H2
n−1(x) =

(n − 1)!

n
on Hn = 0.

• E.g. for n = 3

0 = H3(x) = x3 − 3x

2/3 = λ(x)H2
2 = (θ0 + θ1x + θ2x2)(x2 − 1)2

reduce degree using x3 = 3x and equate coefficients to obtain

λ(x) =
2

3
− x2

6

Evaluate to find λ−
√

3 = λ(−
√

3) = 1
6 = λ√3 and λ0 = λ(0) = 2

3 .

• The roots of Hn, n > 2, are not in Q. Computer algebra systems
work with rational fields. Working with algebraic extensions of fields
could be slow.

• Sometimes there is no need to compute explicitly the weights.



A CoCoA code for the weighing polynomial

N:=4; -- number of nodes

Use R::=Q[w,h[1..(N-1)]], Elim(w); -- setting up the ring

Eqs:=[h[2]-h[1]*h[1]+1]; -- the Hermite pols

For I:=3 To N-1 Do

Append(Eqs,h[I]-h[1]*h[I-1]+(I-1)*h[I-2]) EndFor;

Append(Eqs,h[1]*h[N-1]-(N-1)*h[N-2]); -- the nodes

Set Indentation;

Append(Eqs,N*w*h[N-1]^2-Fact(N-1)); -- the weight poly

J:=Ideal(Eqs); GB_J:=GBasis(J); -- the game

Last(GB_J);

The output is 3w + 1/4h[2] - 5/4. Hence, w(x) = 5−h2
12 = 6−x2

12 and
for H4(x) = x4 − 6x2 + 3 = 0,

x −
√

3−
√

6 −
√

3 +
√

6
√

3−
√

6
√

3 +
√

6

w(x) 3+
√

6
12

3−
√

6
12

3+
√

6
12

31
√

6
12



NF and orthogonal projection
Remark

1. Let f (x) be a polynomial and f (x) = q(x)Hn(x) + r(x) where q, r
are unique with r of degree less than n. Let Z ∼ N (0, 1). Then q is
a polynomial such that

E ((f (Z )− q(Z )Hn(Z ))Hm(Z )) = 0, m ≥ n

2. Can be generalized for general fractions, i.e.

f =
∑
i

qigi + NF(f ) gi Gröbner basis

• r has degree at most n− 1, then r(x) ∈ Span (H0,H1, . . . ,Hn−1). In
particular r is orthogonal to Hm for all m ≥ n.

• Let there exist q1 and q2 distinct such that f − q1Hn ⊥ Hm and
f − q2Hn ⊥ Hm for all m ≥ n. Now (q1 − q2)Hn is 0 or has degree
not smaller than n. Furthermore it is orthogonal to Hm for all
m ≥ n. Necessarily it is 0, equivalently q1 = q2.



Fractions: F ⊂ Dn, #F = m < n

• If the Gaussian integration is performed on the fraction, a
conditional expectation is obtained and the integration formula is
correct only in the special case of no correlation between the
random variable and the fraction.

• Let 1F (x) be the polynomial of degree n such that 1F (x) = 1 if
x ∈ F and 0 if x ∈ Dn \ F and let f be polynomial of degree at
most n − 1 and let Z ∼ N (0, 1). Then for Pn(X = xk) = λk

E((f 1F )(Z )) =
∑
xk∈F

f (xk)λk

= En (f (X )1F (X ))

= En (f (X )|X ∈ F) Pn(X ∈ F)

• A better approach computes the correct weights. This can be done
in a symbolic way.



Weights from the normal form

• The generating equation is ωF (x) =
∏

xk∈F
(x − xk) =

∑m
i=0 ciHi (x).

• The Lagrange polynomials for F are lFk (x) =
∏

i∈F,i 6=k

x − xi
xk − xi

= NF(lk(x), Ideal(ωF (x)). For f a polynomial of degree N, write
f (x) = q(x)ωF (x) + r(x) with f (xi ) = r(xi ) on F and
r(x) =

∑
xk∈F f (xk)lFk (x).

• Let q(x) =
∑N−m

j=0 bjHj(x).

E (f (Z )) = E

N−m∑
j=0

bjHj(Z )
m∑
i=0

ciHi (Z )

+ E (r(Z ))

= b0c0+b1c1+. . .+((N −m) ∧m)!b(N−m)∧mc(N−m)∧m+
∑
xk∈F

f (xk)λFk ,

where λFk = E (NF(lk(x), Ideal(ωF (x))).



Generic design
Claudia Fassino and Eva Riccomagno (2011 in progress) have considered
a different approach. Instead of a subset of the multivariate grid of the
roots of Hermite polynomials, they take a generic design. An application
of a modified Buchberger-Möller algorithm produces a representation of
the design ideal, of the quotient space, indicator functions, and
interpolation of a generic function on the design in terms of Hermite
polynomials.

The Hermite Buchberger-Möller algorithm HBM

Input A design D and a term ordering σ.

Output A set HGB of polynomials and a set HQB of Hermite
monomials.

Theorem
The HBM algorithm produces a set HQB of Hermite monomials which is
a basis of the quotient space and a polynomial set HGB which is the
σ-Gröbner basis of the design ideal I(D) expressed by the Hermite
monomials.



Discussion and references
• The algebraic approach has produced interesting results in the

classical theory of design. Its application to designs associated to
roots of Hermite polynomials seems promising.

• General designs can also be considered with the use of Hermite
monomials in place of standard monomials, in view of the
computation of Gaussian expectation instead of uniform
expectation. This is of interest in view to applications to the
propagation of uncertainty in computer models.

• Extensive experiments on the feasibility of the multivariate case
remains to be done. This issue is critical, in view of the low
efficiency of symbolic computations.

• This research started in 2010. Previous and more extended
presentations of the current state are

• Eva Riccomagno. Orthogonal polynomial aliasing in gaussian quadrature.
http://matematicas.unex.es/~ojedamc/jarandilla10/talks/riccomagno.pdf, 2010. Invited
talk at TORIC GEOMETRY SEMINAR 2010 (Combinatorial Commutative Algebra, Optimization

and Statistics) JARANDILLA DE LA VERA (CÁCERES, SPAIN)
• Claudia Fassino. Buchberger-möller algorithm and Hermite polynomials.

http://www.dima.unige.it/~riccomag/smas/smas2011/Slow_11_Claudia.pdf, 2011. Invited
talk for the second SLOW MORNING IN ALGEBRAIC STATISTICS, DIMA Università di Genova,
March 15th, 2011

http://matematicas.unex.es/~ojedamc/jarandilla10/talks/riccomagno.pdf
http://www.dima.unige.it/~riccomag/smas/smas2011/Slow_11_Claudia.pdf

