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A Statistical Toolkit

Most practical statistical model are algebraic in nature and where developed
in the pre-computer to provide computable solutions in closed form.

Today many applied model are still algebraic in nature, but cannot be solved
in closed form because of the high dimensionality: large linear models, Bayes
nets, . . .

With the advent of modern Symbolic Computation Software the “closed
form” solution approach can be pushed on a little further, so that small
Bayes nets can be solved.

The algebraic approach provides further insight concerning such issues as the
existence of likelihood estimators in contingency table models.

Recently, a special issue of the journal Statistical Sinica has been devoted to
this new area we called Algebraic Statistics in a book published on 2001. In
particular, see Stephen E. Fienberg. Expanding the statistical toolkit with
algebraic statistics. Statistica Sinica, 17:1261–1272, 2007 at
http://www3.stat.sinica.edu.tw/statistica/J17N4/editorial.pdf.

There is a nice tutorial by Seth Sullivan at
http://www3.stat.sinica.edu.tw/statistica/.
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Summary

1 A short review of algebraic statistics of toric models on a finite state
space.

2 A toy example of application in continuous models: gaussian models
as used in Kriging and Computer Experiments.

3 Conclusion.
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Ideals

R = Q[xj : j = 1, . . . , n] is the ring of polynomials with rational coefficients
and n indeterminate x1, . . . , xn.

xα = xα1
1 · · · xαx

n is a monomial; xα − xβ is a binomial.

I ⊂ R is an ideal if it is closed under the (internal) sum operation and under
multiplication by any element of the ring; typically, an ideal is the set of all
polynomials that are zero on some subset of Qn; all ideals are finitely
generated, i.e. there exist a finite set of polynomials g1, . . . , gm such that all
element f ∈ I can be written as

f =
m∑

i=1

higi , hi ∈ R, i = 1, . . . ,m

Given a system of polynomial equations


g1(x) = 0

...
gm(x) = 0

, the ideal

generated by g1, · · · , gm consists of all the polynomials f (x) = 0 such that
the equation f = 0 is obtained by manipulating the given system.

G.Pistone, G. Vicario (Polito) AS and Kriging Tuesday December 2, 2009 4 / 20



Toric ideals in Statistics

It has been first shown by Persi Diaconis and Bernd Sturmfels. Algebraic
algorithms for sampling from conditional distributions. Ann. Statist., 26(1):
363–397, 1998. ISSN 0090-5364 that a special case of ideal, called toric
ideal, is of primary importance in Statistics.

The previous paper is devoted to an application MCMC to exact testing in
contingency tables. The same basic idea has been applied to statical models
arising in Bayes networks in Giovanni Pistone, Eva Riccomagno, and
Henry P. Wynn. Algebraic Statistics: Computational Commutative Algebra
in Statistics. Chapman&Hall, 2001, where such models are shown to be a
type of exponential model. A general theory is in Dan Geiger, Christopher
Meek, and Bernd Sturmfels. On the toric algebra of graphical models. Ann.
Statist., 34:1463–1492, 2006.

The setup consists of a ring S = Q[p1, . . . , pn, t1, . . . , td ], where
Ω = {1, . . . , n} is a finite sample space, pi is the probability of i , and tj is a

parameter. The statistical model is given as


p1 = tα1

...

pn = tαn

,
∑

i pi = 1.



Elimination and binomial invariants

Given the system of polynomial equations
p1 − tα1 = 0

...
pn − tαn = 0
p1 + · · ·+ pn − 1 = 0

in the ring S = Q[p1, . . . , xn, t1, . . . , td ],

the algebraic elimination of the indeterminate tj produces a system of
equations in the indeterminate pi only, which are called algebraic invariants
of the toric model.

More formally, the elimination ideal is the ideal

Ideal (p1 − tα1 , . . . , pn − tαn , p1 + · · ·+ pn − 1) ∩ Q[p1, . . . , pn]

Algebraic invariants are related with the orthogonal space of the log-linear
model

log pi =
d∑

j=1

αij log tj
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Examples of toric model and algebraic invariants

Independence On a 2× 2 table independence is

pij = ti+t+j ,

which is a toric model. The algebraic invariant is

p11p22 − p12p21 = 0 .

Binomial The binomial probability pk =
(
n
k

)
(1− θ)n−kθk is not directly a

toric model. However, qk = pk/
(
n
k

)
is, because

qk = (1− θ)n−kθk = tn−k
1 tk

2 , k = 1, . . . , n

The model matrix of the log-model is


n 0

n − 1 1
...
0 n

.

In case n = 2 the equation

4p0p2 − p2
1 = 0 ,

which is called Hardy-Weinberg constraint in Genetics, is obtained,



Computer Algebra

Computation The examples we have shown have been known for a long time.
Algebraic computation are quite difficult, so that the algebraic
approach is not usually taken seriously. However, computer
programs able to do the exact algebraic computations that are
needed.

CoCoA is a program to compute with numbers and polynomials. It is free.
It works on many operating systems. It is used by many
researchers, but can be useful even for ”simple” computations. See
http://cocoa.dima.unige.it/ for a full documentation and
downloading.

4ti2 is not as general as CoCoA, but in specific cases can be faster and
more friendly. See a moderate documentation and downloading in
http://www.4ti2.de/.

More options are available, both academic free software such as Singular
or Macaulay2 or commercial such as Maple and Matematica.
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Polynomial model with fixed fraction

Let us consider the polynomial model

y = a + bx + cx2 x ∈ D = {0 . . . 9}

The model is evaluated on the fraction F = {x1, x2}. We compute the
confounding structure with the methods of polynomial algebra. F is the set of
rational solutions of the equations

x(x − 1) · · · (x − 9) = 0, (x − x1)(x − x2) = 0,

In particular, the second equation, that we call defining equation of the fraction,
gives the aliasing of the squared term which is introduced by the fraction:

x2 = (x1 + x2)x − x1x2

Therefore. the original model is aliased with the lower degree model

y = a+bx+cx2 = y = a+bx+c [(x1 + x2)x − x1x2] = (a− cx1x2)+[b + c(x1 + x2)] x

and we have found two parametric functions which are estimable (by
interpolation).

a− cx1x2, b + c(x1 + x2)
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Polynomial model with random fraction

Let us assume now that the fraction is a random set {X1,X2} ⊂ D, where X1 is
uniformly distributed on D and X2|X1 = x1 is uniformly distributed on D \ x1.
Therefore, the fraction F is sampled uniformly among the 90 cases. The relevant
expected values of are

E (X1 + X2) =
1

90

∑
0≤x2≤9,x1 6=x2

(x1 + x2) = 9

E (X1X2) =
1

90

∑
0≤x2≤9,x1 6=x2

x1x2 =
9

2

In this case, the interpolation procedure provides unbiased estimators of the
parametric functions

a− 9

2
c , b + 9c , 2a + b

the latter being a consequences of the formers.
It should be noticed that the previous computations involves non linear functions
of the random variables representing the random fraction: this is a consequence
of the randomization procedure.
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Kriging model with random fraction
Let us assume now that the response Yx at point x ∈ D = {0 . . . 9} is a jointly
Gaussian centered random variable such that Cov (Yx1 ,Yx2) = γ(x1 − x2). We
want to estimate the overall total Y+ =

∑
x∈D Yx with the conditional

expectation E (Y+|Yxi , i = 1, 2, 3) for a given 3-fraction F = {x1, x2, x3} ⊂ D.
The simplest procedure to estimate the covariances γ(d) is the estimator

G (d) =
∑

{u,v}⊂F ,|u−v |=d

YuYv , d = 0, 1, . . . , 9

We have
E (G (d)) = ndγ(d), where nd =

∑
{u,v}⊂F ,|u−v |=d

1

Therefore G (d)/nd is un unbiased estimator of γ(d), whenever nd 6= 0.
Assume now that F is uniformly sampled among the

(
10
3

)
= 120 3-subsets of D.

The probability of the estimator is defined, p(d) = P (Nd 6= 0), is given in the
table.

d : 1 2 3 4 5 6 7 8 9

p(d) :
64

120

58

120

52

120

46

120

40

120

32

120

24

120

16

120

8

120



Computer experiments
Computer experiments are usually contrasted to physical experiments:

A physical experiments force constrains on the choice of experimental
treatments, while a numerical experiment does not.

A computer experiment does not show experimental error, while a physical
experiment does.

However, the very use of the word experiment in both cases, hints for the use of
the same basic methodology. We refer to Jerome Sacks, Susannah B. Schiller,
and William J. Welch. Designs for computer experiments. Technometrics, 31(1):
41–47, 1989. ISSN 0040-1706 and Thomas J. Santner, Brian J. Williams, and
William I. Notz. The design and analysis of computer experiments. Springer Series
in Statistics. Springer-Verlag, New York, 2003. ISBN 0-387-95420-1.

Is that possible to compute in the general case the aliasing introduced by a
given trial set?

Are randomization and statistical inference meaningful in a computer
experiment?

How to number, list, generate trial sets (fractions) of a given class, e.g.
LH’s orthogonal arrays?



The model Γxy = exp (−θ‖x − y‖1), t = e−θ

The covariance matrix is

Γ =



t0 t1 t2 t1 t2 t3 t2 t3 t4 11

t1 t0 t1 t2 t1 t2 t3 t2 t3 21
t2 t1 t0 t3 t2 t1 t4 t3 t2 31
t1 t2 t3 t0 t1 t2 t1 t2 t3 12
t2 t1 t2 t1 t0 t1 t2 t1 t2 22
t3 t2 t1 t2 t1 t0 t3 t2 t1 32
t2 t3 t4 t1 t2 t3 t0 t1 t2 13
t3 t2 t3 t2 t1 t2 t1 t0 t1 23
t4 t3 t2 t3 t2 t1 t2 t1 t0 33
11 21 31 12 22 32 13 23 33



Using CoCoA, we obtain the value of the determinant as Γ = (t2 − 1)12
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CoCoA program 1st part

Use R::= Q[x[1..9,1..9],t]; -- specify the ring!
-- x’s to be used later

Gamma := Mat([ -- a matrix is a list of lists
-- scanned by rows

[t^0,t^1,t^2,t^1,t^2,t^3,t^2,t^3,t^4],
[t^1,t^0,t^1,t^2,t^1,t^2,t^3,t^2,t^3],
[t^2,t^1,t^0,t^3,t^2,t^1,t^4,t^3,t^2],
[t^1,t^2,t^3,t^0,t^1,t^2,t^1,t^2,t^3],
[t^2,t^1,t^2,t^1,t^0,t^1,t^2,t^1,t^2],
[t^3,t^2,t^1,t^2,t^1,t^0,t^3,t^2,t^1],
[t^2,t^3,t^4,t^1,t^2,t^3,t^0,t^1,t^2],
[t^3,t^2,t^3,t^2,t^1,t^2,t^1,t^0,t^1],
[t^4,t^3,t^2,t^3,t^2,t^1,t^2,t^1,t^0]
]);
DetGamma := Det(Gamma); -- is a polynomial
Factor(DetGamma); -- factorization of the polynomial



CoCoA program 2nd part

We first compute Γ−1. The computation is symbolic, so we do not care about the
singular case t = 1.

InvGamma := Inverse(Gamma);
InvGamma -- check the inverse
NumInvGamma := (t^2-1)^2InvGamma; -- suggested by inspection

-- the previous step
Latex(NumInvGamma); -- export to latex

-- for the presentation

As the model is toric in the entries of Γ we compute the elimination ideal.

Eqs := [[Gamma[I,J]-x[I,J]|I In 1..9] | J In 1..9];
-- list of polynomials

I := Ideal(Flatten(Eqs)); -- Ideal is a data structure!
J := Elim(t,I); -- computes the elimination ideal
Latex(J);



Elimination ideal

9 equations for the diagonal: −x99 + 1 = 0,−x88 + 1 = 0 . . .

36 equations for the symmetry: x69 − x89 = 0,−x89 + x98 = 0, . . .

6 generating nonlinear equations for the model

−x2
98 + x79 = 0,

−x97x98 + x49 = 0,

−x2
97 + x49x98 = 0,

−x94x98 + x19 = 0,

−x94x97 + x19x98 = 0,

−x2
94 + x19x97 = 0

The actual form of the equations is controlled by a CoCoA setting called
monomial order.

Algebraic invariants show the geometrical shape of the model.
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CoCoA program 3rd part

-- 1 2 3 -- 3x3 grid
-- 4 5 6
-- 7 8 9

Locations := 1..9;
Design := [1,5,9];
Predicted := Diff(Locations,Design);

-- Gaussian conditional expectation

Covariance := Submat(Gamma,Predicted,Design);
GammaDesign := Submat(Gamma,Design,Design);
InvGammaDesign := Inverse(GammaDesign);
Variance := Covariance*InvGammaDesign*Transposed(Covariance);
DiagVariance := [Variance[1,1],Variance[2,2],Variance[3,3],

Variance[4,4],Variance[5,5],Variance[6,6]];



Gaussian conditional expectation

The (symbolic) precision matrix can be computed notwithstanding the
critical value t = 1.

Γ−1 =

1 −t 0 −t t2 0 0 0 0
−t t2 + 1 −t t2 −t3 − t t2 0 0 0
0 −t 1 0 t2 −t 0 0 0
−t t2 0 t2 + 1 −t3 − t 0 −t t2 0
t2 −t3 − t t2 −t3 − t t4 + 2t2 + 1 −t3 − t t2 −t3 − t t2

0 t2 −t 0 −t3 − t t2 + 1 0 t2 −t
0 0 0 −t t2 0 1 −t 0
0 0 0 t2 −t3 − t t2 −t t2 + 1 −t
0 0 0 0 t2 −t 0 −t 1


The 0’s in Γ−1 reveal a structure of conditional independence.
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Prediction errors

The distribution is stationary, therefore we look for the maximal variance of
the prediction.

The variance of the the prediction at the points is

Point: 2 3 4 6 7 8

Variance: 2t2

t2+1
−t6+3t4

t2+1
2t2

t2+1
2t2

t2+1
−t6+3t4

t2+1
2t2

t2+1

We look for the maximum between

2t2

t2 + 1
and

−t6 + 3t4

t2 + 1

at different values of t. his part of the computation is numerical and should
be done outside CoCoA, e.g. in R.
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Conclusion

Symbolic algebraic computation is a useful tool in the analysis of
statistical models used in Computer Experiment.

The use of symbolic software requires special data structures, such as
rings, ideal, . . .

Algebraic design of experiments is relevant outside standard DoE.

Explicit randomization should be used in both physical and computer
experiments.
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