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PART ONE



A-model
• X is a finite sample space with reference measure µ.

• A is an integer matrix A ∈ Zm+1,X
≥ .

• The elements of matrix A are Ai (x), i = 0 . . .m, x ∈ X . We assume
the row A0 to be the constant 1.

• The x-column of A, say A(x), is the multi-exponent of a monomial
term denoted

tA(x) = t0t
A1(x)
1 · · · tAm(x)

m

• Matrix A defines a statistical model on (X , µ) whose unnormalized
probability densities are

q(x ; t) = tA(x), x ∈ X ,

for all t ∈ Rm+1
≥ such that q(·, t) is not identically zero.

• The probability densities wrt µ in the A-model are

p(x ; t) = q(x ; t)/Z (t), Z (t) =
∑
x∈X

q(x ; t)µ(x).

• If t > 0, t = log θ and q(x ; θ) = exp (θ · A(x)).



Example of A-model

• The simplest example is the Binomial(n, p):

X = {0, 1, 2, 3, . . . , n} , µ(x) =

(
n

x

)
,

A =

[ 0 1 2 3 · · · n

0 1 1 1 1 · · · 1

1 0 1 2 3 · · · n

]
, q(x ; t0, t1) = t0tx1 ,

p(x ; t) =
tx∑n

x=0 tx
(
n
x

) =
tx

(1 + t)n
, x ∈ X , t ≥ 0.

• Persi Diaconis and Bernd Sturmfels. Algebraic algorithms for sampling from conditional distributions. Ann.
Statist., 26(1):363–397, 1998. ISSN 0090-5364;

• Giovanni Pistone, Eva Riccomagno, and Henry P. Wynn. Algebraic statistics, volume 89 of Monographs on
Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton, FL, 2001. ISBN 1-58488-204-2.
Computational commutative algebra in statistics;

• Dan Geiger, Christopher Meek, and Bernd Sturmfels. On the toric algebra of graphical models. Ann.
Statist., 34(3):1463–1492, 2006. ISSN 0090-5364;

• Paolo Gibilisco, Eva Riccomagno, Maria Piera Rogantin, and Henry P. Wynn, editors. Algebraic and
geometric methods in statistics. Cambridge University Press, Cambridge, 2010. ISBN 978-0-521-89619-1.



C -constrained A-model; identification
• In some applications the statistical model is further constrained by a

matrix C ∈ Zk,n.{
q(x ; t) = tA(x),∑

x∈X Ci (x)q(x ; t) = 0,

for x ∈ X , t ∈ Rm+1
≥ , i = 1 . . . k .

• Assume s, t ∈ Rm
> and ps = pt . Denote by Z the normalizing

constant. Then pt = ps if, and only if,

Z (s)tA(x) = Z (t)sA(x), x ∈ X

hence

m∑
i=0

(log ti − log si )Ai (x) = log Z (t)− log Z (s), x ∈ X .

The confounding condition is

δTA = 1, δi = (log ti − log si )/(log Z (t)− log Z (s)),

so that δ ∈ e0 + ker A.



Toric ideals; closure of the A-model
• The ker of the ring homomorphism

k[q(x) : x ∈ X ] 3 q(x) 7→ tA(x) ∈ k[t0, . . . , tm]

is the toric ideal of A, I(A). It has a finite basis made of binomials
of the form ∏

x : u(x)>0

q(x)u
+(x) −

∏
x : u(x)<0

q(x)u
−(x)

with u ∈ ZX , Au = 0.

• As
∑

x∈X u(x) = 0, all the binomials are homogeneous polynomials
so that all densities pt in the A-model satisfy the same binomial
equation.

Theorems

• The nonnegative part of the A-variety is the (weak) closure of the
positive part of the A-model

• Let H be the Hilbert basis of Span (A0,A1, . . . ) ∩ ZX≥ . Let H be the
matrix whose rows are the elements of H of minimal support. The
H-model is equal to the nonnegative part of the A-variety



The binomial example

• The integer kernel of A =

[
1 1 1 1 1 1
0 1 2 3 4 5

]
is Q-generated by

the rows of K =


1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1

 and the relevant

binomials are

q(0)q(2)−q(1)2, q(1)q(3)−q(2)2, q(2)q(4)−q(3)2, q(3)q(5)−q(4)2.

• The Hilbert basis of RowSpan A is

H =

[
0 1 2 3 4 5
5 4 3 2 1 0

]
hence q(x ; t1, t2) = tx1 t5−x

2 .

• Bernd Sturmfels. Gröbner bases and convex polytopes. American Mathematical Society, Providence, RI,
1996. ISBN 0-8218-0487-1;

• Dan Geiger, Christopher Meek, and Bernd Sturmfels. On the toric algebra of graphical models. Ann.
Statist., 34(3):1463–1492, 2006. ISSN 0090-5364;

• Luigi Malagò and Giovanni Pistone. A note on the border of an exponential family. arXiv:1012.0637v1,
2010;

• J. Rauh, T. Kahle, and N. Ay. Support sets in exponential families and oriented matroid theory.
Proceedings WUPES’09, invited for special issue of IJAR arXiv:0906.5462, 2009.



Example: 3 binary identical RVs, no-3-way-interaction

• X = {+,−}3. Matrix A is

+++ -++ +-+ --+ ++- -+- +-- ---

I 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1

2 0 0 1 1 0 0 1 1

3 0 0 0 0 1 1 1 1

12 0 1 1 0 0 1 1 0

13 0 1 0 1 1 0 1 0

23 0 0 1 1 1 1 0 0

• Constrain matrix C is

+++ -++ +-+ --+ ++- -+- +-- ---

1=2 0 1 -1 0 0 1 -1 0

1=3 0 1 0 1 -1 0 -1 0



• The toric ideal I(A) is generated by

q(+ + +)q(−−+)q(−+−)q(+−−)

− q(−+ +)q(+−+)q(+ +−)q(−−−)

• H =



1 0 0 0 0 0 0 1
0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0



has 16 rows.

• The complete H-parameterization is quadratic.



Toric and Weyl
• Consider the design D ⊂ Zd

+ with reference measure µ. Let I (D) be
its ideal of points. Consider the statistical model

q(x ; t) =
d∏

i=1

txii , x ∈ D, tj ≥ 0, j = 1, . . . , d ,

with normalizing constant

Z (t) =
∑
x∈D

txµ(x)

It is the A-model with Ai (x) = xi , i = 1, . . . ,m.

• In the Weyl algebra C〈t1 . . . td , ∂1 . . . ∂d〉 define the operators

A(i , x) = ti∂i − xi = ∂i ti − (1 + xi ), i = 1, . . . , d , x ∈ D,

where the second equality follows from the commutation relation
∂i ti = 1 + ti∂i . For all x ∈ D we have

A(i , x) • tx = ∂i • (ti t
x)− (1 + xi )tx = 0,

so that ti∂i • tx = xi t
x and, by iteration, (ti∂i )

α • tx = xαi tx , α ∈ N.



• The operator (ti∂i )
α applied to the polynomial Z (t) ∈ C[t1, . . . , tm]

gives

(ti∂i )
α • Z (t) =

∑
x∈D

(ti∂i )
α • tx =

∑
x∈D

xαi tx µ(x) = 1 .

• Note the commutativity

(ti∂i )(tj∂j) = (tj∂j)(ti∂i ),

hence

d∏
i=1

(ti∂i )
αi • Z (t) =

∑
x∈D

d∏
i=1

(ti∂i )
αi • tx =

∑
x∈D

(
d∏

i=1

xαi

i

)
tx .

• By dividing by the normalizing constant we obtain he following
expression for the moments:

Z (t)−1
d∏

i=1

(ti∂i )
αi • Z (t) = Z (t)−1

∑
x∈D

d∏
i=1

(ti∂i )
αi • tx = Et [Xα] .



From the ring homomorphism A :

{
C[x ] → C〈t1 . . . td , ∂1 . . . ∂d〉

xi 7→ ti∂i
we have

A(f (x)) • Z (t) =
∑
x∈D

f (x)tx .

Theorem

1. Let xα, α ∈ M, be a monomial basis for D. Then Z (t) satisfies the
following system of #M = #D linear non-homogeneous differential
equations:

A(xα) • Z (t) =
∑
x∈D

xαtx , α ∈ M.

2. Let fa(x) be the (reduced) indicator polynomial of a ∈ D. Then
Z (t) satisfies the following system of #D linear non-homogeneous
differential equations:

A(fa(x)) • Z (t) = ta, a ∈ D

3. Let g(pa : a ∈ D) be a polynomial in the toric ideal of the monomial
homomorphism pa 7→ ta. Then

g (A(fa(x)) • Z (t) : a ∈ D) = 0



PART TWO



Detailed balance

• A transition matrix Pv→w , v ,w ∈ V , satisfies the detailed balance
conditions if κ(v) > 0, v ∈ V , and

κ(v)Pv→w = κ(w)Pw→v , v ,w ∈ V .

• It follows that π(v) ∝ κ(v) is an invariant probability and the
Markov chain (Xn)n=0,1,..., has symmetric and stationary two-step
joint distributions under π.

• Consider the simple (no-loop) directed graph (V ,A) s.t.
(v → w) ∈ A if, and only if, v 6= w and Pv→w > 0.

• The binomials

κ(v)Pv→w − κ(w)Pw→v , (v → w) ∈ A,

define a binomial ideal of the ring

Q[k(v) : v ∈ V ; Pv→w : (v → w) ∈ A]



Reversibility on trajectories

• Let ω = v0 · · · vn be a trajectory (path) in the connected graph A
and let r(ω) = vn · · · v0 be the reversed trajectory.

• If the detailed balance holds, then the reversibility condition

P (ω) = P (rω)

holds for each trajectory ω.

• Write the detailed balance along the trajectory,

π(v0)Pv0→v1 = π(v1)Pv1→v0 ,

π(v1)Pv1→v2 = π(v2)Pv2→v1 ,

...

π(vn−1)Pvn−1→vn = π(vn)Pvn→vn−1 ,

and clear π(v1) · · ·π(vn−1) in both sides of the product.

• Note the binomial structure.



Kolmogorov’s condition
We denote by ω a closed trajectory, that
is a trajectory on the graph such that the
last state coincides with the first one, ω =
v0v1 . . . vnv0, and by rω the reversed trajec-
tory rω = v0vn . . . v1v0

1 2

4 3

1 2

4 3

Theorem (Kolmogorov)
Let the Markov chain (Xn)n=0,1,... have transitions the connected graph
G.

• If the process is reversible, for all closed trajectory

Pv0→v1 · · ·Pvn→v0 = Pv0→vn · · ·Pv1→v0

• If the equality is true for all closed trajectory, then the process is
reversible.

• Detailed balance, reversibility, Kolmogorov’s condition are algebraic
in nature and define binomial ideals. The Kolmogorov’s condition
does not involve the invariant probability π.

• P. Suomela. Invariant measures of time-reversible Markov chains. J. Appl. Probab., 16(1):226–229, 1979.
ISSN 0021-9002.



Transition graph

• From G = (V , E) an (undirected simple) graph, split each edge into
two opposite arcs to get a connected directed graph (without loops)
O = (V ,A). The arc going from vertex v to vertex w is (v → w).
The reversed arc is r(v → w) = (w → v).

1 2

4 3

1 2

4 3

• A path or trajectory is a sequence of vertices ω = v0v1 · · · vn with
(vk−1 → vk) ∈ A, k = 1, . . . , n. The reversed path is
rω = vnvn−1 · · · v0. Equivalently, a path is a sequence of
inter-connected arcs ω = a1 . . . an, ak = (vk−1 → vk), and
rω = r(an) . . . r(a1).



Circuits, cycles

• A closed path ω = v0v1 · · · vn−1v0 is any path going from an initial
v0 back to v0; rω = v0vn−1 · · · v1v0 is the reversed closed path. If
we do not distinguish any initial vertex, the equivalence class of
closed paths is called a circuit.

• A closed path is elementary if it has no proper closed sub-path, i.e.
if does not meet twice the same vertex except the initial one v0.
The circuit of an elementary closed path is a cycle.

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3



Kolmogorov’s ideal

• With indeterminates P = [Pv→w ], (v → w) ∈ A, form the ring
k[Pv→w : (v → w) ∈ A]. For a trajectory ω, define the monomial
term

ω = a1 · · · an 7→ Pω =
n∏

k=1

Pak =
∏
a∈A

PNa(ω)
a ,

with Na(ω) the number of traversals of the arc a by the trajectory.

1 2

4 3

(3)

(3) (4)

(4)

(1) P1   2
3 P2   3

4 P3   4
4 P4   1

3 P4   2

2   3 3   4 4   2

4   1 1   22   3 3   4

4   1 1   22   3 3   4

4   1 1   22   3 3   4

Definition (K-ideal)
The Kolmogorov’s ideal or K-ideal of the graph G is the ideal generated
by the binomials Pω − P rω, where ω is any circuit.



Bases of the K-ideal
• The binomials Pω − P rω, where ω is any cycle, form a reduced

universal Gröbner basis of the K-ideal.

• The K-ideal is generated by a finite set of binomials. A Gröbner
basis is a special class of generating set of an ideal.

• Gröbner basis theory: David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms: An
introduction to computational algebraic geometry and commutative algebra. Undergraduate Texts in
Mathematics. Springer-Verlag, New York, second edition, 1997. ISBN 0-387-94680-2, Martin Kreuzer and
Lorenzo Robbiano. Computational commutative algebra. 1. Springer-Verlag, Berlin, 2000. ISBN
3-540-67733-X.

• The theory is based on the existence of a monomial order, i.e. a
total order on monomial term which is compatible with the product.
Given such an order, the leading term LT(f ) of the polynomial f is
defined. A generating set is a Gröbner basis if the set of leading
terms of the ideal is generated by the leading terms of monomials in
the generating set.

• A Gröbner basis is reduced if the coefficient of the leading term of
each element of the basis is 1 and no monomial in any element of
the basis is in the ideal generated by the leading terms of the other
element of the basis. The Gröbner basis property depend on the
monomial order. However, a generating set is a universal Gröbner
basis if it is a Gröbner basis for all monomial orders.



Gröbner basis

• The finite algorithm for computing a Gröbner basis depends on the
definition of sygyzy. Given two polynomial f and g in the
polynomial ring K , their sygyzy is the polynomial

S(f , g) =
LT(g)

gcd(LT(f ), LT(g))
f − LT(f )

gcd(LT(f ), LT(g))
g .

• A generating set of an ideal is a Gröbner basis if, and only if, it
contains the sygyzy S(f , g) whenever it contains f and g , see

• Chapter 6 in David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms: An introduction
to computational algebraic geometry and commutative algebra. Undergraduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1997. ISBN 0-387-94680-2, or

• Theorem 2.4.1 p. 111 of Martin Kreuzer and Lorenzo Robbiano. Computational commutative algebra. 1.
Springer-Verlag, Berlin, 2000. ISBN 3-540-67733-X.

• Software for Gröbner bases: CoCoATeam. CoCoA: a system for doing Computations in Commutative
Algebra. Available at cocoa.dima.unige.it, online.

• Software for Hilbert bases: 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial
problems on linear spaces. Available at www.4ti2.de.

• Giovanni Pistone and Maria Piera Rogantin. The algebra of reversible markov chains. arXiv:1007.4282v2
[math.ST], 2011



Proof (square with 1 diagonal)
Six cycles: ωA = 1→ 2→ 4→ 1, ωB = 2→ 3→ 4→ 2,
ωC = 1→ 2→ 3→ 4→ 1, and the reversed arcs.

gcd { },P
ωA P

ωC P
ωA P

ωC

) 0

r(     )P
ωA gcd { },P

ωA P
ωC P

ωC r(     )P
ωCP
ωC gcd { },P

ωA P
ωC P

ωA

gcd { },Pr(     )ωA r(     )P
ωC r(     )P

ωB P
ωB

(
• In blue we have represented the common part of ωA and ωB .

ti = Pωi , r(ti ) = P rωi , i = A,B,C .



Cycle space

• For each cycle ω define cycle vector

za(ω) =


+1 if a is an arc of ω,

−1 if r(a) is an arc of ω,

0 otherwise.

a ∈ A.

(1→ 2)(2→ 1)(2→ 3)(3→ 2)(3→ 4)(4→ 3)(4→ 1)(1→ 4)(2→ 4)(4→ 2)
z(ωA) 1 −1 0 0 0 0 1 −1 1 −1
z(ωB) 0 0 1 −1 1 −1 0 0 −1 1
z(ωC) 1 −1 1 −1 1 −1 1 −1 0 0

• We can find nonnegative integers λ(ω) such that
z(ω̄) =

∑
ω∈C λ(ω)z(ω), i.e. it belongs to the integer lattice

generated by the cycle vectors.

• Z (O) is the cycle space, i.e. the vector space generated by the cycle
vectors.



Cocycle space of O
• For each subset W of V , define cocycle vector

ua(W ) =


+1 if a exits from W ,

−1 if a enters into W ,

0 otherwise.

a ∈ A.

1 2

4 3

W

• The generated subspace of kA is the cocycle space U(O)

• The cycle space and the cocycle space are orthogonal to each other.
In fact for each cycle vector z(ω), cocycle vector u(W ),
za(ω)ua(W ) = zr(a)(ω)ur(a)(W ), a ∈ A, therefore

z(ω)·u(W ) = 2
∑
a∈ω

ua(W ) = 2

 ∑
a∈ω,ua(W )=+1

1−
∑

a∈ω,ua(W )=−1

1

 = 0.

• It is an orthogonal split the full vector space.



Toric ideals

• The matrix U = [ua(W )]W⊂V ,a∈A whose rows are the cocycle
vectors is the cocycle matrix.

• Consider the ring k[Pa : a ∈ A] and the Laurent ring
k(tW : W ⊂ V ), together with their homomorphism h defined by

h : Pa 7−→
∏

W⊂V

t
ua(W )
W = tua .

• The kernel I (U) of h is the toric ideal of U. It is a prime ideal and

the binomials Pz+ − Pz− , z ∈ ZA, Uz = 0 are a generating set of
I (U) as a k-vector space.

• As for each cycle ω we have Uz(ω) = 0, the cycle vector z(ω)

belongs to kerZ U =
{

z ∈ ZA : Uz = 0
}

. Moreover, Pz+(ω) = Pω,

Pz−(ω) = P rω, therefore the K-ideal is contained in the toric ideal
I (U).



The K-ideal is toric

Theorem
The K-ideal is the toric ideal of the cocycle matrix.

Definition (Graver basis)
z(ω1) is conformal to z(ω2), z(ω1) v z(ω2), if the component-wise
product is non-negative and |z(ω1)| ≤ |z(ω2)| component-wise, i.e.
za(ω1)za(ω2) ≥ 0 and |za(ω1)| ≤ |za(ω2)| for all a ∈ A. A Graver basis of
Z (O) is the set of the minimal elements with respect to the conformity
partial order v.

Theorem

1. For each cycle vector z ∈ Z (O), z =
∑
ω∈C λ(ω)z(ω), there exist

cycles ω1, . . . , ωn ∈ C and positive integers α(ω1), . . . , α(ωn), such
that z+ ≥ z+(ωi ), z− ≥ z−(ωi ), i = 1, . . . , n and
z =

∑n
i=1 α(ωi )z(ωi ).

2. The set {z(ω) : ω ∈ C} is a Graver basis of Z(O). The binomials of
the cycles form a Graver basis of the K-ideal.



Proof

+ 2 =

1 1 1 12 2 2 2

4 4 4 43 3 3 3

+ 2

(3)

(3) (4)

(4)

(1)

z(ω) = z(ωA) + 2z(ωB) + 2z(ωC) = (3 ,−3 , 4 ,−4 , 4 ,−4 , 0 , 0 ,−1 , 1)

z+(ω) = z+(ωB) + 3z+(ωC) = (3 , 0 , 4 , 0 , 4 , 0 , 0 , 0 , 0 , 1)

+ 3=

1 11 2 22

4 44 3 33

(3)

(3) (4)

(4)

(1)



Positive K-ideal

• The strictly positive reversible transition probabilities on O are given
by:

Pv→w = s(v ,w)
∏
S

t
uv→w (S)
S

= s(v ,w)
∏

S : v∈S,w /∈S

tS
∏

S : w∈S,v /∈S

t−1
S ,

where s(v ,w) = s(w , v) > 0, tS > 0.

• The first set of parameters, s(v ,w), is a function of the edge.

• The second set of parameters, tS , represent the deviation from
symmetry. The second set of parameters is not identifiable because
the rows of the U matrix are not linearly independent.

• The parametrization can be used to derive an explicit form of the
invariant probability.



Parametric detailed balance

Theorem
Consider the strictly non-zero points on the K-variety.

1. The symmetric parameters s(e), e ∈ E , are uniquely determined.
The parameters tS , S ⊂ V are confounded by ker U = {U tt = 0}.

2. An identifiable parametrization is obtained by taking a subset of
parameters corresponding to linearly independent rows, denoted by
tS , S ⊂ S:

Pv→w = s(v ,w)
∏

S⊂S : v∈S,w /∈S

tS
∏

S⊂S : w∈S,v /∈S

t−1
S

3. The detailed balance equations, κ(v)Pv→w = κ(w)Pw→v , are
verified if, and only if,

κ(v) ∝
∏

S : v∈S

t−2
S



PART THREE



Markov Chains (MC)
• In a Markov chain with state space V , initial probability π0 and

stationary transitions Pu→v , u, v ∈ V , the joint distribution up to
time T on the sample space ΩT is

P(ω) =
∏
v∈V

π0(v)(X0(ω)=v)
∏
a∈A

PNa(ω)
a , (MC)

where (V ,A) is the directed graph defined by u → v ∈ A if, and
only if, Pu→v > 0 and Na(ω) is the number of times the arc a is
contained in the path ω = a1 · · · aT .

• A MC is an instance of an A-model with m = #V + #A parameters
and sample space Ω(A). We assume the MC to be connected and
quasi-reversible, i.e. a ∈ A if, and only if, the reversed arc r(a) ∈ A.

• The rows of A are

A0(ω) = 1,Av (ω) = (X0(ω) = v),Aa(ω) = Na(ω)

i.e the unnormalized density is

q(ω; t) = t0

∏
v∈V

t(X0(ω)=v)
v

∏
a∈A

tNa(ω)
a (A)



A-model of a MC I

• The A-model is normalized by

Z (t) = t0

∑
ω∈Ω(A)

∏
v∈V

t(X0(ω)=v)
v

∏
a∈A

tNa(ω)
a

and it is a Markov proces with non-stationary transition
probabilities.

• Define a(v) =
∑

w : (v→w)∈A tv→w ; hence Pv→w = tv→w/a(v) is a

transition probability supported by A and ν(v) = a(v)/
∑

v a(v) is
a probability on V . Consider the change of parameters

απ(v) = tv , βν(v)Pv→w = tv→w ,

to get the new parameterization of the unnormalized density

q(ω;π,P) ∝

(∏
v∈V

ν(v)Nv+(ω)

)(∏
v∈V

π(v)(X0(ω)=v)
∏
a∈A

PNa(ω)
a

)



A-model of a MC II

• Note that for ω = v0v1 · · · vT∏
v∈V

ν(v)Nv+(ω) = ν(v0)ν(v1) · · · ν(vT )

which is constant if ν is constant.

• The (MC) model is derived from the (A) model by adding the
parametric constrains∑

w : v1→w∈A
tv1→w =

∑
w : v2→w∈A

tv2→w , v1, v2 ∈ V .



Discussion

• The information geometry of MCs and RMCs is best expressed in
exponential form, i.e. with respect to the parameterization
θ = log t. It is instrumental the non-parametric Information
Geometry as described e.g. in

• Giovanni Pistone and Maria Piera Rogantin. The exponential statistical manifold: mean parameters,
orthogonality and space transformations. Bernoulli, 5(4):721–760, August 1999. ISSN 1350-7265.

• The manifold of MCs and of RMCs in the corresponding A-model
are curved exponential families whose tangent bundles are computed
from the constrains.

• It should be of interest to find an orthogonal decomposition of a
MC or A-model into a reversible component and the other
orthogonal to the reversible manifold.

• The use of deformed exponentials does not exclude the algebraic
theory as presented here; a toy example with the Kaniadakis’s
exponential was discussed in

• Giovanni Pistone. κ-exponential models from the geometrical viewpoint. The European Phisical Journal B
Condensed Matter Physics, 71(1):29–37, July I 2009. ISSN 1434-6028. doi10.1140/epjb/e2009-00154-y.
URL http://dx.medra.org/10.1140/epjb/e2009-00154-y.

http://dx.medra.org/10.1140/epjb/e2009-00154-y

