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An example in Statistical Physics

Ω is a finite sample space with N points.

U : Ω→ R≥0, U(x) = 0 for some x ∈ Ω, U 6≡ 0.

Gibbs model . . .

p(x ;β) =
e−βU(x)

Z (β)
, Z (β) =

∑
x∈Ω

e−βU(x), β > 0.

U is the energy, β is the inverse temperature, Z is the partition
function, e−βU is the Boltzmann factor.

. . . and its limits

As β →∞,

Z (β)→ #{x : U(x) = 0}, e−βU(x) → (x : U(x) = 0),

I.e. the weak limit of p(β) as β →∞ is the uniform distribution on the
states x ∈ Ω with zero energy.



Canonical variable, extended model

Changing U → V = (max U − U) and β → θ = −β ∈ R we get the
same statistical model presented as an exponential model

p(x ; θ) ∝ eθV (x)

There are weak limits as θ → ±∞, the limits being the uniform
distributions on the set of states that minimize or maximize the U
function. Such limits are important in a number of applications, e.g.
Statistical Physics or simulation methods in optimization. Therefore,
the notion of closed or extended exponential model deserve much
attention.

A generic exponential model based on the canonical statistics V can
be written

p(x ; θ) = eθV (x)−ψ(θ) · p(x)

where the canonical statistics itself is given up to an affine
transformation.

If a canonical variable is integer valued, we obtain a toric model for
the likelihood pθ/p.



Information geometry

The exponential model

p(x ; θ) = eθV (x)−ψ(θ) · p(x)

has a number of interesting features such as the strict convexity of
the cumulant function ψ or the relation ψ′(θ) = Eθ [V ] which do not
depend on the parametrization, but are related with the idea of
representing the interior of the probability simplex with an affine
space.
In non-parametric Information Geometry the model is presented with
respect to a reference density and the canonical variable is centered,

p(x ; θ) = eθu(x)−ψ(θu) · p(x ; 0),

with u = θ(V − Ep0 [V ]) and ψ(θu) = Ep0 [eu].
This idea extends to the representation of a generic strictly positive
density q in the form

q = eu−ψ(u) · p(x)

where u is uniquely determined by the reference density p and by the
condition Ep [u] = 0.



IG is a family of manifolds on ∆

From Amari work, we know that there are many (differential)
geometries on the simplex of probability densities of a given sample
space (Ω,F , µ).
Let M> denote the set of all positive densities of (Ω,F , µ). For each
p ∈M> the mapping sp : q → u is a chart. The atlas (sp) defines
the e-manifold
The atlas of the charts q 7→ q/p − 1 defines the m-manifold.
According Amari, in between the e-manifold and the m-manifold there
are other differential structures associated with the charts

q 7→

(
q
p

)λ
− 1

λ

However, λ−1((q/p)λ − 1) is bounded below by −λ−1.
Here, we discuss the construction of such geometries and their
algebraic counterpart in the form of a generalization of the
exponential case.
S. Amari, H. Nagaoka, Methods of information geometry (American Mathematical Society, Providence, RI, 2000), ISBN
0-8218-0531-2, translated from the 1993 Japanese original by Daishi Harada
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κ-exponential
G. Kaniadakis, based on arguments from Statistical Physics and Special
Relativity, has defined the κ-deformed exponential for each x ∈ R and
−1 < κ < 1 to be

expκ (x) = exp

(∫ x

0

du√
1 + κ2u2

)
.

Note the special cases

expκ (x) =


(
κx +

√
1 + κ2x2

) 1
κ
, if κ 6= 0,

exp x , if κ = 0,

and the κ-deformed logarithm defined for y > 0 by

lnκ (y) =


yκ − y−κ

2κ
, if κ 6= 0,

ln y , if κ = 0.

G. Kaniadakis, Physica A 296, 405 (2001), G. Kaniadakis, Phisics Letters A 288, 283 (2001);

G. Kaniadakis, Physical Review E 66, 056125 1 (2002), G. Kaniadakis, Physical Review E 72, 036108 1 (2005).



Which deformation?
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Among all possible approxima-
tions to exp, this particular one
has been selected by Kaniadakis
because it is the simplest with the
property

expκ (x) expκ (−x) = 1

For κ 6= 0, the indeterminate y = (expκ (x))κ and x are related by the
polynomial equation

y2 − 2κxy − 1 = 0 (HYP)

Therefore, the graph of (expκ)κ is the upper branch of a hyperbola.



κ-deformed operations

The function expκ maps R unto R>, it is strictly increasing and it is
strictly convex.

The function lnκ maps R> unto R, is strictly increasing and is strictly
concave.

Both the κ-deformed exponential and the κ-deformed functions expκ
and lnκ reduce to the ordinary exp and ln functions when κ→ 0.

Group operations (R,
κ
⊕) and (R>,

κ
⊗) are defined in such a way that

expκ is a group isomorphism from (R,+) onto (R>,
κ
⊗) and also from

(R,
κ
⊕) onto (R>,×):

expκ (x1 + x2) = expκ (x1)
κ
⊗ expκ (x2) ,

expκ

(
x1

κ
⊕ x2

)
= expκ (x1) expκ (x2) .



The algebra of expκ and lnκ

The binary operations
κ
⊕ and

κ
⊗ are defined by

x1

κ
⊕ x2 = lnκ (expκ (x1) expκ (x2))

y1

κ
⊗ y2 = expκ (lnκ (y1) + lnκ (y2))

The operation
κ
⊗ is defined on positive reals. However,

κ
⊗ can be

extended by continuity to non-negative reals in such a way that

0
κ
⊕ y = y

κ
⊕ 0 = 0

κ
⊕ 0 = 0

We want to derive defining relations for the κ-deformed operations in
the form of a polynomial. This is obtained by repeated use of the
HYP. Symbolic computations have been done with CoCoA.
CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, Available at
http://cocoa.dima.unige.it.



κ
⊕

We want to find x such that expκ (x) = expκ (x1) expκ (x2).

From y1 = (expκ (x1))κ, y2 = (expκ (x2))κ and

(expκ (x))κ = (expκ (x1) expκ (x2))κ = y1y2,

we have the ideal generated by

Eq1 := y[1]^2-2kx[1]y[1]-1;
Eq2 := y[2]^2-2kx[2]y[2]-1;
Eq3 := (y[1]y[2])^2-2kxy[1]y[2]-1;

Elimination of y1, y2 gives the polynomial equation

x4 − 2
(
2κ2x2

1 x2
2 + x2

1 + x2
2

)
x2 +

(
x2

1 − x2
2

)2
= 0 ,

whose solution is

x1

κ
⊕ x2 = x1

√
1 + κ2x2

2 + x2

√
1 + κ2x2

1 .

Kaniadakis has a relativistic interpretation.



κ
⊗

We want to find z =
(
y1

κ
⊗ y2

)κ
. Let y1 = (expκ (x1))κ,

y2 = (expκ (x2))κ, and z = (expκ (x1 + x2))κ.

Equation HYP gives three quadratic equations in the indeterminates
x1, x2, y1, y2, z , κ. Elimination of x1, x2 gives the polynomial equation

y1y2z
2 + (1− y1y2)(y1 + y2)z − y1y2 = 0 .

It is remarkable that this equation does not depend on κ. An explicit
solution is obtained by solving the quadratic equation.

A possibly more suggestive solution is obtained as follows. First, we
reduce to the monic equation

z2 +

(
1− 1

y1y2

)
(y1 + y2)z − 1 = 0

and denote the two solutions by z > 0 and −1/z . Therefore,

z − 1

z
=

(
y1 −

1

y1

)
+

(
y2 −

1

y2

)



Box-Cox, Amari, generalised entropies

The κ-logarithm is strictly related to a family of transformation which
is well known in Statistics under the name of Box-Cox transformation
or power transform. For data vector y1, . . . , yn in which each yi > 0,
the power transform is:

y
(λ)
i ∝

yλi − 1

λ

The same transformation, applied to probability densities, appears in
Amari as a device to construct Statistical Manifolds.
Tsallis ha applied the transformation in non-extensive
thermodynamics.
Naudts discusses the applications of lnκ and expκ in Information
Theory and Statistical Physics.
Kaniadakis’s κ-deformed logarithm x = lnκ (y) has the extra
feature of the symmetry induced by the term −y−κ.
G.E.P. Box, D.R. Cox, J. Roy. Statist. Soc. Ser. B 26, 211 (1964), ISSN 0035-9246.
Monograph: S. Amari, H. Nagaoka, Methods of information geometry (American Mathematical Society, Providence, RI,
2000), ISBN 0-8218-0531-2, translated from the 1993 Japanese original by Daishi Harada.
First paper: C. Tsallis, J. Statist. Phys. 52(1-2), 479 (1988), ISSN 0022-4715.
J. Naudts, Phys. A 316(1-4), 323 (2002), ISSN 0378-4371; J. Naudts, JIPAM. J. Inequal. Pure Appl. Math. 5(4),
Article 102, 15 pp. (electronic) (2004), ISSN 1443-5756.



κ-Deformed Gibbs model I

On a finite state space Ω, equipped with the energy function
U : Ω→ R≥, we want to discuss the κ-deformation of the standard
Gibbs model. There are two options, related with two different
presentation of the normalizing constant (partition function).

The first option is to consider the statistical model

p(x ; θ) =
expκ (θU(x))

Z (θ)

= expκ

(
θU(x)

κ
⊕ lnκ

(
1

Z (θ)

))
The lnκ-model is, with ψ̃κ(θ) = lnκ Z (θ),

lnκ p(x ; θ) = θU(x)

√
1 + κ2(ψ̃κ(θ))2 − ψ̃κ(θ)

√
1 + κ2θ2U(x)2



κ-Deformed Gibbs model II

The second option is to define the model as

p(x ; θ) = expκ (θU(x)− ψκ(θ))

= expκ (θU(x))
κ
⊗ expκ (−ψκ(θ)) ,

where ψκ(θ) is the unique solution of the equation∑
x∈Ω

expκ (θU(x)− ψκ(θ)) = 1.

The derivative with respect to θ of ψκ is given by

Eθ

 U − ψ′κ(θ)√
1 + κ2 (θU − ψκ(θ))2

 = 0,

where Eθ [V ] =
∑

x V (x)p(x ; θ).



Discussion

The two one-parameter statistical models are different unless κ = 0.
This fact marks an important difference between the theory of
ordinary exponential models and κ-deformed exponential models.

From the geometrical point of view, the second approach has the
advantage of a the linear character of the model describing the
lnκ-probability.

Let V = Span (1,U) and V⊥ the orthogonal space, i.e. v ∈ V⊥ if, and
only if,

∑
x v(x) = 0 and

∑
x v(x)U(x) = 0. Therefore,∑

x∈Ω

v(x) lnκ (p(x ; θ)) = 0, v ∈ V⊥

Viceversa, if a strictly positive probability density function p is such
that lnκ p is orthogonal to V⊥, then p belongs to the κ-Gibbs model
for some θ.



κ-toric

For each v ∈ V⊥,∑
x : v(x)>0

v+(x) lnκ (p(x)) =
∑

x : v(x)<0

v−(x) lnκ (p(x)) .

A (physical) interpretation: a positive density p belongs to the
κ-Gibbs model if, and only if,

Er1 [lnκ (p)] = Er2 [lnκ (p)]

for each couple of densities r1, r2 such that r1r2 = 0 and
Er1 [U] = Er2 [U].

If v ∈ V⊥ happens to be integer valued, using the κ-algebra and the

notation

n times︷ ︸︸ ︷
x
κ
⊗ · · ·

κ
⊗ x= x

κ
⊗n, we can write

κ⊗
x : v(x)>0

p(x)
κ
⊗v+(x) =

κ⊗
x : v(x)<0

p(x)
κ
⊗v−(x),



Example 1/2



1 U v1 v2 v3

1 1 0 1 0 1
2 1 0 −1 0 1
3 1 1 0 0 −4
4 1 2 0 1 1
5 1 2 0 −1 1


The binomial equations are

p(1) = p(2)

p(4) = p(5)

p(1)
κ
⊗ p(2)

κ
⊗ p(4)

κ
⊗ p(5) = p(3)

κ
⊗4

A non strictly positive density that is a solution is either
p(1) = p(2) = p(3) = 0, p(4) = p(5) = 1/2, or p(1) = p(2) = 1/2,
p(3) = p(4) = p(5) = 0. These two solutions are the uniform
distributions on the sets of values that respectively maximize or
minimize the energy function.



Example 2/2

A further algebraic presentation is available. Consider the new
parameters

ζ0 = expκ (−ψκ(θ)) , ζ1 = expκ (θ) ,

so that

p(x ; θ) = expκ (θU(x))
κ
⊗ expκ (−ψκ(θ)) ,

= ζ0

κ
⊗ ζ

κ
⊗U(x)
1 .

The probabilities are κ-monomials in the parameters ζ0, ζ1, e.g.:
p(1) = p(2) = ζ0

p(3) = ζ0

κ
⊗ ζ1

p(4) = p(5) = ζ0

κ
⊗ ζ

κ
⊗2
1

Note that the parameter ζ0 is required to be strictly positive, while
the parameter ζ1 could be zero, giving rise the uniform distribution on
{1, 2} = {x : U(x) = 0}. The other limit solution is not obtained.



κ→ 0
If κ 6= 0 the last equation of the system

p(1) = p(2)

p(4) = p(5)

p(1)
κ
⊗ p(2)

κ
⊗ p(4)

κ
⊗ p(5) = p(3)

κ
⊗4

can be written as(
pκ(1)− 1

pκ(1)

)
+

(
pκ(2)− 1

pκ(2)

)
+(

pκ(4)− 1

pκ(4)

)
+

(
pκ(5)− 1

pκ(5)

)
=

4

(
pκ(3)− 1

pκ(3)

)

Question

Is κ→ 0 a proper “approximation” of the regular case κ = 0?



κ-Divergence

To construct an atlas, we define each chart as associated to a strictly
positive probability densities. Such a density p is a reference for each
other density q via the notion of likelihood q/p.

Definition

Fix a κ ∈]0, 1[. Given positive density functions q and p such that(
q
p

)
,
(

p
q

)
∈ L

1
κ (q), i.e.

(
q
p

)κ
,
(

p
q

)κ
∈ L1(q), the κ-divergence is

Dκ(q‖p) = Eq

[
lnκ

(
q

p

)]
=

1

2κ
Eq

[(
q

p

)κ
−
(

p

q

)κ]
.

The strict convexity of − lnκ implies

Dκ(q‖p) = Eq

[
− lnκ

(
p

q

)]
≥ − lnκ

(
Eq

[
p

q

])
= lnκ (1) = 0.

with equality if, and only if q = p.



expκ densities

Definition?

Ep =

{
q ∈M> :

(
q

p

)κ
,

(
p

q

)κ
∈ L1/κ(p)

}
=

{
q ∈M> :

q

p
,
p

q
∈ L1(p)

}
=

{
q ∈M> :

p

q
∈ L1(p)

}

The divergence Dκ(p‖q) is defined on Ep.

If q ∈ Ep, then q is almost surely positive and we can write it in the
form q = expκ (v) · p, with

v = lnκ

(
q

p

)
=

(
q
p

)κ
−
(

p
q

)κ
2κ

∈ L1/κ(p)



κ-exponential chart

p-chart q 7→ u

The expected value at p of v = lnκ
(

q
p

)
is Ep

[
lnκ
(

q
p

)]
= −Dκ(p‖q) so

that we can write every q ∈ Ep as

q = expκ (u − Dκ(p‖q)) · p

where u is a uniquely defined element of the set of p-centered

1/κ-integrable random variables L
1/κ
0 (p).

p-patch u 7→ q

Vice versa, given u ∈ L
1
κ
0 (p), the real function ψ 7→ Ep [expκ (u − ψ)] is

continuous and strictly decreasing from +∞ to 0, therefore there exists a
unique ψκ,p(u) such that

q = expκ (u − ψκ,p(u)) · p ∈ Ep ⊂M>



Change of chart

Assume now we want to change of chart, that is we want to change the
reference density from p1 to p2 to represent a q that belongs to both Ep1

and Ep2 . The formal application of the chart and the patch formulæ gives

u2 = lnκ

(
q

p2

)
− Ep2

[
lnκ

(
q

p2

)]
= lnκ

(
expκ (u1 − ψκ,p1(u1))

p1

p2

)
− Ep2 [· · · ]

= (u1 − ψκ,p1(u1))
κ
⊕ lnκ

(
p1

p2

)
− Ep2 [· · · ]

Question: Is the set of u’s such that expκ (u − ψκ,p1) · p1 belongs to

Ep1 an open set of L
1/κ
o (p)?

Problem: compute the Fréchet derivative of the change of coordinate.

Problem: compute the connections.



Tangent vectors

Let pθ, θ ∈]0, 1[, be a curve in Ep,

pθ = expκ (uθ − ψκ,p(uθ)) · p.

In the chart at p the velocity vector is given by

u̇θ ∈ L
1/κ
0 (p) = Tκ,p

Formal computation gives

ṗθ
pθ

= (1 + κ2(uθ − ψκ,p(uθ)2)−1/2(u̇θ − Duθ
ψκ,p(u̇θ))

so that
ṗ0

p0
= u̇0



Conclusion

Amari tells us that each probability simplex ∆ supports κ-statistical
manifolds, one for each κ ∈ [0, 1].

Each κ has peculiar algebraic features.

All κ-manifolds are possibly deduced from the same template, i.e. the
exponential model (work in progress).

There are domains of application of the algebro-geometric picture not
yet explored:

Statistical Physics,
Optimization,
Differential equations for probability densities,
Approximation of statistical models.
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