G.Pistone (POLITO)

Algebraic Statistics December 15-18, 2008

Serkan Hosten (SFSU), Lior Pachter (UCB), Bernd Sturmfels (UCB)

Algebraic Statistics in non-parametric Information Geometry

Giovanni Pistone

POLITECNICO DI TORINO

Thursday December 18, 2008

An example in Statistical Physics

- Ω is a finite sample space with N points.
- $U: \Omega \to \mathbb{R}_{\geq 0}$, U(x) = 0 for some $x \in \Omega$, $U \not\equiv 0$.

Gibbs model ...

$$p(x;\beta) = rac{\mathrm{e}^{-eta U(x)}}{Z(eta)}, \quad Z(eta) = \sum_{x\in\Omega} \mathrm{e}^{-eta U(x)}, \quad eta > 0.$$

• U is the energy, β is the inverse temperature, Z is the partition function, $e^{-\beta U}$ is the Boltzmann factor.

... and its limits

As $\beta \to \infty$,

$$Z(eta)
ightarrow \#\{x: U(x)=0\}, \qquad \mathrm{e}^{-eta U(x)}
ightarrow (x: U(x)=0),$$

I.e. the weak limit of $p(\beta)$ as $\beta \to \infty$ is the uniform distribution on the states $x \in \Omega$ with zero energy.

Canonical variable, extended model

• Changing $U \to V = (\max U - U)$ and $\beta \to \theta = -\beta \in \mathbb{R}$ we get the same statistical model presented as an exponential model

 $p(x;\theta) \propto \mathrm{e}^{\theta V(x)}$

- There are weak limits as $\theta \to \pm \infty$, the limits being the uniform distributions on the set of states that minimize or maximize the U function. Such limits are important in a number of applications, e.g. Statistical Physics or simulation methods in optimization. Therefore, the notion of closed or extended exponential model deserve much attention.
- A generic exponential model based on the *canonical statistics V* can be written

$$p(x; \theta) = e^{\theta V(x) - \psi(\theta)} \cdot p(x)$$

where the canonical statistics itself is given up to an affine transformation.

 If a canonical variable is integer valued, we obtain a toric model for the likelihood p_θ/p.

Information geometry

The exponential model

$$p(x; \theta) = e^{\theta V(x) - \psi(\theta)} \cdot p(x)$$

has a number of interesting features such as the strict convexity of the cumulant function ψ or the relation $\psi'(\theta) = \mathsf{E}_{\theta}[V]$ which do not depend on the parametrization, but are related with the idea of representing the interior of the probability simplex with an affine space.

• In **non-parametric** Information Geometry the model is presented with respect to a reference density and the canonical variable is centered,

$$p(x; \theta) = e^{\theta u(x) - \psi(\theta u)} \cdot p(x; 0),$$

with $u = \theta(V - \mathsf{E}_{p_0}[V])$ and $\psi(\theta u) = \mathsf{E}_{p_0}[e^u]$.

• This idea extends to the representation of a generic strictly positive density *q* in the form

$$q = e^{u - \psi(u)} \cdot p(x)$$

where *u* is uniquely determined by the reference density *p* and by the condition $E_p[u] = 0$.

IG is a family of manifolds on Δ

- From Amari work, we know that there are many (differential) geometries on the simplex of probability densities of a given sample space (Ω, F, μ).
- Let M_> denote the set of all positive densities of (Ω, F, μ). For each p ∈ M_> the mapping s_p : q → u is a chart. The atlas (s_p) defines the e-manifold
- The atlas of the charts $q \mapsto q/p 1$ defines the **m-manifold**.
- According Amari, in between the e-manifold and the m-manifold there are other differential structures associated with the charts

$$q\mapsto rac{\left(rac{q}{p}
ight)^{\lambda}-1}{\lambda}$$

However, $\lambda^{-1}((q/p)^{\lambda}-1)$ is bounded below by $-\lambda^{-1}$.

- Here, we discuss the construction of such geometries and their algebraic counterpart in the form of a generalization of the exponential case.

G.Pistone (POLITO)

κ -exponential

G. Kaniadakis, based on arguments from Statistical Physics and Special Relativity, has defined the κ -deformed exponential for each $x \in \mathbb{R}$ and $-1 < \kappa < 1$ to be

$$\exp_{\kappa}(x) = \exp\left(\int_{0}^{x} \frac{du}{\sqrt{1+\kappa^{2}u^{2}}}\right)$$

Note the special cases

$$\exp_{\kappa}(x) = \begin{cases} \left(\kappa x + \sqrt{1 + \kappa^2 x^2}\right)^{\frac{1}{\kappa}}, & \text{if } \kappa \neq 0, \\ \exp x, & \text{if } \kappa = 0, \end{cases}$$

and the κ -deformed logarithm defined for y > 0 by

$$\mathsf{n}_{\kappa}(y) = egin{cases} rac{y^{\kappa}-y^{-\kappa}}{2\kappa}, & ext{if } \kappa
eq 0, \ \ln y, & ext{if } \kappa = 0. \end{cases}$$

G. Kaniadakis, Physica A 296, 405 (2001), G. Kaniadakis, Phisics Letters A 288, 283 (2001);

G. Kaniadakis, Physical Review E 66, 056125 1 (2002), G. Kaniadakis, Physical Review E 72, 036108-1 (2005)

Which deformation?

Among all possible approximations to exp, this particular one has been selected by Kaniadakis because it is the simplest with the property

$$\exp_{\kappa}\left(x
ight)\exp_{\kappa}\left(-x
ight)=1$$

For κ ≠ 0, the indeterminate y = (exp_κ(x))^κ and x are related by the polynomial equation

$$y^2 - 2\kappa xy - 1 = 0 \tag{HYP}$$

• Therefore, the graph of $(\exp_{\kappa})^{\kappa}$ is the upper branch of a hyperbola.

κ -deformed operations

- The function \exp_κ maps $\mathbb R$ unto $\mathbb R_>$, it is strictly increasing and it is strictly convex.
- The function \ln_{κ} maps $\mathbb{R}_{>}$ unto \mathbb{R} , is strictly increasing and is strictly concave.
- Both the κ -deformed exponential and the κ -deformed functions \exp_{κ} and \ln_{κ} reduce to the ordinary exp and ln functions when $\kappa \to 0$.
- Group operations $(\mathbb{R}, \stackrel{\kappa}{\oplus})$ and $(\mathbb{R}_{>}, \stackrel{\kappa}{\otimes})$ are defined in such a way that \exp_{κ} is a group isomorphism from $(\mathbb{R}, +)$ onto $(\mathbb{R}_{>}, \stackrel{\kappa}{\otimes})$ and also from $(\mathbb{R}, \stackrel{\kappa}{\oplus})$ onto $(\mathbb{R}_{>}, \times)$:

$$\exp_{\kappa} (x_1 + x_2) = \exp_{\kappa} (x_1) \overset{\kappa}{\otimes} \exp_{\kappa} (x_2),$$
$$\exp_{\kappa} \left(x_1 \overset{\kappa}{\oplus} x_2 \right) = \exp_{\kappa} (x_1) \exp_{\kappa} (x_2).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The algebra of exp_{κ} and ln_{κ}

 \bullet The binary operations $\stackrel{\kappa}{\oplus}$ and $\stackrel{\kappa}{\otimes}$ are defined by

$$\begin{aligned} x_1 \stackrel{\kappa}{\oplus} x_2 &= \mathsf{ln}_{\kappa} \left(\mathsf{exp}_{\kappa} \left(x_1 \right) \mathsf{exp}_{\kappa} \left(x_2 \right) \right) \\ y_1 \stackrel{\kappa}{\otimes} y_2 &= \mathsf{exp}_{\kappa} \left(\mathsf{ln}_{\kappa} \left(y_1 \right) + \mathsf{ln}_{\kappa} \left(y_2 \right) \right) \end{aligned}$$

• The operation $\overset{\kappa}{\otimes}$ is defined on positive reals. However, $\overset{\kappa}{\otimes}$ can be extended by continuity to non-negative reals in such a way that

$$0 \stackrel{\kappa}{\oplus} y = y \stackrel{\kappa}{\oplus} 0 = 0 \stackrel{\kappa}{\oplus} 0 = 0$$

 We want to derive defining relations for the κ-deformed operations in the form of a polynomial. This is obtained by repeated use of the HYP. Symbolic computations have been done with CoCoA.

 CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, Available at http://cocoa.dima.unige.it.

- We want to find x such that $\exp_{\kappa}(x) = \exp_{\kappa}(x_1) \exp_{\kappa}(x_2)$.
- From $y_1 = (\exp_{\kappa} (x_1))^{\kappa}$, $y_2 = (\exp_{\kappa} (x_2))^{\kappa}$ and

$$(\exp_{\kappa}(x))^{\kappa} = (\exp_{\kappa}(x_1)\exp_{\kappa}(x_2))^{\kappa} = y_1y_2,$$

we have the ideal generated by

- Eq1 := y[1]²-2kx[1]y[1]-1; Eq2 := y[2]²-2kx[2]y[2]-1; Eq3 := (y[1]y[2])²-2kxy[1]y[2]-1;
- Elimination of y_1, y_2 gives the polynomial equation

$$x^{4} - 2\left(2\kappa^{2}x_{1}^{2}x_{2}^{2} + x_{1}^{2} + x_{2}^{2}\right)x^{2} + \left(x_{1}^{2} - x_{2}^{2}\right)^{2} = 0$$

whose solution is

$$x_1 \stackrel{\kappa}{\oplus} x_2 = x_1 \sqrt{1 + \kappa^2 x_2^2} + x_2 \sqrt{1 + \kappa^2 x_1^2}$$

• Kaniadakis has a relativistic interpretation.

- We want to find $z = (y_1 \overset{\kappa}{\otimes} y_2)^{\kappa}$. Let $y_1 = (\exp_{\kappa} (x_1))^{\kappa}$, $y_2 = (\exp_{\kappa} (x_2))^{\kappa}$, and $z = (\exp_{\kappa} (x_1 + x_2))^{\kappa}$.
- Equation HYP gives three quadratic equations in the indeterminates x₁, x₂, y₁, y₂, z, κ. Elimination of x₁, x₂ gives the polynomial equation

$$y_1y_2z^2 + (1 - y_1y_2)(y_1 + y_2)z - y_1y_2 = 0$$

- It is remarkable that this equation does not depend on κ. An explicit solution is obtained by solving the quadratic equation.
- A possibly more suggestive solution is obtained as follows. First, we reduce to the monic equation

$$z^{2} + \left(1 - \frac{1}{y_{1}y_{2}}\right)(y_{1} + y_{2})z - 1 = 0$$

and denote the two solutions by z > 0 and -1/z. Therefore,

$$z - \frac{1}{z} = \left(y_1 - \frac{1}{y_1}\right) + \left(y_2 - \frac{1}{y_2}\right)$$

Box-Cox, Amari, generalised entropies

 The κ-logarithm is strictly related to a family of transformation which is well known in Statistics under the name of Box-Cox transformation or power transform. For data vector y₁,..., y_n in which each y_i > 0, the power transform is:

$$y_i^{(\lambda)} \propto rac{y_i^\lambda - 1}{\lambda}$$

- The same transformation, applied to probability densities, appears in Amari as a device to construct Statistical Manifolds.
- Tsallis ha applied the transformation in non-extensive thermodynamics.
- Naudts discusses the applications of ln_κ and exp_κ in Information Theory and Statistical Physics.
- Kaniadakis's κ -deformed logarithm $x = \ln_{\kappa}(y)$ has the extra feature of the symmetry induced by the term $-y^{-\kappa}$.
- G.E.P. Box, D.R. Cox, J. Roy. Statist. Soc. Ser. B 26, 211 (1964), ISSN 0035-9246.
- Monograph: S. Amari, H. Nagaoka, Methods of information geometry (American Mathematical Society, Providence, RI, 2000), ISBN 0-8218-0531-2, translated from the 1993 Japanese original by Daishi Harada.
- First paper: C. Tsallis, J. Statist. Phys. 52(1-2), 479 (1988), ISSN 0022-4715.
- J. Naudts, Phys. A **316**(1-4), 323 (2002), ISSN 0378-4371; J. Naudts, JIPAM. J. Inequal. Pure Appl. Math. **5**(4), Article 102, 15 pp. (electronic) (2004), ISSN 1443-5756.

κ -Deformed Gibbs model I

- On a finite state space Ω, equipped with the energy function
 U: Ω → ℝ_≥, we want to discuss the κ-deformation of the standard
 Gibbs model. There are two options, related with two different
 presentation of the normalizing constant (partition function).
- The first option is to consider the statistical model

$$p(x;\theta) = \frac{\exp_{\kappa} (\theta U(x))}{Z(\theta)}$$
$$= \exp_{\kappa} \left(\theta U(x) \stackrel{\kappa}{\oplus} \ln_{\kappa} \left(\frac{1}{Z(\theta)} \right) \right)$$

• The \ln_{κ} -model is, with $\widetilde{\psi}_{\kappa}(\theta) = \ln_{\kappa} Z(\theta)$,

$$\ln_{\kappa} p(x;\theta) = \theta U(x) \sqrt{1 + \kappa^2 (\widetilde{\psi}_{\kappa}(\theta))^2 - \widetilde{\psi}_{\kappa}(\theta) \sqrt{1 + \kappa^2 \theta^2 U(x)^2}}$$

(日) (四) (문) (문) (문)

κ -Deformed Gibbs model II

• The second option is to define the model as

$$p(x;\theta) = \exp_{\kappa} \left(\theta U(x) - \psi_{\kappa}(\theta) \right)$$
$$= \exp_{\kappa} \left(\theta U(x) \right) \overset{\kappa}{\otimes} \exp_{\kappa} \left(-\psi_{\kappa}(\theta) \right),$$

where $\psi_{\kappa}(\theta)$ is the unique solution of the equation

$$\sum_{x\in\Omega}\exp_{\kappa}\left(heta U(x)-\psi_{\kappa}(heta)
ight)=1.$$

• The derivative with respect to θ of ψ_{κ} is given by

$$\mathsf{E}_{ heta}\left[rac{U-\psi_{\kappa}^{\prime}(heta)}{\sqrt{1+\kappa^{2}\left(heta U-\psi_{\kappa}(heta)
ight)^{2}}}
ight]=0,$$

where $\mathsf{E}_{\theta}[V] = \sum_{x} V(x) p(x; \theta)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Discussion

- The two one-parameter statistical models are different unless κ = 0. This fact marks an important difference between the theory of ordinary exponential models and κ-deformed exponential models.
- From the geometrical point of view, the second approach has the advantage of a the linear character of the model describing the ln_κ-probability.

Let V = Span(1, U) and V^{\perp} the orthogonal space, i.e. $v \in V^{\perp}$ if, and only if, $\sum_{x} v(x) = 0$ and $\sum_{x} v(x)U(x) = 0$. Therefore,

$$\sum_{x\in\Omega} v(x) \ln_\kappa \left(p(x; heta)
ight) = 0, \qquad v\in V^\perp$$

• Viceversa, if a strictly positive probability density function p is such that $\ln_{\kappa} p$ is orthogonal to V^{\perp} , then p belongs to the κ -Gibbs model for some θ .

κ -toric

• For each $v \in V^{\perp}$,

$$\sum_{x: v(x)>0} v^+(x) \ln_{\kappa} \left(p(x) \right) = \sum_{x: v(x)<0} v^-(x) \ln_{\kappa} \left(p(x) \right).$$

 A (physical) interpretation: a positive density *p* belongs to the κ-Gibbs model if, and only if,

$$\mathsf{E}_{r_{1}}\left[\mathsf{In}_{\kappa}\left(p\right)\right] = \mathsf{E}_{r_{2}}\left[\mathsf{In}_{\kappa}\left(p\right)\right]$$

for each couple of densities r_1 , r_2 such that $r_1r_2 = 0$ and $E_{r_1}[U] = E_{r_2}[U]$.

If $v \in V^{\perp}$ happens to be integer valued, using the κ -algebra and the notation $x \bigotimes^{\kappa} \cdots \bigotimes^{\kappa} x = x^{\bigotimes^{\kappa} n}$, we can write $\bigotimes^{\kappa}_{x: v(x) > 0} p(x)^{\bigotimes^{\kappa} v^{+}(x)} = \bigotimes^{\kappa}_{x: v(x) < 0} p(x)^{\bigotimes^{\kappa} v^{-}(x)},$

Example 1/2

• The binomial equations are

$$\begin{cases} p(1) = p(2) \\ p(4) = p(5) \\ p(1) \overset{\kappa}{\otimes} p(2) \overset{\kappa}{\otimes} p(4) \overset{\kappa}{\otimes} p(5) = p(3)^{\overset{\kappa}{\otimes} 4} \end{cases}$$

A non strictly positive density that is a solution is either
 p(1) = p(2) = p(3) = 0, p(4) = p(5) = 1/2, or p(1) = p(2) = 1/2,
 p(3) = p(4) = p(5) = 0. These two solutions are the uniform
 distributions on the sets of values that respectively maximize or
 minimize the energy function.

Example 2/2

• A further algebraic presentation is available. Consider the new parameters

$$\zeta_{0} = \exp_{\kappa} \left(-\psi_{\kappa}(\theta) \right), \quad \zeta_{1} = \exp_{\kappa} \left(\theta \right),$$

so that

$$p(x;\theta) = \exp_{\kappa} \left(\theta U(x) \right) \overset{\kappa}{\otimes} \exp_{\kappa} \left(-\psi_{\kappa}(\theta) \right),$$
$$= \zeta_0 \overset{\kappa}{\otimes} \zeta_1^{\overset{\kappa}{\otimes} U(x)}.$$

The probabilities are κ -monomials in the parameters ζ_0, ζ_1 , e.g.:

$$\begin{cases} p(1) = p(2) = \zeta_0 \\ p(3) = \zeta_0 \overset{\kappa}{\otimes} \zeta_1 \\ p(4) = p(5) = \zeta_0 \overset{\kappa}{\otimes} \zeta_1^{\overset{\kappa}{\otimes} 2} \end{cases}$$

 Note that the parameter ζ₀ is required to be strictly positive, while the parameter ζ₁ could be zero, giving rise the uniform distribution on {1,2} = {x: U(x) = 0}. The other limit solution is not obtained. $\kappa \rightarrow 0$

If $\kappa \neq 0$ the last equation of the system

$$\begin{cases} p(1) = p(2) \\ p(4) = p(5) \\ p(1) \overset{\kappa}{\otimes} p(2) \overset{\kappa}{\otimes} p(4) \overset{\kappa}{\otimes} p(5) = p(3) \overset{\kappa}{\otimes} 4 \end{cases}$$

can be written as

$$\begin{split} \left(p^{\kappa}(1) - \frac{1}{p^{\kappa}(1)}\right) + \left(p^{\kappa}(2) - \frac{1}{p^{\kappa}(2)}\right) + \\ \left(p^{\kappa}(4) - \frac{1}{p^{\kappa}(4)}\right) + \left(p^{\kappa}(5) - \frac{1}{p^{\kappa}(5)}\right) = \\ 4 \left(p^{\kappa}(3) - \frac{1}{p^{\kappa}(3)}\right) \end{split}$$

Question

Is $\kappa \to 0$ a proper "approximation" of the regular case $\kappa = 0$?

κ -Divergence

 To construct an atlas, we define each chart as associated to a strictly positive probability densities. Such a density p is a reference for each other density q via the notion of likelihood q/p.

Definition

Fix a $\kappa \in]0,1[$. Given positive density functions q and p such that $\left(\frac{q}{p}\right), \left(\frac{p}{q}\right) \in L^{\frac{1}{\kappa}}(q)$, i.e. $\left(\frac{q}{p}\right)^{\kappa}, \left(\frac{p}{q}\right)^{\kappa} \in L^{1}(q)$, the κ -divergence is $D_{\kappa}(q||p) = \mathsf{E}_{q}\left[\mathsf{In}_{\kappa}\left(\frac{q}{p}\right)\right] = \frac{1}{2\kappa}\mathsf{E}_{q}\left[\left(\frac{q}{p}\right)^{\kappa} - \left(\frac{p}{q}\right)^{\kappa}\right].$

• The strict convexity of $-\ln_{\kappa}$ implies

$$D_{\kappa}(q\|p) = \mathsf{E}_{q}\left[-\ln_{\kappa}\left(rac{p}{q}
ight)
ight] \geq -\ln_{\kappa}\left(\mathsf{E}_{q}\left[rac{p}{q}
ight]
ight) = \mathsf{In}_{\kappa}\left(1
ight) = 0.$$

with equality if, and only if q = p.

\exp_{κ} densities

Definition?

$$egin{split} \mathcal{E}_{p} &= \left\{ q \in \mathcal{M}_{>}: \left(rac{q}{p}
ight)^{\kappa}, \left(rac{p}{q}
ight)^{\kappa} \in L^{1/\kappa}(p)
ight\} \ &= \left\{ q \in \mathcal{M}_{>}: rac{q}{p}, rac{p}{q} \in L^{1}(p)
ight\} = \overline{\left\{ q \in \mathcal{M}_{>}: rac{p}{q} \in L^{1}(p)
ight\}} \end{split}$$

- The divergence $D_{\kappa}(p||q)$ is defined on \mathcal{E}_{p} .
- If q ∈ E_p, then q is almost surely positive and we can write it in the form q = exp_κ(v) · p, with

$$v = \ln_{\kappa}\left(\frac{q}{p}\right) = \frac{\left(\frac{q}{p}\right)^{\kappa} - \left(\frac{p}{q}\right)^{\kappa}}{2\kappa} \in L^{1/\kappa}(p)$$

κ -exponential chart

p-chart $q \mapsto u$

The expected value at p of $v = \ln_{\kappa} \left(\frac{q}{p}\right)$ is $E_p \left[\ln_{\kappa} \left(\frac{q}{p}\right) \right] = -D_{\kappa}(p||q)$ so that we can write every $q \in \mathcal{E}_p$ as

$$q = \exp_{\kappa}\left(u - D_{\kappa}(p\|q)\right) \cdot p$$

where *u* is a uniquely defined element of the set of *p*-centered $1/\kappa$ -integrable random variables $L_0^{1/\kappa}(p)$.

p-patch $u \mapsto q$

Vice versa, given $u \in L_0^{\frac{1}{\kappa}}(p)$, the real function $\psi \mapsto \mathsf{E}_p[\exp_{\kappa}(u-\psi)]$ is continuous and strictly decreasing from $+\infty$ to 0, therefore there exists a unique $\psi_{\kappa,p}(u)$ such that

$$q = \exp_{\kappa} \left(u - \psi_{\kappa, p}(u)
ight) \cdot p \in \mathcal{E}_{p} \subset \mathcal{M}_{>}$$

Change of chart

Assume now we want to change of chart, that is we want to change the reference density from p_1 to p_2 to represent a q that belongs to both \mathcal{E}_{p_1} and \mathcal{E}_{p_2} . The formal application of the chart and the patch formulæ gives

$$u_{2} = \ln_{\kappa} \left(\frac{q}{p_{2}} \right) - \mathsf{E}_{p_{2}} \left[\ln_{\kappa} \left(\frac{q}{p_{2}} \right) \right]$$

= $\ln_{\kappa} \left(\exp_{\kappa} \left(u_{1} - \psi_{\kappa, p_{1}}(u_{1}) \right) \frac{p_{1}}{p_{2}} \right) - \mathsf{E}_{p_{2}} \left[\cdots \right]$
= $\left(u_{1} - \psi_{\kappa, p_{1}}(u_{1}) \right) \stackrel{\kappa}{\oplus} \ln_{\kappa} \left(\frac{p_{1}}{p_{2}} \right) - \mathsf{E}_{p_{2}} \left[\cdots \right]$

- Question: Is the set of *u*'s such that $\exp_{\kappa} (u \psi_{\kappa,p_1}) \cdot p_1$ belongs to \mathcal{E}_{p_1} an open set of $L_o^{1/\kappa}(p)$?
- Problem: compute the Fréchet derivative of the change of coordinate.
- Problem: compute the connections.

Tangent vectors

• Let p_{θ} , $\theta \in]0, 1[$, be a curve in \mathcal{E}_p ,

$$p_{ heta} = \exp_{\kappa} \left(u_{ heta} - \psi_{\kappa, p}(u_{ heta})
ight) \cdot p.$$

• In the chart at p the velocity vector is given by

$$\dot{u_{ heta}} \in L^{1/\kappa}_0(p) = T_{\kappa,p}$$

• Formal computation gives

.

$$rac{
ho_ heta}{
ho_ heta} = (1+\kappa^2(u_ heta-\psi_{\kappa,
ho}(u_ heta)^2)^{-1/2}(\dot{u_ heta}-D_{u_ heta}\psi_{\kappa,
ho}(\dot{u_ heta}))$$

so that

$$\left|\frac{\dot{p_0}}{p_0}=\dot{u_0}\right|$$

・ロト ・母 ・ ・ キャ ・ キャ ・ ちゃ くりゃ

- Amari tells us that each probability simplex Δ supports κ -statistical manifolds, one for each $\kappa \in [0, 1]$.
- Each κ has peculiar algebraic features.
- All *κ*-manifolds are possibly deduced from the same template, i.e. the exponential model (work in progress).
- There are domains of application of the algebro-geometric picture not yet explored:
 - Statistical Physics,
 - Optimization,
 - Differential equations for probability densities,
 - Approximation of statistical models.

THANKS