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An example in Statistical Physics

o Q is a finite sample space with N points.
e U: Q — Rxp, U(x) =0 for some x € Q, U # 0.

Gibbs model . ..

Z(B)

p(x; B) = Z(B) = Ze_ﬁu(x), 6> 0.

xEQ

@ U is the energy, (3 is the inverse temperature, Z is the partition
function, e =PV is the Boltzmann factor.

...and its limits

As 3 — o0,
Z(8) — #{x: U(x) =0}, e BY)  (x: U(x) =0),

l.e. the weak limit of p(3) as 5 — oo is the uniform distribution on the
states x € Q with zero energy.

v




Canonical variable, extended model

e Changing U — V = (maxU — U) and 8 — 0 = —3 € R we get the
same statistical model presented as an exponential model

p(x; 0) o V)

@ There are weak limits as # — do0, the limits being the uniform
distributions on the set of states that minimize or maximize the U
function. Such limits are important in a number of applications, e.g.
Statistical Physics or simulation methods in optimization. Therefore,
the notion of closed or extended exponential model deserve much
attention.

@ A generic exponential model based on the canonical statistics V' can
be written

plx;6) = "V~ ()
where the canonical statistics itself is given up to an affine
transformation.

@ If a canonical variable is integer valued, we obtain a toric model for
the likelihood py/p.



Information geometry

@ The exponential model
p(x;0) = &?VI7HO) . p(x)

has a number of interesting features such as the strict convexity of
the cumulant function v or the relation 1)'(6) = Ey [V] which do not
depend on the parametrization, but are related with the idea of
representing the interior of the probability simplex with an affine
space.

@ In non-parametric Information Geometry the model is presented with
respect to a reference density and the canonical variable is centered,

p(x; 0) = ?I=¥0u) . p(x; 0),
with u = 0(V — Ep, [V]) and ¢(0u) = Ep, [e"].
@ This idea extends to the representation of a generic strictly positive
density g in the form
q=e""" . p(x)
where u is uniquely determined by the reference density p and by the
condition E, [u] = 0.



|G is a family of manifolds on A

e From Amari work, we know that there are many (differential)
geometries on the simplex of probability densities of a given sample
space (2, F, ).

o Let M- denote the set of all positive densities of (2, F, u). For each
p € M- the mapping s, : ¢ — u is a chart. The atlas (sp) defines
the e-manifold

@ The atlas of the charts g — q/p — 1 defines the m-manifold.

@ According Amari, in between the e-manifold and the m-manifold there
are other differential structures associated with the charts

G

However, A\™1((g/p)* — 1) is bounded below by —A~.
@ Here, we discuss the construction of such geometries and their
algebraic counterpart in the form of a generalization of the

exponential case.
@ S. Amari, H. Nagaoka, Methods of information geometry (American Mathematical Society, Providence, RI, 2000), ISBN
0-8218-0531-2, translated from the 1993 Japanese original by Daishi Harada

q—
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r-exponential

G. Kaniadakis, based on arguments from Statistical Physics and Special
Relativity, has defined the x-deformed exponential for each x € R and

-1 <k <1to be
)
exp,. (x) = ex — .
Pr P 0 V14 kK202

Note the special cases

1
22 K .
exp,. (x) = (/{X—i—\/l—i—/ix) , ifk#0,

exp X, if K =0,
and the x-deformed logarithm defined for y > 0 by
yroy "t
f
Ine (y) = 20 ! w70,
Iny, if K =0.

@ G. Kaniadakis, Physica A 296, 405 (2001), G. Kaniadakis, Phisics Letters A 288, 283 (2001);
@ G. Kaniadakis, Physical Review E 66, 056125 1 (2002), G. Kaniadakis, Physical Review E 72, 036108-1 (2005}



Which deformation?

2 Among all possible approxima-

o tions to exp, this particular one

has been selected by Kaniadakis

I because it is the simplest with the
e property

‘exp,.i (x)exp, (—x) =1 ‘

e For k # 0, the indeterminate y = (exp, (x))" and x are related by the
polynomial equation

y2 —2kxy —1=0 (HYP)

@ Therefore, the graph of (exp,,)” is the upper branch of a hyperbola.



r-deformed operations

@ The function exp,, maps R unto R, it is strictly increasing and it is
strictly convex.

@ The function In, maps R~ unto R, is strictly increasing and is strictly
concave.

@ Both the k-deformed exponential and the k-deformed functions exp,,

and In, reduce to the ordinary exp and In functions when x — 0.
K

@ Group operations (R, é) and (R~,®) are defined in such a way that
exp,. is a group isomorphism from (R, +) onto (R>,(§>) and also from

(R, &) onto (Rs, x):

K
exp, (x1 + x2) = exp,, (x1) ® exp,, (x2),

K
eXpy <X1 D X2> = eXp (Xl) EXPy (XQ) :



The algebra of exp,. and In,

@ The binary operations é and (§> are defined by

K
x1 ® xo = Iny; (exp,, (x1) exp,, (x2))

y1 ® y2 = exp, (Ing (y1) + Ink (y2))

K K
@ The operation ® is defined on positive reals. However, ® can be
extended by continuity to non-negative reals in such a way that

0By=y®0=0E0=0

@ We want to derive defining relations for the x-deformed operations in
the form of a polynomial. This is obtained by repeated use of the
HYP. Symbolic computations have been done with CoCoA.

@ CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, Available at
http://cocoa.dima.unige.it.



e We want to find x such that exp, (x) = exp,. (x1) exp, (x2).
e From y; = (exp, (x1))", y2 = (exp, (x2))" and

(exp, (x))" = (expy; (x1) exp,; (%2))" = y1y2,

we have the ideal generated by
Eql := y[1]1"2-2kx[1]y[1]-1;
Eq2 := y[2]"2-2kx[2]y[2]-1;
Eq3 := (y[1ly[2])~2-2kxy[1ly[2]-1;
@ Elimination of yj, y» gives the polynomial equation

x* = 226285 + x4 +4) X2+ (xf — x22)2 =0,

whose solution is

X1 éxz = x11/1 + K2x8 + x21/1 + K2xZ|.

@ Kaniadakis has a relativistic interpretation.




K
@ We want to find z = (yl é y2> . Let y1 = (exp,, (x1))",

y2 = (exp,; (x2))", and z = (exp,; (x1 + x2))".
@ Equation HYP gives three quadratic equations in the indeterminates
X1, X2, Y1, V2, Z, k. Elimination of xq, xo gives the polynomial equation

y1y22> + (1 = y1y2)(y1 + y2)z — y1y2 = 0|

@ It is remarkable that this equation does not depend on k. An explicit
solution is obtained by solving the quadratic equation.

@ A possibly more suggestive solution is obtained as follows. First, we
reduce to the monic equation

1
2%+ <1—) (yi+y)z—1=0
yiy2

and denote the two solutions by z > 0 and —1/z. Therefore,

= (r5) 2 5)
Z——=\n——\)+\|y2——
4 y1 Y2




Box-Cox, Amari, generalised entropies

@ The k-logarithm is strictly related to a family of transformation which
is well known in Statistics under the name of Box-Cox transformation
or power transform. For data vector y1,...,y, in which each y; > 0,
the power transform is:

A
o Y1

@ The same transformation, applied to probability densities, appears in
Amari as a device to construct Statistical Manifolds.

@ Tsallis ha applied the transformation in non-extensive
thermodynamics.

o Naudts discusses the applications of In, and exp,. in Information

Theory and Statistical Physics.

Kaniadakis’s x-deformed logarithm x = In, (y) has the extra

feature of the symmetry induced by the term —y—".

G.E.P. Box, D.R. Cox, J. Roy. Statist. Soc. Ser. B 26, 211 (1964), ISSN 0035-9246.

Monograph: S. Amari, H. Nagaoka, Methods of information geometry (American Mathematical Society, Providence, RI,
2000), ISBN 0-8218-0531-2, translated from the 1993 Japanese original by Daishi Harada.

First paper: C. Tsallis, J. Statist. Phys. 52(1-2), 479 (1988), ISSN 0022-4715.

J. Naudts, Phys. A 316(1-4), 323 (2002), ISSN 0378-4371; J. Naudts, JIPAM. J. Inequal. Pure Appl. Math. 5(4),
Article 102, 15 pp. (electronic) (2004), ISSN 1443-5756.



k-Deformed Gibbs model |

@ On a finite state space 2, equipped with the energy function
U: Q — R>, we want to discuss the x-deformation of the standard
Gibbs model. There are two options, related with two different
presentation of the normalizing constant (partition function).

@ The first option is to consider the statistical model

o _ &P, (0U(x))
p(x;0) = —Z00)

o, (HU(x) & i (ﬁ))

o The In.-model is, with ©,.(6) = In, Z(6),

In p(x; 0) = OU(x)\/ 1 + K2(1hs(0))? — ©(0)1/1 + K262 U(x)?



rk-Deformed Gibbs model Il

@ The second option is to define the model as

p(x; 0) = exp,, (OU(x) — 1 (0))
= exp,, (AU(x)) é exp,. (—x(9))

where 1,(6) is the unique solution of the equation

S exp, (BU(X) — .(6)) = L.

x€N
.

@ The derivative with respect to 0 of ¢ is given by

e u-we ],
V1412 (6U — 4 (6))

where Ey [V] =", V(x)p(x;6).



Discussion

@ The two one-parameter statistical models are different unless k = 0.
This fact marks an important difference between the theory of
ordinary exponential models and x-deformed exponential models.

@ From the geometrical point of view, the second approach has the
advantage of a the linear character of the model describing the
In,-probability.

Let V = Span (1, U) and V! the orthogonal space, i.e. v € V* if, and
only if, >> v(x) =0and ), v(x)U(x) = 0. Therefore,

Z v(x)Ing (p(x;0)) =0, ve vt

x€Q

@ Viceversa, if a strictly positive probability density function p is such

that In, p is orthogonal to V*, then p belongs to the k-Gibbs model
for some 6.



K-toric

e For each v € V4,
S I (00 = 3T v () Ine ().
x: v(x)>0 x: v(x)<0

@ A (physical) interpretation: a positive density p belongs to the
k-Gibbs model if, and only if,

En [Ins (p)] = Ep, [Ink (p)]

for each couple of densities ry, r» such that rnrn» = 0 and
El’l [U] = Erz [U]

If v € VI happens to be integer valued, using the x-algebra and the

n times

—
K K "
notation x ® - -- ® x= x®", we can write

K K

®X: v(x)>0 p(X)®V+(X) - ®x: v(x)<0 p(X)®V_(X),




Example 1/2

1 U Vi Vo V3
11 0 1 0 1
211 0 -1 O 1
311 1 0 0 -4
411 2 0 1 1
511 2 0 -1 1
@ The binomial equations are
p(1) = p(2)
p(4) = p(5)

K K K 54
p(1) ® p(2) ® p(4) ® p(5) = p(3)
@ A non strictly positive density that is a solution is either
p(1) = p(2) = p(3) =0, p(4) = p(5) = 1/2, or p(1) = p(2) = 1/2,
p(3) = p(4) = p(5) = 0. These two solutions are the uniform
distributions on the sets of values that respectively maximize or
minimize the energy function.



Example 2/2

@ A further algebraic presentation is available. Consider the new
parameters

Co = exp (—¥x(0)), G =exp,(0),
so that
p(x; 0) = exp,. (0U(x)) & exp, (~1hu(0)).
L Lol

The probabilities are k-monomials in the parameters (g, (1, e.g.:

p(1) = p(2) = Co

PB3) =05 G

p(4) = p(5) = (o & ;7

@ Note that the parameter (y is required to be strictly positive, while
the parameter (7 could be zero, giving rise the uniform distribution on
{1,2} = {x: U(x) = 0}. The other limit solution is not obtained.



If & # 0 the last equation of the system

p(1) = p(2)
p(4) = p(5)

p(1) @ p(2) © p(4) © p(5) = p(3)**

can be written as

(e

Is Kk — 0 a proper “approximation” of the regular case k = 07




r-Divergence

@ To construct an atlas, we define each chart as associated to a strictly
positive probability densities. Such a density p is a reference for each
other density g via the notion of likelihood g/p.

Definition

Fix a k €]0, 1[. Given positive density functions g and p such that
(%) , <§> € L%(q), ie. (%) ) (g) € L'(q), the s-divergence is

oiom e n ()] = (5 ()]

@ The strict convexity of — In,; implies

Du(alle) = € |~ (2)] = =i (4 |2]) =m0

with equality if, and only if g = p.




exp,. densities

o= focsn (3) () 2w
q
p

:{qe/\/l>: ,SELl(p)}z {qu>:§€L1(P)}

e The divergence D, (p||q) is defined on &,.

o If g € &, then g is almost surely positive and we can write it in the
form g = exp,. (v) - p, with

v =In, (Z) - M e LY5(p)



r-exponential chart

p-chart g — u

The expected value at p of v = In, (%) is Ep [In,~€ (%)} = —D,(p|lq) so
that we can write every g € &, as

q = exp, (u— Dx(pllq)) - p

where v is a uniquely defined element of the set of p-centered
1/k-integrable random variables Lé/n(p).

| A\,

p-patch u+— g

1

Vice versa, given u € L§(p), the real function ¥ — E, [exp, (v — )] is
continuous and strictly decreasing from +oco to 0, therefore there exists a
unique 1), p(u) such that

q=exp, (u—ep(t)) p€& M

A\




Change of chart

Assume now we want to change of chart, that is we want to change the
reference density from p; to p> to represent a g that belongs to both &,
and &,,. The formal application of the chart and the patch formulae gives

o () (2)
= 0. (expy (0 — (1)) 2 ) ~ Ep -]
— (v = e (t1)) & I (%) —Epl]

o Question: Is the set of u's such that exp,, (u — ¥, p, ) - p1 belongs to
£, an open set of L/ (p)?

@ Problem: compute the Fréchet derivative of the change of coordinate
@ Problem: compute the connections.



Tangent vectors

o Let py, 0 €]0,1], be a curve in &,

Py = exp,; (ug — Vr,p(up)) - p.
@ In the chart at p the velocity vector is given by

g € Ly (p) = Trp

@ Formal computation gives

Iljz = (1+ K% (up — Pr,p(u9)*) ™/ (tip — Duyos p(1in))

so that




Conclusion

@ Amari tells us that each probability simplex A supports x-statistical
manifolds, one for each « € [0, 1].

@ Each k has peculiar algebraic features.

@ All k-manifolds are possibly deduced from the same template, i.e. the
exponential model (work in progress).

@ There are domains of application of the algebro-geometric picture not
yet explored:

Statistical Physics,

Optimization,

Differential equations for probability densities,

Approximation of statistical models.

THANKS
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