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Sets of densities

Definition

(Ω, µ) is a generic probability space, M1 is the set of real random
variables f such that

∫
f dµ = 1, M≥ the convex set of probability

densities, M> the convex set of strictly positive probability densities:

M> ⊂M≥ ⊂M1

We define the (differential) geometry of these spaces in a way which
is meant to be a non-parametric generalization of the theory
presented by Amari and Nagaoka (Jap. 1993, Eng. 2000).

We try to avoid the use of explicit parametrisation of the statistical
models and therefore we use a parameter free presentation of
differential geometry.

We construct a manifold modelled on an Orlicz space. In the N-state
space case, it is a subspace of dimension N − 1 of the ordinary
euclidean space
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Vector bundles

The convex sets M1 and M> are endowed with a structure of affine
manifold as follows:

At each f ∈M1 we associate the linear fiber ∗T (f ) which is a vector
space of random variables whose expected value at p is zero. In
general, it is an Orlicz space of L log L-type; in the finite state space
case, it is just the vector space of all random variables with zero
expectation at p.

At each p ∈M> we associate the fiber T (f ), which is an Orlicz
space of exponential type; in the finite state space case, it is just the
vector space of all random variables with zero expectation at p.

T (p) is the dual space of ∗T (p). The theory exploits the duality
scheme:

T (p) = (∗T (p))? ⊂ L2
0(p) ⊂ ∗T (p)
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e-charts

Definition

For each p ∈M>, consider the chart sp defined on M> by

q 7→ sp(q) = log

(
q

p

)
+ D(p‖q) = log

(
q

p

)
− Ep

[
log

(
q

p

)]
Theorem

The chart is defined for all q = eu−Kp(u) · p such that u belongs to the
interior Sp of the proper domain of Kp : u 7→ log (Ep [eu]) as a convex
mapping from T (p) to R≥0 ∪ {+∞}. This domain is called maximal
exponential model at p, and it is denoted by E(p). The atlas (sp,Sp),
p ∈M> defines a manifold on M>, called exponential manifold, briefly
e-manifold. Its tangent bundle is T (p), p ∈M>.

Remark One could replace exp, log with another couple of functions
of interest, e.g. expδ, lnδ. But see the following remark.
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m-charts

Definition

For each p ∈M>, consider a second type of chart on M1:

lp : f → lp(f ) =
f

p
− 1

Theorem

The chart is defined for all f ∈M1 such that f /p − 1 belongs to ∗T (p).
The atlas (lp,Lp), p ∈M> defines a manifold on M1, called mixture
manifold, briefly m-manifold. Its tangent bundle is ∗T (p), p ∈M>.

Remark Other types of mappings are used in the literature to derive
the Information Manifold. E.g. Amari uses q 7→ √q ∈ L2(µ).
However, such a map does not define charts on M>, nor on
M≥. In fact, the set L2

≥(µ) has empty interior.
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Connections

At each point p ∈M> of the statistical manifold there is one
reference system attached given by the e-chart and the m-chart at p.

A change of reference system from p1 to p2 is just the change of
reference measure.

The change-of-reference formulæ are affine functions.

The change-of-reference formulæ induce on the tangent spaces the
affine connections:

m-connection ∗T (p) 3 v 7→ p

q
v ∈ ∗T (q)

e-connection T (p) 3 u 7→ u − Eq [u] ∈ T (q)

The two connections are adjoint to each other.
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Cumulant functional

Theorem

The divergence q 7→ −D(p‖q) is represented in the frame at p by
Kp(u) = log Ep [eu], where q = eu−Kp(u) · p.

Kp : T (p)→ R≥ ∪ {+∞} is convex, infinitely Gâteaux-differentiable
on the interior of the proper domain, analytic on the unit ball of T (p).

For all v , v1 and v2 in T (p) the first two derivatives are:

D Kp (u) v = Eq [v ]

D2 Kp (u) (v1, v2) = Covq (v1, v2)

The divergence q 7→ D(q‖p) is represented in the frame at p by the
convex conjugate Hp : ∗T (p)→ R of Kp.
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Derivative

Given a one dimensional statistical model pθ ∈M>, θ ∈ I , I open
interval, 0 ∈ I , the local representation in the e-manifold is uθ with

pθ = euθ−Kp(uθ) · p.

The local representation in the m-manifold is

lθ =
pθ
p
− 1

To compute the velocity along a one-parameter statistical model in
the sp chart we use u̇θ.

To compute the velocity along a one-parameter statistical model in
the lp chart we use ṗθ/p.
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Relation between the two presentation

We get in the first case

ṗθ = pθ(u̇θ − Eθ [u̇θ])

so that
ṗθ
pθ

= u̇θ − Eθ [u̇θ] and u̇θ =
ṗθ
pθ
− Ep

[
ṗθ
pθ

]
In the second case we get

l̇θ =
ṗθ
p

Example

For pθ(x) = (2π)−
1
2 e−

1
2

(x−θ)2
, in the coordinates at p0, we have

pθ(x)/p0(x) = eθx− 1
2
θ2

, therefore uθ(x) = θx , u̇θ(x) = x ,

ṗθ(x)/p0(x) = (x − θ)eθx− 1
2
θ2

. Note: ṗθ(x)/pθ(x) = x − θ.

Giovanni Pistone (Politecnico di Torino) MEM on GS Thursday 17th July, 2008 9 / 26



Moving frame

Both in the e-manifold and the m-manifold there is one chart
centered at each density. A chart of this special type will be called a
frame. The two representations u̇θ and l̇θ are equal at θ = 0 and are
transported to the same random variable at θ:

ṗθ
pθ

= u̇θ − Eθ [u̇θ] = l̇θ
p

pθ
.

Theorem

The random variable ṗθ/pθ is the Fisher score at θ of the one-parameter
model pθ. The Fisher information at θ is the L2-norm of the score i.e. the
velocity vector of the statistical model in the moving frame centered at θ.
Moreover,

Eθ

[(
ṗθ
pθ

)2
]

= Eθ

[
(u̇θ − Eθ [u̇θ])

(
l̇θ

p

pθ

)]
= Ep

[
u̇θ l̇θ

]
.
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Exponential models

The Maximal Exponential Model E(p) =
{

q = eu−Kp(u) · p : u ∈ Sp

}
is the biggest possible statistical model in exponential form. Each
smaller model has to be considered a sub-manifold of E(p).

Definition

Given a linear subspace V of T (p), the exponential model on V is

EV (p) =
{

q = eu−Kp(u) · p : u ∈ V ∩ Sp

}
Example

When V = Span (ui , . . . , un), the exponential model is

q(x ; θ) = e
Pn

i=1 θi ui (x)−Kp(
Pn

i=1 θi ui )p(x),
n∑

i=1

θi ui ∈ Sp
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Exponential models in implicit form

Let V⊥ ⊂ ∗T (p) be the orthogonal space of V . Then a positive
density q ∈M> belongs to the exponential model on V if, and only

if, Ep

[
log
(

q
p

)
k
]

= 0, for all k ∈ V⊥.

Assume k ∈ V⊥ is of the form k = lp(r), i.e. k = r
p − 1. Then the

orthogonality means Er [u] = 0 for u ∈ V and implies

Ep

[
log

(
q

p

)(
r

p
− 1

)]
= Er

[
log

(
q

p

)]
+ D(p‖q) = 0

or

Er

[
log

(
p

q

)]
= D(p‖q), Er [u] = 0, u ∈ V

In the finite state space case, with k integer-valued, the implicit form
produces binomial invariants. (Toric case in Algebraic Statistics)
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Optimization

As an example, let us show how a classical optimization problem is
spelled out within our formalism.

Given a bounded real function F on Ω, we assume that it reaches its
maximum on a measurable set Ωmax ⊂ Ω. The mapping

F̃ :M> 3 q 7→ Eq [F ]

is to be considered a regularization or relaxation of the original
function F .

If F is not constant, i.e. Ω 6= Ωmax, we have F̃ (q) = Eq [F ] < max F ,
for all q ∈M>. However, if ν is a probability measure such that
ν(Ωmax) = 1 we have Eν [F ] = max F .

This remark has suggested to look for max F by finding a suitable
maximizing sequence qn ∈M> for F̃ .
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Chart representation of the optimization problem

The expectation of F is an affine function in the m-chart,

F̃ (q) = Ep

[
F

(
q

p
− 1

)]
+ Ep [F ] = Ep [Flp(q)] + Ep [F ]

Given any reference probability p, we can represent each positive
density q in the maximal exponential model at p as q = eu−Kp(u) · p.
In the e-chart the expectation of F is a function of u, Φ(u) = Eq [F ].

The equation for the derivative of the cumulant function Kp gives

Φ(u) = Eq [F ]

= Eq [(F − Ep [F ])] + Ep [F ]

= D Kp (u) (F − Ep [F ]) + Ep [F ]
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Steepest ascent

The derivative of Φ in the direction v is the Hessian of Kp applied to
(F − Ep [F ])⊗ v and from the formula of the Hessian follows

D Φ (u) v = Covq (v ,F ) .

Theorem

The direction of steepest ascent of the expectation Eq [F ] at q is

F − Eq [F ] ∈ T (q).

The one dimensional statistical model of steepest ascent is the
exponential BG model

p(θ) = eθF/Λ(θ)
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Vector field

Definition

A vector field F of the the m-bundle ∗T (p), p ∈M>, is a mapping which
is defined on some domain D ⊂M> and it is a section of the m-bundle,
that is F (p) ∈ ∗T (p), for all p ∈ D ⊂M>.

Example

1 For a given u ∈ Tp and all q ∈ E(p)

F : q 7→ u − Eq [u]

2 For all strictly positive density q ∈M>(R) ∩ C 1(R)

F : q 7→ −q′/q

3 For all strictly positive q ∈M>(R) ∩ C 2(R)

F : q 7→ q′′/q
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Differential equations

Definition

A one-parameter statistical model in M>, p(θ), θ ∈ I , solves the
differential equation associated to the vector field F if
p(θ) = eu(θ)−Kp(u(θ)) · p and

1 the curve θ 7→ u(θ) ∈ T (p) is continuous in L2;

2 the curve θ 7→ p(θ)/p − 1 ∈ ∗T (p) is continuously differentiable;

3 for all θ ∈ I it holds
ṗ(θ)

p(θ)
= F (p(θ))

Theorem

Assume F is locally maximal monotone. Then the equation
ṗ/p + F (p) = 0 has a solution which is unique.
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Example

1 The exponential model pθ = eθF/Λ(θ) is a solution of the equation
ṗθ
pθ

= F − Epθ
[F ].

2 The second example follows by considering Ω = R and taking for
domain the class of C 2 positive densities q such that
F (q) = −q′/q ∈ ∗T (f ). We can therefore consider the differential
equation ṗθ/pθ = −F (pθ).
Given any f in the domain, the statistical model pθ(x) = f (x − θ) is
such that the score is

ṗθ(x)

pθ(x)
= − f ′(x − θ)

p(f − θ)
= F (p(· − θ))(x)

and therefore is a solution of the differential equation. The classical
Pearson classes of distributions are related to this equation.

3 It is the simplest case of the equations studied by F. Otto in
Felix Otto. The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential
Equations, 26(1-2):101–174, 2001. ISSN 0360-5302. URL ../publications/Riemann.ps.
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Malliavin Calculus aka Stochastic Analysis

Let ν(dx) = (2π)−
1
2 e−

1
2

x2
dx . The adjoint of the derivative operator d

with respect to the scalar product of L2(ν) is

〈dφ, ψ〉ν =

∫
φ′(x)ψ(x)ν(dx)

=

∫
φ(x)

(
−ψ′(x) + xψ(x)

)
ν(dx)

= 〈φ, δψ〉ν

The operator δψ(x) = ψ′(x) + xψ(x) is called divergence. In finite
dimension i.e. for random variables defined on Rn, the calculus of
divergence is useful for the computation of densities of non-linear
functions of Gaussian random variables.

It has been discovered in the 80’s that there exist an extension of δ to
a class of stochastic processes whose value is the Wiener - Ito -
Stratonovich - Skorohod - Nualart-Pardoux -· · · stochastic integral.
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Abstract Wiener Space

Definition

Abstract Wiener Space (Ω,F ,P) is a probability space, H a Gaussian
sub-space of L2(Ω,F ,P) = L2 such that σ(H) = F , H a separable Hilbert
space, δ : H → H a mapping such that 〈δ(h1), δ(h2)〉H = 〈h1, h2〉H . The
mapping δ is a linear and surjective isometry of H unto H called
divergence or abstract Wiener integral.

The exponential manifold does not use at all the structure of the
underlying sample space. However, by using features of the
underlying space, we give rise to a much richer theory.

In the case of a finite state space consisting of a finite set of points of
an affine space, random variables and density functions can be
represente as polynomials and statistical models as algebraic varieties.

Maximal exponential models with Gaussian reference measure have
special algebraic and analytical features that can be discusses in the
framework of Malliavin calculus.
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Less abstract Wiener spaces

In the two basic examples, H is the space of trajectories, see e.g.
Nualart [2006].

Example

Let X1,X2, . . . be a Gaussian White Noise (GWN) on the canonical space
(RN,F , ν⊗N), ν(dx) = (2π)−1/2 exp

(
−x2/2

)
dx . The Hilbert space

H = `2 is the domain of a divergence as the mapping δ : a 7→
∑∞

i=1 a(i)Xi ,
a ∈ H is a linear isometry between H and the closure H of
Span (Xi : i = 1, 2, . . . ).

Example

Let µ be the Wiener probability measure on the space of continuous
trajectories (C [0, 1],B), Wt , t ∈ [0, 1], the canonical process. The
divergence is defined on H = L2[0, 1] by the Wiener integral

h :
∫ 1

0 h(s)dWs , because
〈∫ 1

0 h1(s)dWs ,
∫ 1

0 h2(s)dWs

〉
H

= 〈h1, h2〉H .
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Stocastic Analysis: derivative

Definition

The derivative operator ∇ is defined as a closed operator whose domain is
the Gauss-Sobolev space D2

1. For F ∈ Poly(δ), F = f (δ(hi ) : i = 1, . . . , n),

∇F =
n∑

i=1

∂

∂xi
f (δ(hi ) : i = 1, . . . , n)hi

The ∇ of such an F is a polynomial stochastic process.

The linear operator ∇ is a derivation of the R-algebra Poly(δ):

∇(FG ) = G∇F + F∇G

Moreover, ∇ can be considered a gradient, because for
F = f (δ(ei ) : i = 1, . . . , n) and h ∈ H, we have

d

dt
f (δ(ei ) + t 〈ei , h〉H)

∣∣∣∣
t=0

= 〈∇F , h〉H
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Stochastic Analysis: divergence

Example

Let F be a monomial with respect to an orthonormal sequence
e1, . . . , en ∈ H, F = δ(e1)α1 · · · δ(en)αn . The set of such random variables
is a linear basis of Poly(δ). It follows that

〈F , δ(h)〉L2 = 〈∇F , h〉L2⊗H

Therefore, the value at h of the adjoint of ∇ is ∇∗(h) = δ(h).

Definition

The adjoint of ∇ is defined on Poly(δ)⊗R H and for
F = δ(e1)β1 · · · δ(en)βn and G = Fh, one has

∇∗G = −〈∇F , h〉H + δ(h)F

As ∇∗ extends δ, it is denoted by δ = ∇∗ and it is called the divergence.
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Exponential models in the AWS (In progress.)

In the context of an abstract Wiener space (Ω,F ,P,H, δ), we want
to discuss the densities in E(1), i.e. the densities of the form
F = exp (U − K (U)), E (U) = 0.

Because of the density in L2 of the polynomial random variables, it
has been suggested in various context the approximation of general
exponential models with polynomial exponential models. Moreover,
polynomial models could be of interest by themselves.

We consider two cases: polynomial form for U or polynomial form for
F .

In the first case the main issue is the exponential integrability of U.

In the second case the main issue is the strict positivity of the
polynomial random variable.
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Example

A random variable u of the AWS belongs to the Orlicz space T (1)
(constant reference measure) if, and only if, E (u) = 0 and the
Laplace transform E (etu) is finite on an open interval containing 0.

Assume that the distribution of u has a density pu wrt dx . We

can always write pu(x) = p̃u(u)
(

(2π)−
1
2 e−

1
2

x2
)

.

E
(
etu
)

=

∫
etx p̃u(u)

(
(2π)−

1
2 e−

1
2

x2
)

dx

= e
1
2

t2
∫

(2π)−
1
2 e−

1
2

(x−t)2
p̃u(x)dx

= e
1
2

t2
∫

(2π)−
1
2 e−

1
2

x2
p̃u(x + t)dx

The Malliavin calculus provides a number of conditions that imply the
existence of a density pu. E.g. ∇u

‖∇u‖2
H

is in the domain of the

divergence.
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Example

The exponential model whose canonical statistics are
δ(e1), δ(e2), δ(e1)δ(e2) has the form

Fθ1,θ2,θ12 = exp (θ1δ(e1) + θ2δ(e2) + θ12δ(e1)δ(e2)− ψ(θ1, θ2, θ12))

ψ(θ1, θ2, θ12) =
1

2

θ2
1 + θ2

2 + 2θ1θ2θ12

1− θ2
12

− 1

2
log
(
1− θ2

12

)
, θ2

12 < 1

The expectation parameters are rational functions:

η1 =
θ1 + θ2θ12

1− θ2
12

, η2 =
θ2 + θ1θ12

1− θ2
12

η12 =
θ1θ2(1 + θ2

12) + θ12(1− θ2
12)(

1− θ2
12

)2

The orthogonal space of the model space is generated by all square-free
monomials on the basis e1, e2, . . . other then those in the model.
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