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Abstract 1

The theory of exponential manifolds modeled on Orlicz spaces , based on my joint

work with C. Sempi, M.-P. Rogantin, P. Gibilisco (1995-1999), has been improved in the
basic construction in the PhD thesis of A. Cena (2002). He also made some

advancement in the study of the related Amari connections.
■ G. Pistone and C. Sempi. An infinite-dimensional geometric structure on the space of

all the probability measures equivalent to a given one. Ann. Statist.,
23(5):1543–1561, October 1995;

■ G. Pistone and M. P. Rogantin. The exponential statistical manifold: mean

parameters, orthogonality and space transformations. Bernoulli, 5(4):721–760,
August 1999;

■ P. Gibilisco and G. Pistone. Connections on non-parametric statistical manifolds by

Orlicz space geometry. Infin. Dimens. Anal. Quantum Probab. Relat. Top.,
1(2):325–347, 1998;

■ A. Cena. Geometric structures on the non-parametric statistical manifold. PhD thesis,

Dottorato in Matematica, Università di Milano, 2002.
The first part of the talk will review this basic improved construction and review the

particular case of Wiener spaces and related joint work with P. Gibilisco and D. Imparato.
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Abstract 2

The approximation of non parametric models with parametric
ones recently raised some interest, especially with reference to
applications to Finance Mathematics.

However, some of the proposed approximation methods do not
converge in the sense on the manifold topology, which is a very
strong topology. The approximation with finite state space
appears to be more promising in this sense.



2nd Igaia Dec 12-16 Tokyo Japan Giovanni Pistone: Advances in the geometry of non-parametric exponential models - p. 4/35

Abstract 3

Information geometry of finite state space models has special algebraic features that

where first discussed by Pistone, Riccomagno and Wynn (2001) . The key-word is the
notion of toric ideal firstly used in Statistics by P. Diaconis and B. Sturmfels (1998). An

important feature of this theory is associated with the use of Symbolic Computational
Software such as Singular or CoCoA. On the other side, the use of algebraic geometry

ideas in continuous state space is just at the beginning, as in Pistone & Wynn "Finitely
generated cumulants" (1999). This last and main part of the talk will discuss the

connections between Information Geometry and Algebraic Geometry.
■ P. Diaconis and B. Sturmfels. Algebraic algorithms for sampling from conditional

distributions. Ann. Statist., 26(1):363–397, 1998 (preprint 1993!)

■ G. Pistone, E. Riccomagno, and H. P. Wynn. Algebraic Statistics: Computational
Commutative Algebra in Statistics. Chapman&Hall, 2001.

■ L. Patcher and B. Sturmfels, editors. Algebraic Statistics for Computational Biology.

Cambridge University Press, 2005.

■ G. Pistone and H. P. Wynn. Generalised confounding with Gröbner bases.
Biometrika, 83(3):653–666, Mar. 1996.
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Outline

Exponential statistical model : review and update of the basic
construction. The main results relates with the functional
analytic properties of the main objects of the theory.

Approximation : suggestion to approximate non parametric
problem with finite state space models.

Finite state space : finite state space models and special models
such as Gaussian models have special algebraic features.
This features can be dealt with the use of modern
constructive commutative algebra.

■ D. A. Cox, J. B. Little, and D. O’Shea. Ideal, Varieties, and
Algorithms. Springer-Verlag, New York, 2nd edition, 1997.
1st ed. 1992;

■ M. Kreuzer and L. Robbiano. Computational Commutative
Algebra 1. Springer, Berlin-Heidelberg, 2000;

■ CoCoATeam. CoCoA: a system for doing Computations in
Commutative Algebra. Available at
http://cocoa.dima.unige.it, no date.
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IG as a Banach manifold

Our construction of the exponential statistical manifold wants to be a

functional framework for the development of IG in the sense of
professor Amari seminal work, e.g.
■ S. Amari. Differential-geometrical methods in statistics, volume 28

of Lecture Notes in Statistics. Springer-Verlag, New York, 1985

■ S. Amari and H. Nagaoka. Methods of information geometry.

American Mathematical Society, Providence, RI, 2000. Translated
from the 1993 Japanese original by Daishi Harada

Given a probability space (X,X , µ), we will denote by M the set of all
densities which are positive µ-a.s. M is thought to be the maximal

regular statistical model. We want to give to this maximal model a
manifold structure in such a way that each specific statistical model

could be considered as a submanifold of M.
The model space for the manifold are locally at each p ∈ M the Orlicz

space of centered random variable, see e.g. M. M. Rao and Z. D.
Ren. Applications of Orlicz spaces, volume 250 of Monographs and

Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New
York, 2002.
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Orlicz spaces

■ The Jung function Φ(x) = coshx− 1 is used instead of the quivalent and more

commonly used e|x| − |x| − 1.

■ Ψ denotes its conjugate Jung function or the equivalent (1 + y) log(1 + y) − y.

■ A random variable u belongs to the vector space LΦ(p) if for some α > 0

Ep (Φ(αu)) < +∞.

■ The closed unit ball of LΦ(p) consists of all u’s such that Ep (Φ(u)) ≤ 1.

■ The open unit ball B(0, 1) consists of those u’s such that αu is in the closed unit ball
for some α > 1.

■ The Banach space LΦ(p) is not separable, like L∞. In this sense it is an un-natural

choice.

■ However, LΦ(p) is natural for statistics because for each u ∈ LΦ(p) the Laplace
transform of u is well defined at 0 and the one-dimensional exponential model

p(θ) ∝ eθu is well defined.

■ The space LΨ(p) is separable and it is the pre-dual of LΦ(p), with pairing Ep (uv). For
1 < a < +∞, LΦ(p) ⊂ La(p) ⊂ LΨ(p).

■ For a given p ∈ M, we define the moment functional to be Mp(u) = Ep (eu).
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Moment functional

■ Mp(0) = 1; otherwise, for each u 6= 0, Mp(u) > 1.

■ Mp is convex and lower semi-continuous, and its proper domain

dom(Mp) =
n

u ∈ LΦ(p · µ) : Mp(u) <∞
o

is a convex set which contains the open unit ball B(0, 1) ⊂ LΦ(p · µ).

■ Mp is infinitely Gâteaux-differentiable in the interior of its proper domain, the

nth-derivative at u ∈
◦

dom(Mp) in the direction v ∈ LΦ(p) being

dn

dtn
Mp(u+ tv)

˛

˛

˛

˛

t=0

= Ep (vneu) ;

■ Mp is bounded, infinitely Fréchet-differentiable and analytic on the open unit ball
of LΦ(p), the nth-derivative at u ∈ B(0, 1) evaluated in

(v1, . . . , vn) ∈ LΦ(p) × · · · × LΦ(p) is

DnMp(u)(v1, . . . , vn) = Ep (v1 · · · vneu) .

In particular, DMp (0) = Ep (·).
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Cumulant functional

■ For a given p ∈ M and all p-centered u’s in the interior of the proper domain of Mp,

define the cumulant functional as Kp(u) = logMp(u).

■ Kp is infinitely Gâteaux-differentiable.

■ Kp is bounded, infinitely Fréchet-differentiable and analytic on the open unit ball
of LΦ

0 (p).

■ If Vp is the open unit ball in LΦ
0 (p),

ep :

(

Vp → M

u 7→ eu−Kp(u)p

is a local parameterization of M.

■ If ep (Vp) = Up, the corresponding chart is

sp :

8

>

<

>

:

Up → Vp

q 7→ log

„

q

p

«

− Ep

»

log

„

q

p

«–

■ If q = ep(u), then DKp(u)v = Eq (v) and D2Kp(u)vw = Eq (vw)
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Connected component

■ In the theory of statistical models, we associate to each density p a space of

p-centered random variables: scores, estimating functions . . . . It is technically crucial
to discuss how the relevant spaces depend on the variation of the density p.

■ Given p, q ∈ M, the exponential model p(θ) ∝ p1−θqθ, 0 ≤ θ ≤ 1 connects the two

given densities as end points of a curve, sometimes called Hellinger arc. This curve
need not to be continuous for the topology we are going to put on M.

D We say that p, q ∈ M are connected by an open exponential arc if there exist

r ∈ M, u ∈ LΦ
0 (r) and an open interval I that contains 0, and such that p(t) ∝ etu · r,

t ∈ I, is an exponential model containing both p and q

Th Let p and q be densities connected by an open exponential arc. Then the Banach
spaces LΦ(p) and LΦ(q) are equal as vector spaces and their norms are
equivalent .

Th For all q that are connected to p by an open exponential arc, the Orlicz space of

centered random variables at q is LΦ
0 (q) ∼

n

u ∈ LΦ(p) |Ep
“

q

p
u

”

= 0
o

, then it is

equivalent to the orthogonal space of
“

q

p
− 1

”

.
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Exponential manifold

D For every p ∈ M, the maximal exponential model at p is defined to be the family of

densities

E (p) :=



eu−Kp(u)p : u ∈
◦

domKp

ff

⊆ Mµ.

Th The maximal exponential model at p, E(p) is equal to the set of all densities q ∈ M

connected to p by an open exponential arc.

Th The collection of charts {(Up, sp) : p ∈ M} is an affine C∞ atlas on Mµ.

■ The transition maps are

sp2 ◦ ep1 :

8

>

<

>

:

sp1 (Up1 ∩ Up2) → sp2 (Up1 ∩ Up2)

u 7→ u+ log

„

p1

p2

«

− Ep2

»

u+ log

„

p1

p2

«–

■ The derivative of the transition map sp2 ◦ ep1 is

Lφ0 (p1) 3 u 7→ u− Ep2 (u) ∈ Lφ0 (p2)

which is a top-linear isomorphism, because p1 and p2 are connected by an open
exponential arc.
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Divergence

■ As
◦

domKp 3 u↔ eu−Kp(u) · p ∈ E (p), the manifold is actually defined by global
charts .

Th For each p ∈ M, the KL divergence

D ( · ‖ · ) : E (p) × E (p) → R

is of class C∞.

■ Proof:
1. Given the charts (Up1 , sp1) and (Up2 , sp2) of E (p), we consider the local

representative Dp1,p2 = D ◦ (ep1 , ep2) : Vp1 × Vp2 → R.

2.

D (q1‖q2) = DKp1 (u1)·(u1 − sp1 ◦ ep2 (u2))−Kp1 (u1)+Kp2 (u2)−Ep1

»

u2 + log
p2

p1

–

3.

D1Dp1,p2 (u1, u2) · w1 = D
2Kp1 (u1) · (u1 − sp1 ◦ ep2 (u2) , w1)

D2Dp1,p2 (u1, u2) ·w2 = −DKp1 (u1) · (w2 − Ep1 [w2])+DKp2 (u2) ·w2 −Ep1 [w2] .



2nd Igaia Dec 12-16 Tokyo Japan Giovanni Pistone: Advances in the geometry of non-parametric exponential models - p. 13/35

The exponential geometry

The previous theory is intended to capture the essence and to generalize the idea of

curved exponential model as defined by
■ B. Efron. Defining the curvature of a statistical problem (with applications to

second–order efficiency). The Annals of Statististics, 3:1189–1242, 1975. (with
discussion)

■ B. Efron. The geometry of exponential families. Ann. Statist., 6(2):362–376, 1978;

■ A. P. Dawid. Discussion of a paper by Bradley Efron. The Annals of Statistics,

3:1231–1234, 1975

■ A. P. Dawid. Further comments on a paper by Bradley Efron. The Annals of Statistics,
5:1249, 1977

From the work of Professor Amari, we know that there is a second geometry on
probabilities, whose geodesics are mixtures. This structure is a connection on a special

vector bundle of the M-manifold. A related manifold on the set P of normalized random
variables is defined by the charts

q 7→
q

p
− 1

Locally, the q’s have finite divergence D(q|p).
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Mixture manifold 1

■ We enlarge M considering the sets

P≥ =



p ∈ L1 (µ) : p ≥ 0,

Z

pdµ = 1

ff

P =



p ∈ L1 (µ) :

Z

pdµ = 1

ff

.

■ For each p ∈ P≥, we define the sets LΨ
0 (p) and

∗Up =



q ∈ P :
q

p
∈ LΨ (p)

ff

and the map

ηp :

8

<

:

∗Up → LΨ
0 (p)

q 7→
q

p
− 1

with inverse:

LΨ
0 (p) 3 u 7→ (u+ 1) p ∈ ∗Up.

■ The collection of sets {∗Up}p∈P is a covering of P:
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Mixture manifold 2

■ If p ∈ M, then Up ⊂ ∗Up.

■ If p1, p2 ∈ E(p), then ∗Up1 = ∗Up2 .

D For each p ∈ M, we define ∗E (p) ⊂ P as

∗E (p) =



q ∈ P :
q

p
∈ LΨ (p)

ff

Th The set of charts

{(∗Uq, ηq) : q ∈ E (p)}

is an affine C∞-atlas on ∗E (p), so it has the structure of a manifold modeled on the
Banach space LΨ

0 (p).

■ For each pair p1, p2 ∈ E (p) the transition map is

ηp2 ◦ η−1
p1 :

8

<

:

Lψ0 p1 → Lψ0 p2

u 7→ u
p1

p2
+
p1

p2
− 1
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Mixture manifold 3

Th Let p ∈ Mµ be given. For each q ∈ P, the divergence
D (q̃‖p) of the probability density q̃ with respect to p is
definite if and only if q̃ ∈ ∗Up:

D (q̃‖p) = Ep

[

q̃

p
log

(

q̃

p

)]

< ∞ ⇔ q ∈ ∗Up

where q̃ := |q| /
∫

|q| dµ.

Th For each density p ∈ Mµ, the inclusion j : E (p) ↪→ ∗E (p) is
of class C∞.

■ More work is needed to fully clarify the basic structure of the
mixture manifold.

■ For a different construction, including all α-connections, cfr.
Gibilisco & Pistone (1998).
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Exponential models

■ Let V be a closed subspace of Lφ
0 . We call exponential

model based on V

EV (p) =
{

eu−Kp(u) |u ∈ V
}

■ Let
V ⊥ =

{

v ∈ LΨ
0 (p) |Ep (vu) = 0, v ∈ V

}

be the orthogonal space of V . Then

q ∈ EV (p) iff Ep

(

v log
q

p

)

= 0, v ∈ V ⊥

■ Note that V + V ⊥ in not a splitting of the model space Lφ
0 (p).

In fact, the proper notion of statistical model appears to be
different from what is technically termed a sub-manifold,
because there is no orthogonal splitting of subspaces in
LΦ(p). The proper spitting consists of the orthogonal space
of the tangent space of the model in the pre-dual space
LΨ

0 (p).
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Girsanov

■ The Information Geometry of a sample space (X,X , µ) has no relation with any

structure of the sample space itself. This is a limitation of the theory, because it makes
no use of the specific sample space, e.g. Gaussian, Stationary, Bernoulli, Wiener . . .

■ For each q ∈ E(p) let us call Girsanov transformation a measurable mapping

Tq : X → X such that T ∗
q (q · µ) = p · µ. Such transformations, when available, give a

state space representation of statistical models and could inherit the geometry of

the statistical models.

■ An example are the affine function transforming a general multivariate normal to the
multivariate standard distribution.

■ In a Wiener space, the Girsanov density

exp

„Z T

0

b(x(t))dx(t) −
1

2

Z T

0

b2(x(t))dt

«

is an exponential model and is associated with the transformation

x(·) 7→ x(·) −

Z ·

0

b(x(t))dt

cfr. the poster by D. Imparato in this Symposium.
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Approximation and algebra

■ The idea to approximate complex models in the numerical sense, not the asymptotic
sense, has no unique solution, because it depends upon the divergence or topology

we use to compute the approximation error.

■ In applications of Girsanov transformations to Finance Mathematics, it has been
suggested to use Wiener-Hermite expansions of the exponent. This does not apply to

our framework, because there is no general convergence of such expansions in
Lφ(p).

■ Let us assure that there exist an increasing sequence finite partitions ∆n, n ∈ N that

generate the σ-algebra X . For each n, let us consider a vector basis Tn,j of the ring
of ∆n-measurable functions. We assume that all the elements of such a basis are

integer valued.

■ Consider the following approximation scheme:
1. For u ∈ LΦ(p), un = Ep (u|∆n) → u as n→ ∞.

2. Approximate u ∈ LΨ
0 (q) with un − Eq (un).

■ Then, there exist a way to approximate a general M with sub-models which are
essentially defined on a finite state space
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Manifold vs Variety 1

A factorial finite sample space (a design) is a set-product of finite spaces. Using integer

coding of levels, we consider finite sets of the form

F ⊆ D = ×di=1{1, . . . , ni}, for example F =

• • • •

• + + •

• • • •

⊆ D =

• • • •

• • • •

• • • •

If we perform repeated sampling N times, the sample space will be
FN = FN 3 ω = (ω1, . . . , ωN ). If the sampling of a ∈ F is performed with probability pa,

then

p(ω) =

N
Y

i=1

pωi

=
Y

a∈D

pNa(ω)
a

where [Na(ω)]a∈F is the table of counts observed in the sample. In the following we

assume N = 1 and F = Ω.
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Manifold vs Variety 2

If p(a) > 0, a ∈ F , #Ω = n, and the reference probability is uniform, then the chart

formula gives

u(ω) = log

„

p(ω)

1

«

− E0

„

log

„

p(·)

1

««

=
X

a∈F

log p(a)

„

Na(ω) −
1

n

«

Let B0 be the space of centered random variables for the uniform probability (contrasts).
Let V0 be a linear subspace of B0 with a basis T1, . . . , Tk, and let V1 = V ⊥

0 be the

orthogonal space. Then, an exponential model is specified either by

u(ω; θj : j = 1 . . . k) =
X

a∈F

log p(a; θj : j = 1 . . . k)

„

Na(ω) −
1

n

«

=
k

X

j=1

θjTj(ω)

or by

X

ω∈Ω

v(ω)
X

a∈F

log p(a; θ)

„

Na(ω) −
1

n

«

=
X

a∈F

log p(a; θ)
X

ω∈Ω

v(ω)

„

Na(ω) −
1

n

«

= 0 v ∈ V1
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Manifold vs Variety 3

If V1 = span(v1, . . . , vh), h + k = n − 1, and

U =

[

∑

ω∈F

vj(ω)

(

Na(ω) −
1

n

)

]

a∈F
j=1...h

=

[

∑

ω∈F

vj(ω)Na(ω)

]

a∈F
j=1...h

then
∑

a∈F

Uaj log p(a) = log

(

∏

a∈F

p(a)Uaj

)

= 0 j = 1 . . . h

or
∏

a∈F

p(a)Uaj = 1 j = 1 . . . h

or, taking the positive and negative part of U = U+ − U−,

∏

a∈F

p(a)U
+

aj −
∏

a∈F

p(a)U
−

aj = 0 j = 1 . . . h (1)

If U takes values in the integers Z, then (1 is a binomial in the ring
Q[p(a) : a ∈ F ].



2nd Igaia Dec 12-16 Tokyo Japan Giovanni Pistone: Advances in the geometry of non-parametric exponential models - p. 23/35

Exponential vs Algebraic

The explicit form

u(ω; θ) =
X

a∈F

log p(a)

„

Na(ω) −
1

n

«

=
k

X

j=1

θjTj(ω)

leads to the usual writing of the exponential model: here Na(ω) = 1(a = ω), then

log p(ω; θ) =
1

n

X

a∈F

log p(a; θ) +

k
X

j=1

θjTj(ω)

=
k

X

j=1

θjTj(ω) − Ψ(θ1, . . . , θk)

(2)

The implicit form

Y

a∈F

p(a)U
+

aj −
Y

a∈F

p(a)U
−

aj = 0 j = 1 . . . h

leads to a model which is not restricted to positive probabilities. We call this model the
algebraic model of (2) . The positive part of the algebraic model is the exponential
model .
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Extended Exponential

We call extended exponential the exponential model and its limit

points.
The extended exponential model is contained in the algebrai c
model, possibly strictly .
Example
Consider F = {0, 1}2 and the log-linear model
log p(x, y) = θ1x+ θ2y − ψ(θ1, θ2). The matrix U has to be orthogonal

to the column space of Z =

2

6

6

6

6

6

4

1 1 0

1 0 0

1 1 1

1 0 1

3

7

7

7

7

7

5

, then U =

2

6

6

6

6

6

4

1

−1

−1

1

3

7

7

7

7

7

5

and the

algebraic model is

p(0, 0)p(1, 1) − p(0, 1)p(1, 0) = 0

A limit probability can be zero only if either x or y is equal 1. The the
case p(0,+) = 0 is in the algebraic model, but it is not a limit of the

exponential model.
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Commutative Algebra 1

The term Algebra in the title is ambiguous: here we mean
Computational Commutative Algebra or CCA or CoCoA. The subject

is relatively new, being about 20 years old.
What is CCA is explained in many good textbooks and software

manuals:
■ D. A. Cox, J. B. Little, and D. O’Shea. Ideal, Varieties, and

Algorithms. Springer-Verlag, New York, 2nd edition, 1997. 1st ed.
1992;

■ M. Kreuzer and L. Robbiano. Computational Commutative Algebra

1. Springer, Berlin-Heidelberg, 2000;

■ CoCoATeam. CoCoA: a system for doing Computations in
Commutative Algebra. Available at

http://cocoa.dima.unige.it, no date.
The use of CCA as a tool in Statistics has been advocated for the first

time in a pre-print dated 1993, published much later as P. Diaconis
and B. Sturmfels. Algebraic algorithms for sampling from conditional

distributions. Ann. Statist., 26(1):363–397, 1998.
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Commutative Algebra 2

The use of CCA as a tool in statistical design theory (DOE) has
been suggested first in
■ G. Pistone and H. P. Wynn. Generalised confounding with

Gröbner bases. Biometrika, 83(3):653–666, Mar. 1996;
■ E. M. Riccomagno. Algebraic Geometry in Experimental

Design and Related Fields. Phd thesis, Department of
Statistics, University of Warwick, August 1997.

It consists of the description of finite sets of points in an affine
space kd, where k is a computable number field, usually
k = Q, as the set of zeroes of a system of polynomial
equations. Such a system is then processed through a CCA
software to solve typical identifiability problems.
A presentation of this theory is contained in Chapters 1-3 of
■ G. Pistone, E. Riccomagno, and H. P. Wynn. Algebraic

Statistics: Computational Commutative Algebra in Statistics.
Chapman&Hall, 2001,

Reference to relevant literature in the last 5 years is contained
in a recent talk by Maria-Piera Rogantin at the ICODOE 2005
Memphis Conference.

http://staff.polito.it/giovanni.pistone/rogantin.pdf
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Computational Commutative Algebra

CoCoA

is a CCA software developed at the University of Genova by a team

coordinated by Lorenzo Robbiano.
A number of other CCA systems is available:

Maple http://www.maplesoft.com,

Mathematica http://www.wolfram.com,

Singular http://www.singular.uni-kl.de . . . .

We use in particular CoCoA and Maple for general purpose algebraic
computations. In special cases we use

R http://www.r-project.org for computations oriented to
statistics;

4ti2 http://www.4ti2.de for special computations needed for

combinatorial problems.

A CCA software makes exact computations on number fields e.g. Q,

Zp . . . , on rings of polynomials e.g. k[x, y, z], on ideals e.g. I = 〈gj〉,
I + J , IJ , quotient rings e.g. k[x,y,z]

〈x−y,y−z〉
.
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Computing the quotient ring

Given a ring R = k[x1 . . . xd] and an ideal I, the quotient ring
R
I

is, in particular, a k-vector space. We exploit frequently
these facts:
■ The quotient ring R

I
has (at least) one linear basis E of

monomials xα1

1 · · ·xαd

d = xα, α ∈ L.

■ This basis is hierarchical, i.e. if xα ∈ E and xβ divides xα,
then xβ ∈ E. In turn, this is true if its set of logarithms α ∈ L
is the complement of a lattice.

■ A set of generators of such a lattice is computed by the CCA
systems. The key word is Gröbner basis .

■ If the zero-set of the ideal I is finite and has n distinct points,
then #L = n and vice-versa. In this sense, a CCA system is
able to compute the number of distinct solution.
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Toric statistical models

An important class of models is both m-algebraic and e-algebraic.

Let be given k linearly independent and integer-valued random variables, e.g. monomial
functions on a grid of integers.

If B = [xα : α ∈ L] is saturated monomial basis, consider a subset M ⊆ L, 1 ∈M , and
the model exponential model

p(x, ψ) = exp

0

@

X

β∈M

ψβx
β

1

A

=
Y

β∈M

ζx
β

β

where ζβ = expψβ . By dropping ζ0 we can write a monomial parametric model for
the unnormalized probabilities q:

q(x, ψ) =
Y

β∈M0

ζx
β

β

where M0 = M \ 1, ψ = (ψβ : β ∈M0), ζβ ≥ 0, β ∈M0.
Such a model is called (by algebrists) Toric .
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Term ordering

■ We call monomial a polynomial of of the ring k[x], x = x1, . . . , xs,

with one term. If axα is a monomial, we call

xα = xα1

1 · · ·xαs
s

its term , or power-product.

■ Let T s be the set of all terms, possibly identified with the set of
logarithms α ∈ Zs≥0.

■ Note that univariate polynomials are linear combinations of

univariate terms xn, which are ordered by their degree. All
computations for one dimensional polynomials exploit this fact.

■ In more than one dimension it is necessary to introduce the concept

of a term-ordering to order terms.

■ Note that the terms of are naturally pre-ordered according to
simplification of terms. For example x2

1x3 precedes x3
1x

2
3 as the

“fraction” x3
1x

2
3

x2
1
x3

= x1x3 is still in T s and (2, 1) ≤ (3, 2)

component-wise.
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Term ordering: definition

A monomial or term-ordering on the polynomial ring k[x] is a total

and well ordering relation �τ (or τ or �) on T s, that is on the terms
of k[x], such that

1. xα � 1 for all xα with α 6= 0 and

2. for all α, β, γ ∈ Zs+ such that xα � xβ , then xαxγ � xβxγ .
Note that the restriction of a term-ordering to the terms of the type xi
gives an initial ordering of the indeterminates x1, . . . , xs.
■ Any two terms are comparable, that is for any xα, xβ either xα � xβ

or xα = xβ or xβ � xα. This property characterizes total orderings.

■ Given a ring of polynomials and a term ordering, k[x] and τ , each
polynomial is identified with an ordered list of elements of the

number field (the coefficients) and of logarithms (the support).

■ There is no infinite descending chain, that is any subset of terms
contains a minimum element with respect to the ordering. This

property is known as well-ordering.

■ The ordering is compatible with the simplification of terms, that is

for any pair of terms xα and xβ , if xα divides xβ then xβ � xα.
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Term Orderings: Lexicographic

There are two basic term-orderings: lexicographic and
degree-reverse-lexicographic. In CoCoA they are called Lex and DegRevLex. In
Maple lex and tdeg.
The lexicographic term-ordering is defined as the order for which xα �lex xβ

if, with reference to the log representation in the vector α − β, the left-most
nonzero entry is positive . That is

xα � xβ if and only if











α1 > β1

or there exist p ≤ s such that
αi = βi for i = 1, . . . , p − 1 and αp > βp

For example, in Q[x1, x2, x3, x4] the initial ordering is x1 � x2 � x3 � x4.
The square-free terms in increasing lexicographic order are

1, x4, x3, x3x4, x2,

x2x4, x2x3, x2x3x4, x1, x1x4, x1x3, x1x3x4, x1x2,

x1x2x4, x1x2x3, x1x2x3x4

In a lexicographic ordering an indeterminate dominates over the others.
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Gröbner basis

The Hilbert basis theorem states that any ideal is finitely generated,

even if the generating set is not necessarily unique. Some bases are
special .

Definition Let τ be a term-ordering on k[x]. A subset
G = {g1, . . . , gt} of an ideal I is a Gröbner basis of I with respect to

τ if and only if

〈LTτ (g1), . . . ,LTτ (gt)〉 = 〈LTτ (I)〉

where LTτ (I) = {LTτ (f) : f ∈ I}.

In general the following inclusion holds

〈LT(g1), . . . ,LT(gt)〉 ⊆ 〈LT(I)〉

and unless {g1, . . . , gt} is a Gröbner basis, the inclusion may be strict.
Indeed in 〈x3

1 − 2x1x2, x
2
1x2 − 2x2

2 + x1〉 ⊂ Q[x1, x2] with the

tdeg(x1 � x2) ordering we have that x2
1 ∈ 〈LT(I)〉 but

x2
1 /∈ 〈LT(x3

1 − 2x1x2),LT(x2
1x2 − 2x2

2 + x1)〉 = 〈x3
1, x

2
1x2〉.
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Toric vs Algebraic

A more statistical name than “Toric” could be “Generalized
Multinomial” GMN.
The toric model is located between the exponential model
and the algebraic model . Moreover, we can show it is a
special algebraic model.
The elimination in the toric model of the ζ ’s indeterminates
leads to a toric variety ; with properly computed degrees, all
polynomials in generator’s sets are homogeneous binomial.
CoCoA
has special functions Elim and Toric to perform this task.
4ti2 has a special executables called groebner and markov
to perform similar tasks.
Some times the algebraic and the toric coincides. We see that
this is related with the existence of structural zeros compatible
with the model. For a discussion with examples, see
F. Rapallo. Toric statistical models: Parametric and binomial
representations. Technical report, Dipartimento di Matematica.
Università di Genova, 2004. Submitted
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From algebraic to maximal GMN

The procedure from toric to algebraic could be reversed,
producing a maximal GMN such that
■ The elimination or Toric procedures lead to the algebraic

model.
■ All compatible structural zeros are included in the model;
■ All embedded exponential model are parameterized.
This is research work in progress to be published 2006. See
related work in
■ D. Geiger, D. Heckerman, H. King, and C. Meek. Stratified

exponential families: graphical models and model selection.
The Annals of Statistics, 29, 2001

■ D. Geiger, C. Meek, B. Sturmfels On the toric algebra of
graphical models to appear in Annals of Statistics
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