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An example of DAG

We consider the standard historical example:

Carcinogenic genotype U −−−−→ Y Lung cancery x
Smoking X −−−−→ Z tar deposit on lungs

There are 4 binary variables. We use the “harmonic” coding

TRUE 7→1 7→(−1)1 = −1
FALSE7→0 7→(−1)0 = +1

We discuss the issue of parametrization from a polynomial algebra
and geometrical perspective.
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The previous DAG, together with the total ordering

U = X1,X = X2,Z = X3,Y = X4

encodes the factorization via the product formula

p(u, x , z , y) = p1(u)p2|1(x |u)p3|1(z |x)p4|23(y |u, z)

As the sample space is Ω = {+1,−1}4, a generic function is a
square-free polynomial and densities have with respect to the
uniform distribution have a special form:

p1(x1) = 1 + a1x1

p2|1(x2|x1) = 1 + a2x2 + a12x1x2

p3|2(x3|x2) = 1 + a3x3 + a23x2x3

p4|13(x4|x1, x3) = 1 + a4x4 + a14x1x4 + a34x3x4 + a134x1x3x4
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The product is computed with a symbolic computation software. It is a

polynomial whose support is printed in boldface.

p(x1, x2, x3, x4; a1, a2, a12, a3, a23, a4, a14, a34, a124) =

(a1a2a3a4 + a1a12a3a14 + a12a3a4 + a1a23a4 + a2a3a14 + a1a2a34 + a1a12a134 + a12a34 + a2a134)x1x2x3x4 +

(a1a2a3a34 + a1a12a3a134 + a1a2a4 + a1a12a14 + a12a3a34 + a1a23a34 + a2a3a134 + a12a4x1 + a2a14 +

a23a134x1)x1x2x4 + (a1a2a23a4 + a1a12a23a14 + a1a3a4 + a12a23a4 + a2a23a14 + a3a14 + a1a34)x1x3x4 +

(a1a12a3a4 +a1a2a3a14 +a2a3a4 +a12a3a14 +a1a23a14 +a1a12a34 +a1a2a134 +a23a14)x2x3x4 +(a1a2a3 +a12a3 +

a1a23)x1x2x3 + (a1a2a23a34 + a1a12a23a134 + a1a3a34 + a12a23a34 + a2a23a134 + a1a4 + a3a134 + a14)x1x4 +

(a1a12a3a34 +a1a2a3a134 +a1a12a4 +a1a2a14 +a2a3a34 +a12a3a134 +a1a23a134 +a2a4 +a12a14 +a23a34)x2x4 +

(a1a12a23a4 + a1a2a23a14 + a2a23a4 + a1a3a14 + a12a23a14 + a3a4 + a1a134 + a134x1 + a34)x3x4 + (a1a2)x1x2 +

(a1a2a23 + a1a12a23 + a1a3 + a12a23)x1x3 + (a1a12a3)x2x3 + a1x1 + (a1a12 + a12x1 + a2)x2 + (a2a3x2 + a2a23 +

a23x2a3)x3 + (a1a12a23a34 + a1a2a23a134 + a2a23a34 + a1a3a134 + a12a23a134 + a1a14 + a3a34 + a4)x4 + 1
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For each x = (x1, x2, x3, x4) ∈ Ω = {+1,−1}4, the monomial map

α 7→ xα = x
α(1)
1 x

α(2)
2 x

α(3)
3 x

α(4)
4

is a representation of the additive group Ω = Z4
2, so that each

polynomial f (x1, x2, x3, x4) is the discrete Fourier transform of its
coefficients A(α), α : {1, 2, 3, 4} → {0, 1}, therefore

p1(x1) = Â1(x)

p2|1(x2|x1) = Â2|1(x)

p3|2(x3|x2) = Â3|2(x)

p4|13(x4|x1, x3) = A4|12(x)

Therefore, the coefficients A of the joint density p(x) in the
previous disply are actually given by a convolution formula

A = A1 ∗ A2|1 ∗ A3|2 ∗ A4|13
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Manipulation, experiment, intervention?

Is that possible, under this model, to force X =FALSE, i.e. x2 = 1?
This is a sub-model, where p(x2|x1) = 1 + x2, i.e. a2 = 1, a12 = 0.
Under this sub-model the cases where x2 = −1 have probability 0,
and the polynomial model is aliased with the model

p(x1, x3, x4‖x2 = 1) =

(1+a1x1)(1+(a3+a23)x3)(1+a4x4+a14x1x4+a34x3x4+a134x1x3x4)

This corresponds to the DAG

U −→ Y ←− Z

and two effects are confounded by ã3 = a3 + a23
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Marginalization

Given a density of the form

f (x1, . . . , xn) =
∑
α

A(α)xα

and a subset of indexes I ⊂ {1, . . . , n} the marginal density is
obtained by adding over all the sample values of xi ’s such that
i /∈ I . This kills all the monomials that contain such xi ’s. In other
words, fI = Â1I . For example, in the model after the intervention,
if U = X1 is not observable,

p34(x3, x4‖x2 = 1) = (1 + ã3x3)(1 + a4x4 + a34x3x4)

= 1 + ã3x3 + (a4 + ã3a34)x4 + (a34 + ã3a4)x3x4

which is generic.
Invariants of the model could be derived this way.
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The transitions of the DAG can be written in
exponential-polynomial form:

log (p1(x1)) = b1x1 − ψ(b1)

log
(
p2|1(x2|x1)

)
= (b2 + b12x1)x2 − ψ(b2 + b12x1)

log
(
p3|2(x3|x2)

)
= (b3 + b23x2)x3 − ψ(b3 + b23x2)

log
(
p4|13(x4|x1, x3)

)
= (b4 + b14x1 + b34x3 + b134x1x3)x4

− ψ(b4 + b14x1 + b34x3 + b134x1x3)

where eψ(b) = cosh(b),

eψ(b2+b12x1) = cosh(b2+b12)+cosh(b2−b12)
2 + cosh(b2+b12)−cosh(b2−b12)

2 x1,
. . .
All the conditional cumulant functions are polynomials in the x ’s.
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Exponential model

The logarithm of the joint distribution has the additive form

log (p(x1, x2, x3, x4)) = θ1x1 + θ2x2 + θ3x3 + θ4x4

+ θ12x1x2 + θ23x2x3 + θ34x3x4 + θ14x1x4

+ θ134x1x3x4

− ψ(θ1, θ2, θ3, θ4, θ12, θ23, θ14, θ134)

Again, the special form of the basis leads to simple computations
related with the model. In fact, the orthogonal space is generated
by the monomials which are missing in the model. They are:

x1x3, x2x4, x1x2x3, x1x2x4, x2x3x4, x1, x2x3x4

which leads to an easy computation of the binomial invariants of
the model.
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I Polynomial algebra computations could be used in some cases
to replace argument based on graph theory. Dedicated
software helps in doing symbolic computations on polynomials
when the field of constants is Q, Zp . . .

I A careful choice of the levels coding makes the term of the
polynomial be orthogonal.

I On a finite state space, both the mixture form and the
exponential form can be presented in polynomial form.

I In the mixture case, a density is of the form p = 1 + u. In the
exponential case, a density is of the form p = eu−ψ. In both
cases u is a random variable on the sample space whose mean
with respect to the reference probability is zero.

I Both mappings p 7→ u = p − 1 and p 7→ log (p)− ψ look like
a chart, i.e. both map a set of densities to an open set of a
vector space.
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Definition
If (Ω,F , µ) is a generic probability space, M1 is the set of real
random variables f such that

∫
f dµ = 1, M≥ the convex set of

densities, M> the convex set of strictly positive densities:
M> ⊂M≥ ⊂M1.

I We define the (differential) geometry of these spaces in a way
which is meant to be a non-parametric generalization of the
theory presented by Amari and Nagaoka (Jap. 1993 Eng.
2000).

I We try to avoid the use of explicit parameterizations of the
statistical models and therefore we use a parameter free
presentation of differential geometry.

I We construct a manifold modelled on an Orlicz space. In the
N-state space case, it is a subspace of od dimension N − 1 of
the ordinary euclidean space
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The convex sets M1 and M> are endowed with a structure of
affine manifold as follows:

I At each f ∈M1 we associate the linear fiber ∗T (f ) which is a
vector space of random variables whose expected value at p is
zero. In general, it will be an Orlicz space; in the finite state
space case, it is just the vecor space of all random variables
with zero expectation at p.

I At each p ∈M> we associate the fiber T (f ). In the finite
state space case the two types of fiber are equal as vector
spaces.

I The theory will exploit the duality scheme:
T (p) ⊂ L2

0(p) ⊂ ∗T (p).
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e-charts

For each p ∈M>, consider the chart sp defined on M> by

q 7→ sp(q) = log

(
q

p

)
+ D(p‖q),

where

−Ep

[
log

(
q

p

)]
= D(p‖q),

The chart is defined for all q = eu−Kp(u) · p such that u belongs to
the interior Sp of the proper domain of Kp : u 7→ log (Ep [eu]) as a
convex mapping from T0(p) to R>0 ∪ {+∞}. This domain is
called maximal exponential model at p, and it is denoted by E(p).
The atlas (sp,Sp), p ∈M> defines a manifold on M>, called
exponential manifold, briefly e-manifold. Its tangent bundle is
T (p), p ∈M>.
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m-charts

For each p ∈M>, consider a second type of chart on M1:

lp : q → lp(q) =
q

p
− 1

The chart is defined for all f ∈M1 such that q/p − 1 belongs to
∗T (p). The atlas (lp,Lp), p ∈M> defines a manifold on M1,
called mixture manifold, briefly m-manifold. Its tangent bundle is
∗T (p), p ∈M>.
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Connections

At each point p in the statistical manifold there is one reference
system attached given by the e-chart and the m-chart.

I A change of reference system from p1 to p2 is just the change
of reference measure.

I The change of reference formulæare affine functions.

I The change of reference formulæinduce on the tangent spaces
the connections

∗T (p) 3 v 7→ p

q
v ∈ ∗T (q)

T (p) 3 u 7→ u − Eq [u] ∈ T (q)
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Derivative

Given a one dimensional statistical model pθ ∈M>, θ ∈ I , I open
interval, 0 ∈ I , the local representation in the e-manifold is uθ with

pθ = euθ−Kp(uθ) · p.
The local representation in the m-manifold is

lθ =
pθ
p
− 1

To compute the velocity along a one-parameter statistical model in
the sp chart we use u̇θ, while in the lp chart we use ṗθ/p. We get
in the first case

ṗθ = pθ(u̇θ − Eθ [u̇θ])

so that

ṗθ
pθ

= u̇θ − Eθ [u̇θ] and u̇θ =
ṗθ
pθ
− Ep

[
ṗθ
pθ

]
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In the second case we get

l̇θ =
ṗθ
p

The two cases are shown to represent the same geometric object
by considering the the affine connections

Tp 3 u 7→ u − Eq [u] ∈ Tq and ∗Tp 3 v 7→ q

p
v ∈ ∗Tq
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Both in the e-manifold and the m-manifold there is one chart
centered at each density. A chart of this special type will be called
a frame. The two representations u̇θ and l̇θ are equal at θ = 0 and
are transported to the same random variable at θ:

ṗθ
pθ

= u̇θ − Eθ [u̇θ]

= l̇θ
p

pθ
.

This random variable is the score at θ of the one-parameter model.
In other words, the Fisher information at θ is the L2-norm the
velocity vector of the statistical model in the moving frame
centered at θ:

Eθ

[(
ṗθ
pθ

)2
]

= Eθ

[
(u̇θ − Eθ [u̇θ])

(
l̇θ

p

pθ

)]
= Ep

[
u̇θ l̇θ

]
.
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Let Ω be a finite sample space with N points and E : Ω→ R≥0 a
function, such that E (x) = 0 for some x ∈ Ω, not everywhere zero.
In Statistical Physics, E is called energy function. For each β > 0
consider the probability density function

p(x ;β) =
e−βE(x)

Λ(β)
, where Λ(β) =

∑
x∈Ω

e−βE(x).

The parameter β is called inverse temperature, the analytic
function Λ partition function, and p(β), β > 0, a Boltzmann model
or canonical ensemble. This set of densities is not weakly closed.
Indeed, if β →∞, then Λ(β)→ #{x : E (x) = 0} and
e−βE → (x : E (x) = 0) point-wise, where for a set A, #(A)
denotes its count and (A) its indicator function. The weak limit of
p(β) as β →∞ is the uniform distribution on the states x ∈ Ω
with zero energy, namely on Ω0 = {E (x) = 0}. It is clear that this
limit distribution is not part of the Boltzmann model.
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Optimization

Given a bounded real function F on Ω, we assume that it reaches
its maximum on a measurable set Ωmax ⊂ Ω. The mapping
F̃ :M≥ 3 q 7→ Eq [F ] is to be considered a regularization or
relaxation of the original function F . If F is not constant, i.e.
Ω 6= Ωmax, we have F̃ (q) = Eq [F ] < max F , for all q ∈M>.
However, if ν is a probability measure such that ν(Ωmax) = 1 we
have Eν [F ] = max F . This remark has suggested to find max F by
finding a suitable maximizing sequence qn for F̃ .
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Given any reference probability p, we can represent each positive
density q in the maximal exponential model at p as
q = eu−Kp(u) · p. The expectation of F is an affine function in the
m-chart,

Eq [F ] = Ep

[
F

(
q

p
− 1

)]
+ Ep [F ]

In the e-chart the expectation of F is a function of u,
Φ(u) = Eq [F ]. The equation for the derivative of the cumulant
function Kp gives

Φ(u) = Eq [F ]

= Eq [(F − Ep [F ])] + Ep [F ]

= D Kp (u) (F − Ep [F ]) + Ep [F ]
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Stepest ascent

The derivative of Φ in the direction v is the Hessian of Kp applied
to (F − Ep [F ])⊗ v and from the formula of the Hessian follows

D Φ (u) v = Covq (v ,F ) .

Theorem
The direction of steepest ascent of the expectation Eq [F ] at q is
F − Eq [F ].
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By the use of both the m- and e-geometry, we have obtained a
quite precise description of the setting of this problem:

1. The problem is a convex problem in the m-geometry as the
utility function q 7→ Eq [F ] is linear and the admissible set M1

is convex and closed in L1(µ). The level sets are affine
subspaces in the m-charts.

2. In the e-geometry, given any starting point q ∈M>, the
exponential model eθF/Eq

[
eθF
]

gives the steepest strict
ascent. In fact, on such a statistical model the second
derivative of the expected value of F is maximal at each point.

3. Let us assume that F is continuous. If the exponential model
of steepest ascent has a weak limit point whose support
belongs to Ωmax, limθ→∞

∫
F eθF/Ep

[
eθF
]

dµ = max F .

4. Practical computational implementations of these scheme
look for maximizing sequences in M> that belong to a
restricted subclass of densities, usually an exponential model.
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Definition
A vector field F of the the m-bundle ∗T (p), p ∈M>, is a
mapping which is defined on some domain D ⊂M> and it is a
section of the m-bundle, that is F (p) ∈ ∗T (p), for all
p ∈ D ⊂M>.

Example

1. For a given u ∈ Tp and all q ∈ E(p) we can define the vector
field

F : q 7→ u − Eq [u]

2. On the real sample space, for all strictly positive density
f ∈ C 1(R), we define the vector field

F : f 7→ f ′

f

Giovanni Pistone, Politecnico di Torino, Turin IT Information geometry of graphical models



Graphical models and polynomials
Statistical manifolds and bundles

Differential equations

Vector field
Differential equation
Moving frame
Examples

Definition
A one-parameter statistical model in M>, p(θ), θ ∈ I , solves the
differential equation associated to the vector field F if
p(θ) = eu(θ)−Kp(u(θ)) · p and

1. the curve θ 7→ u(θ) ∈ T (p) is continuous in L2;

2. the curve θ 7→ p(θ)/p − 1 ∈ ∗T (p) is continuously
differentiable;

3. for all θ ∈ I it holds

ṗ(θ)

p(θ)
= F (p(θ))
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I The differential equation above is written with respect to the
moving frame at pθ because ṗ(θ)/p(θ) is the representation of
the velocity vector in ∗T (p(θ)).

I However, with respect to a fixed frame at p, we should have
written{

u̇θ = F (p(θ))− Ep [F (p(θ))] e-connection, assuming u̇θ ∈ Tpθ

l̇θ = p
p(θ)F (p(θ)) m-connection
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Let us consider the exponential model

pθ = eθF/Ep

[
eθF
]

θ ∈ R

In this case the velocity in the moving frame is

ṗθ
pθ

= F − Epθ [F ]

And the vector field is p 7→ F − Ep [F ]. In general, exponential
models are solution of the differential equation for a constant
vector field, that is to say a vector field whose unique dependence
on p is the centering operation.
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A second example follows by considering Ω = R and taking for D
the class of positive densities f with logaritmic derivative
f ′/f ∈ ∗T (f ). For such densities, the mapping
F : f 7→ F (f ) = −f ′/f is a vector field. We can therefore consider
the differential equation ṗθ/pθ =.
If f ∈ D, the translation model pθ(x) = f (x − θ) is such that the
score is

ṗθ(x)

pθ(x)
= − f ′(x − θ)

f (x − θ)
= F (f (· − θ))(x)

and the translation model is a solution of the differential equation.
The classical Pearson classes of distributions, such as the Cauchy
distribution, are special cases of this construction.
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More generally, any semigroup τt on the space of positive densities,
with infinitesimal generator A, i.e. (d/dt)τt f = Aτt f , on some
domain D will produce the same situation. The model pθ = τθf
has score

ṗθ
pθ

=
Aτθf

τθf
= F (pθ)

where the vector field is defined by F (q) = A(q)/q, q ∈ D.
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The heat equation

∂

∂t
p(t, x)− ∂2

∂x2
p(t, x) = 0

is an interesting example of differential equation in M>. In fact,
we can consider the vector field

F (p)(x) =
∂2

∂x2 p(x)

p(x)

Upon division of both sides of of the heat equation by p(t, x), we
obtain an equation of our type, whose solution is the solution of
the heat equation, i.e. the model obtained by the action of the
heat kernel on the initial density. Moreover, the heat equation has
a variational form. For each v ∈ D

Ep [F (p)v ] =

∫
p′′(x)v(x) dx = −

∫
p′(x)v ′(x) dx = −Ep

[
p′

p
v ′
]

from which the weak form of the differential equation follows.
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Conclusions

I The IG framework suggest a natural language to talk of
statistical models from the Fisher point of view.

I In the finite state space case, the IG framework fits the
algebraic framework when random variables are described with
polynomials.

I Optimization problems are clarified and possibly standard
variational theory is usable in prectice.

I There are many results available from the theory of variational
differential equation in infinite dimension.

I The classical filtering problem (e.g. Zakai stochastic
differential equations) has a precise formulation as a stocastic
differential equation on the statistical manifold.
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