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Part 1. General probability space

1. Nonparametric Information Geometry: A point of view

Most philosophical accounts of Chance, Randomness, and Probability also discuss Entropy
(or Information) as an essential element of the whole picture. For example, see Hájek (2019).
Chance and Randomness are metaphysical concepts, while probability is the mathematical
model of Chance as it appears in the theory games. See, for example, Hacking (2006). Ran-
domness belongs to the metaphysics of Statistical Physics and requires from the beginning a
treatment of Entropy. See, for example, Sklar (1993).

Information Geometry (IG) has not jet found its way into philosophical literature but should
have done. In fact, it is a refinement of the basic mathematical model of chance and randomness
that uses a formalism that comes from Statistics. In particular, it explains why information and
entropy appear necessarily in the theory. Moreover, it shows the intrinsic geometrical flavour
of a mathematical model of Statistics.

I start with a simple presentation that any (analytic) philosopher could use if she is willing
to. Then I move to more technical material but the aim is always a generic presentation of the
formalism without touching to any specific application.

My basic references for IG are the proceedings Amari, Barndorff-Nielsen, Kass, Lauritzen,
and Rao (1987) and the monographs Amari and Nagaoka (2000); Amari (2016); Ay, Jost, Lê,
and Schwachhöfer (2017). The last one is probably the most comprehensive, and most of the
topics in my presentation are actually to be found there, but a difference in emphasis. I try to
avoid as much as possible the use of parametric notation and to follow the style of Lang (1995).
In the last part on these notes, I focus on the case of smooth densities.

My general reference for standard Mathematical Statistics is Schervish (1995).

1.1. Probability simplex. The first ingredient of IG is the the base set of the formalism,
that is, the “probability simplex”. Namely, the convex set P of all probability measures on
a measurable space (X,X ). The probability simplex is a base set of the cone of finite (non-
negative) measures M. In turn, M is a subset of the Banach space of signed finite measures
S with the norm of total variation. In this picture, the probability simplex is a closed convex
subset of S whose affine space is the Banach sub-space S0 of signed finite measures with 0 total
value.1

The conceptual point here is that the probability simplex is not a vector space hence the no-
tions of affine geometry is not really adapted: Space and Chance are quite different methaphisical
notions. In practice, statisticians know very well that one cannot look directly to frequences f ;
much better is to look at some “score”, for example, log f or

√
f .

Let us look to the geometry of P from the point of view of kinematics. Let

I 37→ µ(t) ∈ P ⊂ S
be a differentiable curve with derivative (affine velocity) µ̇. The affine velocity is a curve
t 7→ µ̇(t) ∈ S0, more precisely,

t 7→ (µ(t), µ̇(t)) ∈ P ×S0 .

The obvious property that at any t such that µ(t) is on the border of the probability simplex
the affine velocity µ̇(t) cannot point outside is best expressed in the following form, see Ay et al.
(2017).

1Aside: Even if the actual object on interest is the probability, there are many reasons to chose to work in
the larger set M of (non-negative) finite measures. In particular, from the applied point of view, it is frequently
useful to deal with the projective structure of M as “unnormalized probabilities.”
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Proposition 1. Let I 37→ µ(t) ∈ P1 be a differentiable curve in M with derivative (velocity)
t 7→ µ̇(t) ∈ S0. For all t, the velocity µ̇(t) is absolutely continuous with respect to the position
µ(t).

Proof. Let A ∈ X be an event such that µ(A) : s 7→ µ(A; s) is zero at s = t. Then t is a
minimum point for µ(A), hence, the derivative is 0, µ̇(A; t) = 0. �

Using a term from the Fisherian Statistics, we call the Radon-Nikodim derivative the score
of the curve µ(·),

(1) Sµ(t) =
µ̇

µ
that is, µ̇(A; t) =

∫
Sµ(x; t) µ(dx; t) , t ∈ I, A ∈ X .

Cf. the classical definition in § 2.3 of Schervish (1995).
The score is an element of L1

0(µ(t)). Its relevance is explained by the following computation.
Let f be a bounded random variable. Then

d

dt

∫
f(x) µ(dx; t) =

∫
f(x) µ̇(dx; t) =

∫
f(x)Sµ(x; t) µ(dx; t) =∫ (

f(x)−
∫
f(x) µ(dx; t)

)
Sµ(x; t) µ(dx; t) .

Or,

(2)
d

dt

∫
f dµ(t) =

〈
f −

∫
f dµ(t), Sµ(t)

〉
µ(t)

,

where we have introduced a separating duality between L∞0 (µ(t)) and L1
0(µ(t)). Fisher’s idea

was to evaluate (to score) the variation of expected value of a statistics f along a statistical
model with a scalar product at the “true distribution” µ(t) of the variation of f with a score
function. The variance of the score at the “true distribution” is the Fisher Information,

t 7→
∫
|Sµ(x; t)|2 µ(dx; t) .

Moreover, this set-up leads, for example, to the Cramer-Rao inequality.
The mathematical back-ground of applied mathematicians at Fisher’s time was Mathematical

Physics. Hence, we can be pressy sure that Fisher himself was quite conscious of geometrical
meaning of his ouw contruction. Precisely, we can see the score term Sµ(t) in eq. (2) as an
alternative way to compute the velocity, due to the existence of constraints to the motion. From

0 = µ̇(X; t) =

∫
X
Sµ(x; t) µ(dx; t) ,

we see that µ̇(t) ∈ L1
0(µ(t)), hence the score is a section of a vector bundle,

(µ(t), µ̇(t)) ∈ P ×L1
) (µ(t)) .

In this geometrical perspective, f 7→ f −
∫
f dµ(t) of eq. (2) is an alternative way to compute

the gradient of the function µ 7→
∫
f dµ. This argument prompts for the following definition

of natural gradined. This is the name introduced by Amari (1998) in a different but equivalent
way.

Consider the following informal definition. We say that F : P1 → R has natural gradient
gradF : X × R→ R, if for all smooth curve t 7→ µ(t) ∈ P1 it holds

d

dt
F (µ(t)) =

∫
gradF (x; t)Sµ(x; t) µ(dx; t) .

Clearly, there are many loose end to take care of. This theory is classically presented decorated
with sufficient technical conditions to make everything work smoothly. Our ambitions is to find
some set of “natural” assumptions. Inspiration comes from the notion of exponential family,
see, for example, the short version in § 2.2 of Schervish (1995), and the long version in Brown
(1986).
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1.2. Exponential models. Given the probability space (X,X , µ), consider the exponential
model

(3) I 3 θ 7→ pθ = eθu−ψ(θ)p ,

where I is an open interval containing 0, u is a random variable, p is a probability density, and
the cumulant function ψ(θ) = log

∫
etu p · dµ is assumed to be finite for all t ∈ I. This model is

the venerable Botzmann-Gibbs factor of Statistical Physics if θ = − 1
kT , T > 0, see, for example,

Landau and Lifshits (1980). This is the real historical origin of IG.
For each fixed θ, the model in eq. (3) identifies the sufficient statistics u up to a constant. in

fact,

eθu1−ψ1(θ) = eθu2−ψ2(θ)

implies that u1 − u2 is a constant random variable.
Let us drop the paramenter for a moment. There are tree interesting way to identify a unique

u-statistics for a density q = eu−ψp.
1. One option is to assume

∫
u pdµ = 0, so that∫

log
q

p
pdµ =

∫
(u− ψ) pdµ = −ψ

and

u = log
q

p
− ψ = log

q

p
−
∫

log p
p

q
dµ .

Notice that in this case the normalizing constant is a KL divergence, ψ =
∫
p log p

q dµ = D (p ‖q).
2. A second option is to assume

∫
u qdµ = 0, so that∫

q log
q

p
dµ =

∫
(u− ψ) qdµ = −ψ

and

u = log
q

p
+

∫
q log

q

p
dµ

In this case, −ψ =
∫
q log p

q dµ = D (q ‖p).
3. A third option is available in some cases. It is based on the assumption that u ≥ 0 and
minu = 0. In this form, the computation of the limits θ → ±∞ is expecially simple.

From 1. and 2. it follows that the KL-divergences appear in the theory from the beginning
as a direct consequence of the exponential representation. In particular, if q = eu−ψ · p, then it
is easy to see that

D (p ‖q) + D (q ‖p) = Eµ [(q − p)u] .

An important issue is the actual µ-integrability of eθu · p in eq. (3). This remark leads to the
following definition. The MGF Mp(u) is a convex analytic function in the interior of its proper
domain. Moreover, the Cramer Class of p · µ is a vector space. In conclusion, the sufficient
statistics of eq. (3) form a vector space of random variables. We first discuss the properties of
this space.

Definition 2. Consider the set of random variables u such that the moment generating function
θ 7→Mp(u; θ) =

∫
eθu dµ is defined in a neigborhood of zero. Equivalently, there exists a positive

α > 0 such that
∫

(cosh(αu) − 1)dµ < +∞. This set is a Banach space whose closed unit ball

is
{
u
∣∣ ∫ (coshu− 1)dµ ≤ 1

}
denoted L(cosh−1) (µ).

This actually defines a class of classical Banach spaces called Orlicz spaces, see for example the
monograph by J. Musielak (Musielak, 1983, Ch. II). The same class has been used in Information
Geometry to provide a model for statistical manifolds, see G. Pistone and C. Sempi Pistone
and Sempi (1995), A. Cena and G. Pistone Cena and Pistone (2007), and M. Santacroce, P.
Siri, and B. Trivellato Santacroce et al. (2016b).
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Precisely, given a probability space (Ω,F , µ), the moment generating function of the random
variable u is finite in a neighborhood of 0 if, and only if, Eµ [cosh(λu)− 1] <∞ for some λ > 0.

The class of such random variables is a vector space that we denote by L(cosh−1) (µ) and

L(cosh−1) (µ) 3 u 7→ ‖u‖L(cosh−1)(µ) = inf
{
α > 0

∣∣Eµ [cosh(α−1u)− 1
]
≤ 1
}

is a complete norm. In particular, the closed unit ball is{
u ∈ L(cosh−1) (µ)

∣∣∣E (coshu) ≤ 2
}
.

From now on, we write briefly ‖·‖ = ‖·‖L(cosh−1)(µ). Let us consider some special cases.

In the case of a constant random variable u = a ∈ R, cosh(a/ ‖a‖) = 2, that is ‖a‖ =
|a| / cosh−1 2. It would be possible to use an equivalent norm which reduced to the absolute
value on constants, but our choice is more convenient in the computations to follow.

In the case of an indicator random variable, u = a1A,

Eµ
[
cosh(α−1a1A)

]
= 1− µ(A) + cosh(α−1a)µ(A) ,

hence, ‖a1A‖ = |a| / cosh−1 ((1 + µ(A))/µ(A)).
Both cases above belong to the general class of random variable whose moment generating

function is finite everywhere. In such a case, one has to solve for α = ‖u‖ the equation

Eµ
[
eu/α

]
+ Eµ

[
e−u/α

]
= 4 .

We will discuss below the important issue of the equivalence of the Orlicz norms for different
µ’s.

1.3. Cramer class, sub-exponential random variable, Orlicz space. Two very recent
monograph (Vershynin, 2018, Ch. 2) and (Wainwright, 2019, Ch. 2) discuss concentration in-

equalities for randon variables in the exponential Orlicz space L(cosh−1) (µ).2 A basic statement
is reproduced below.

Proposition 3. Let u be a random variable of the probability space (X,X , µ). The following
conditions are equivalent.

(1) The moment generating function of u is finite in a neighborhood of 0.
(2) The random variable u is sub-exponential, namely, there exist constants c1 ≥ 1 and

c2 > 0 such that P (|u| ≥ t) ≤ c1e−c2t.

(3) It holds supk≥1(E
(
|u|k

)
/k!)1/k = c <∞.

Proof: (1) implies (2). For all t > 0 and each λ > 0 such that both E
(
eλu
)
,E
(
e−λu

)
<∞,

P (u ≥ t) = P
(

eλu ≥ eλt
)
≤ e−λt E

(
eλu
)
,

and

P (u ≤ −t) = P (−λu ≥ λt) = P
(

e−λu ≥ eλt
)
≤ e−λt E

(
e−λu

)
.

We have

P (|u| ≥ t) = P (u ≥ t) + P (u ≤ −t) ≤ 2e−λt E (cosh(λu)) ,

and we can take c1 = 2E (cosh(λu)) and c2 = λ. �

2I have introduced this space in IG in the ninties propted by the argument reproduced above about exponential
families. It took to me about 25 years to realize that this assumption is not only imposted by the problem itself,
but has some interesting implication from the point of view of applications
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Proof: (2) implies (3). We have

E
(
|u|k

)
=

∫ ∞
0

P
(
|u|k > t

)
dt =

∫ ∞
0

P (|u| > s) ksk−1 ds ≤ kc1
∫ ∞

0
sk−1e−c2s ds =

kc1

∫ ∞
0

(
u

c2

)k−1

e−u
1

c2
du = k

c1

ck2

∫ ∞
0

uk−1e−u du = k
c1

ck2
(k − 1)! = k!

c1

ck2
.

Notice that c1 ≤ ck1 because c1 ≥ 1, so that (E
(
|u|k

)
/k!)1/k ≤ c1/c2 for all k. �

Proof: (3) implies (1). If E
(
|u|k

)
/k! ≤ ck and 0 < λ < 1/c, then

E
(

eλ|u|
)

= 1 +
∞∑
k=1

E
(
|u|k

)
k!

λk ≤
∞∑
k=0

(cλ)k =
1

1− cλ
.

�

The sub-exponential inequality of Prop. 3(2) takes the following form when one express the
constants in terms of the Orlicz norm.

For all u ∈ L(cosh−1) (µ) and all t > 0, we have,

P (|u| ≥ t) = P
(
|u|
‖u‖
≥ t

‖u‖

)
=

P
(

cosh

(
u

‖u‖

)
≥ cosh

(
t

‖u‖

))
≤

2/ cosh (t/ ‖u‖) ≤ 4 exp
(
−‖u‖−1 t

)
.

The bound on the absolute moment of Prop. 3(3) becomes

E
(
|u|k

)
=

∫ ∞
0

P
(
|u|k > t

)
dt =

∫ ∞
0

P (|u| > s) ksk−1 ds ≤ 4k

∫ ∞
0

sk−1e−s/‖u‖ ds =

4k ‖u‖k
∫ ∞

0
uk−1e−u du = 4k! ‖u‖k ,

so that the bound is

(4)

(
E

(
|u|k

k!

))1/k

≤ 4 ‖u‖ .

An important application of sub-exponentiality i.e., Orlicz norm, is to provide warranties in
the law of large numbers for small samples.

Proposition 4 (Centered sub-exponential u). If the sub-exponential random variable u is cen-
tered, E (u) = 0, then for all λ ≤ 1/(8 ‖u‖) it holds

E
(

eλ|u|
)
≤ e32‖u‖2λ2 .

Proof. We use the bound in Eq. (4). For each λ < 1
2‖u‖ we have

E
(

eλu
)
≤ 1+

∞∑
k=2

E
(
|u|k

)
k!

λk ≤ 1+

∞∑
k=2

(4 ‖u‖λ)k = 1+
(4 ‖u‖λ)2

1− 4 ‖u‖λ
≤ 1+32(‖u‖λ)2 ≤ e32‖u‖2λ2 .

�
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Proposition 5 (Bernstein inequality). Let be the given sub-exponential centered independent
random variables u1, . . . , un and let a = (a1, . . . , an) ∈ Rn. Then, for all t ≥ 0, it holds

P

(∣∣∣∣∣
n∑
i=1

aiui

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− inf

(
t2

128
∑n

i=1 |ai|
2 ‖ui‖2

,
t

16 maxi |ai| ‖ui‖

))
.

Proof. From Prop. 4, we have, for all t > 0, and 0 < λ ≤ 1

8 |ai| ‖ui‖
, i = 1, . . . , n, that is,

0 < λ ≤ 1

8 maxi |ai| ‖ui‖
. that

P

(
n∑
i=1

aiui ≥ t

)
≤ e−λt E

(
exp

(
n∑
i=1

λaiui

))
= e−λt

n∏
i=1

E
(

eλaiui
)
≤

e−λt
n∏
i=1

e32|ai|2‖ui‖2λ2 = e−λt exp

(
32

n∑
i=1

|ai|2 ‖ui‖2 λ2

)
= exp

(
−λt+ 32

n∑
i=1

|ai|2 ‖ui‖2 λ2

)
.

Let us find the minimum of the parabola λ 7→ −λt + 32
(∑n

i=1 |ai|
2 ‖ui‖2

)
λ2 under the

constraint 0 ≤ λ ≤ 1

8 maxi |ai| ‖ui‖
. The minimum is at

t

64
∑n

i=1 |ai|
2 ‖ui‖2

∧ 1

8 maxi |ai| ‖ui‖
.

The value in the first point is − t2

128
∑n
i=1|ai|

2‖ui‖2
. The line through the vertex of the parabola

is λ 7→ − t
2λ, hence it is above the parabola in the positive interval up to the point of minimum

and it is below the minimum otherwise. It follows that the minimum value is bounded by

− t
2

inf

(
t

64
∑n

i=1 |ai|
2 ‖ui‖2

,
1

8 maxi |ai| ‖ui‖

)
= − inf

(
t2

128
∑n

i=1 |ai|
2 ‖ui‖2

,
t

16 maxi |ai| ‖ui‖

)
The same bound applies to the other half of the inequality. �

Proposition 6 (Law of large numbers). Let be the given sub-exponential centered independent
random variables u1, . . . , un. Then, for all t ≥ 0, it holds

P

(∣∣∣∣∣ 1n
n∑
i=1

ui

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−n inf

(
t2

128 maxi=1 ‖ui‖2
,

t

16 maxi ‖ui‖

))
.

Proof. Let us apply Prop. 5 with ai = 1/n. The bound becomes

t2

128
∑n

i=1
1
n2 ‖ui‖2

∧ t

16 maxi
1
n ‖ui‖

=
n2t2

128
∑n

i=1 ‖ui‖
2 ∧

nt

16 maxi ‖ui‖
≥

n

(
t2

128 maxi=1 ‖ui‖2
∧ t

16 maxi ‖ui‖

)
.

�

1.4. Orlicz spaces. If Φ(x) = coshx − 1, a real random variable u belongs to the vector
space LΦ(p) if Ep [Φ(αv)] < +∞ for some α > 0. A norm is obtained by defining the set
{v |Ep [Φ(v)] ≤ 1} to be the closed unit ball. It follows that the open unit ball consists of
those u’s such that αu is in the closed unit ball for some α > 1. The corresponding norm
‖ ·‖Φ,p is called Luxemburg norm and defines a Banach space, see e.g. (Musielak, 1983, Th 7.7).
The function cosh−1 has been chosen here because the condition Ep [Φ(αv)] < +∞ is clearly
equivalent to Ep

[
etv
]
< +∞ for t ∈ [−α, α], but other choices will define the same Banach space

e.g., Φ(x) = e|x| − |x| − 1. By abuse of notation, we will denote all these equivalent functions
by Φ.

The main technical issue in working with Orlicz spaces such as L(cosh−1)(p) is the regularity

of its unit sphere S =
{
u
∣∣∣ ‖u‖(cosh−1),p = 1

}
. In fact, while Ep [coshu− 1] = 1 implies u ∈ S,

7



the latter implies Ep [coshu− 1] ≤ 1. Subspaces of LΦ where this cannot happen are called
steep, see examples in Pistone (2013b). If the state space is finite, the full space is steep.

The relevance of steep families in exponential families is discussed in Barndorff-Nielsen (1978).
Steepness is important when related with the idea of embedding. Consider the mapping
Φ−1

+ : P> 3 p 7→ v = Φ−1
+ (p), Φ+ = Φ|R> . Then

∫
Φ(v) dµ =

∫
p dµ = 1 hence ‖u‖Φ = 1

and we have an embedding of P> into the sphere of a Banach space.
If the functions Φ and Φ∗ are Young pair, for each u ∈ LΦ(p) and v ∈ LΦ∗(p), such that

‖u‖Φ,p , ‖v‖Φ∗,p ≤ 1, we have Ep [uv] ≤ 2, hence

LΦ∗(p)× LΦ(p) 3 (v, u) 7→ Ep [uv]

is a duality mapping,
∣∣∣〈u, v〉p∣∣∣ ≤ 2 ‖u‖Φ∗,p ‖v‖Φ,p .

A sequence un, n = 1, 2, . . . is convergent to 0 for such a norm if and only if for all ε > 0
there exists a n(ε) such that n > n(ε) implies Ep

[
Φ1(unε )

]
≤ 1. Note that |u| ≤ |v| implies

Ep
[
Φ1

(
u

‖v‖Φ1,p

)]
≤ Ep

[
Φ1

(
v

‖v‖Φ1,p

)]
≤ 1

so that ‖u‖Φ1,p
≤ ‖v‖Φ1,p

.
In defining our manifold, we need to show that Orlicz spaces defined at different points of

statistical models are isomorphic, we will use frequently the fact that following lemma, see
(Cena and Pistone, 2007, Lemma 1).

Lemma 7. Let p ∈M and let Φ0 be a Young function. If the Orlicz spaces LΦ0(p) and LΦ0(q)
are equal as sets, then their norms are equivalent.

The condition u ∈ Lcosh−1(p) is equivalent to the existence of the moment generating function
g(t) = Ep

[
etu
]

on a neighbourhoods of 0. The case when such a moment generating function is
defined on all of the real line is special and defines a notable subspace of the Orlicz space see
e.g., Rao and Ren (2002). Such spaces could be the model of an alternative definition of as in
Grasselli (2001).

In fact, the Banach space LΦ(p), φ = cosh−1 is not separable, unless the basic space has
a finite number of atoms. In this sense it is an unusual choice from the point of view of
functional analysis and manifold’s theory. However, LΦ(p) is natural for statistics because for
each u ∈ LΦ1(p) the Laplace transform of u is well defined at 0, then the one-dimensional
exponential model p(θ) ∝ eθu is well defined.

However, the space LΦ∗(p) is separable and its dual space is LΦ(p), the duality pairing being
(u, v) 7→ Ep [uv]. This duality extends to a continuous chain of spaces:

LΦ1(p)→ La(p)→ Lb(p)→ LΨ1(p), 1 < b ≤ 2,
1

a
+

1

b
= 1

where → denotes continuous injection.
From the duality pairing of conjugate Orlicz spaces and the characterization of the closed

unit ball it follows a definition of dual norm on LΦ∗(p):

Np(v) = sup {Ep [uv] |Ep [Φ(u)] ≤ 1} .

2. Non parametric Information Geometry: exponential bundle

2.1. Moment generating functional and cumulant generating functional. In this sec-
tion we review a number of key technical results. Most of the results are related with the
smoothness of the superposition operator LΦ(p) : v 7→ exp ◦v. Superposition operators on Or-
licz spaces are discussed e.g. in Krasnosel’skii and Rutickii (1961) and (Appell and Zabrejko,
1990, Ch 4). Banach analytic functions are discussed in Bourbaki (1971), Upmeier (1985) and
Ambrosetti and Prodi (1993).

Let p ∈ P> be given. The following theorem has been proved in (Cena, 2002, Ch 2), see also
Cena and Pistone (2007).

8



Proposition 8.

(1) For a ≥ 1, n = 0, 1, . . . and u ∈ LΦ(p),

λa,n(u) : (w1, . . . , wn) 7→ w1

a
· · · wn

a
e
u
a

is a continuous, symmetric, n-multi-linear map from LΦ(p) to La (p).

(2) v 7→
∑∞

n=0
1
n!

(v
a

)n
is a power series from LΦ(p) to La(p) with radius of convergence

≥ 1.
(3) The superposition mapping v 7→ ev/a is an analytic function from the open unit ball of

LΦ(p) to La(p).

Definition 9. Let Φ = cosh−1 and Bp = LΦ
0 (p), p ∈ P>. The moment generating functional

is Mp : LΦ(p) 3 u 7→ Ep [eu] ∈ R> ∪ {+∞}. The cumulant generating functional is Kp : Bp 3
u 7→ logMp(u) ∈ R> ∪ {+∞}.

Proposition 10.

(1) Mp(0) = 1; otherwise, for each centered random variable u 6= 0, Mp(u) > 1.
(2) Mp is convex and lower semi-continuous, and its proper domain is a convex set which

contains the open unit ball of LΦ(p); in particular the interior of such a domain is a
non empty convex set.

(3) Mp is infinitely Gâteaux-differentiable in the interior of its proper domain, the nth-
derivative at u in the direction v ∈ LΦ(p) being

dn

dtn
Mp(u+ tv)

∣∣∣∣
t=0

= Ep [vneu] ;

(4) Mp is bounded, infinitely Fréchet-differentiable and analytic on the open unit ball of
LΦ(p), the nth-derivative at u evaluated in (v1, . . . , vn) ∈ LΦ(p)× · · · × LΦ(p) is

DnMp(u)(v1, . . . , vn) = Ep [v1 · · · vneu] .

Proposition 11.

(1) Kp(0) = 0; otherwise, for each u 6= 0, Kp(u) > 0.
(2) Kp is convex and lower semi-continuous, and its proper domain is a convex set which

contains the open unit ball of Bp; in particular the interior of such a domain is a non
empty convex set.

(3) Kp is infinitely Gâteaux-differentiable in the interior of its proper domain.
(4) Kp is bounded, infinitely Fréchet-differentiable and analytic on the open unit ball of Vp.

Other properties of the key functional Kp are described below as they relate directly to the
exponential manifold.

2.2. Families of Orlicz spaces. Let P+(µ) be the set of positive probability densities of the
measure space (X,X , µ). As explained above, we associate to each density p a space of p-
centered random variables to represent scores of one-dimensional statistical models. That is, if
the one-parameter statistical model I 3 t 7→ p(t) ∈ P+(µ), I open interval, is regular enough,

then u(t) = d
dt log p(t) satisfies Ep(t) [u(t)] = 0 for all t ∈ I. In particular, if p(t) = etu−ψ(t) · p,

with u ∈ Bp =
{
u ∈ L(cosh−1) (p)

∣∣Ep [u] = 0
}

.
It is crucial to discuss how the relevant spaces of p-centered random variables depend on

the variation of the density p, that is it is crucial to understand the variation of the spaces
Bp = LΦ

0 (p) and ∗Bp = LΦ∗
0 (p) along a one-dimensional statistical model p(t), t ∈ I. In

Information Geometry, those spaces contain models for the tangent and pre-tangent spaces of
the statistical models. We require that they must be isomophic at two different points of a
regular model, they must be isomorphic. In particular, they must be equal with equivalent
norms.

We use a peculiar notion of connection by arcs, which is different from what is usually meant
with this name. Given p, q ∈ P>, the exponential model p (θ) ∝ p1−θqθ, 0 ≤ θ ≤ 1 connects the
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two given densities as end points of a curve, p(θ) ∝ exp
(
θ log q

p

)
· p, where log q

p is not in the

exponential Orlicz space at p unless θ can be extended to assume negative values.

Definition 12. We say that p, q ∈ P> are connected by an open exponential arc if there exist
r ∈ P> and an open interval I, such that p (t) ∝ etur, t ∈ I, is an exponential model containing
both p and q at t0, t1 respectively. By the change of parameter s = t− t0, we can always reduce
to the case where r = p and u ∈ LΦ(p).

The open connection of Def. 12 is an equivalence relation.

Definition 13. Let us denote by Sp the interior of the proper domain of the cumulant generating
functional Kp. For every density p ∈ P>, the maximal exponential model at p is defined to be
the family of densities

E (p) :=
{

eu−Kp(u) · p
∣∣∣u ∈ Sp} .

Proposition 14. The following statements are equivalent:

(1) q ∈M is connected to p by an open exponential arc;
(2) q ∈ E(p);
(3) E(p) = E(q);
(4) log q

p belongs to both LΦ1(p) and LΦ1(q).

(5) LΦ1(p) and LΦ1(q) are equal as vector spaces and their norms are equivalent.

In the following proposition we have collected a number of properties of the maximal expo-
nential model E(p) which are relevant for its manifold structure.

Proposition 15. Assume q = eu−Kp(u) · p ∈ E (p).

(1) The first two derivatives of Kp on Sp are

DKp(u)v = Eq [v] ,

D2Kp(u)(v1, v2) = Covq (v1, v2)

(2) The random variable q
p − 1 belongs to ∗Bp and

DKp(u)v = Ep
[(

q

p
− 1

)
v

]
.

In other words the gradient of Kp at u is identified with an element of ∗Bp, denoted by

∇Kp(u) = eu−Kp(u) − 1 = q
p − 1.

(3) The mapping Bp 3 u 7→ ∇Kp(u) ∈ ∗Bp is monotonic, in particular one-to-one.
(4) The weak derivative of the map Sp 3 u 7→ ∇Kp(u) ∈ ∗Bp at u applied to w ∈ Bp is

given by

D(∇Kp(u))w =
q

p
(w − Eq [w]) ,

and it is one-to-one at each point.
(5) The mapping mUqp : v 7→ p

q v is an isomorphism of ∗Bp onto ∗Bq.

(6) q/p ∈ LΦ∗(p).

(7) D (q‖p) = DKp(u)u−Kp(u) with q = eu−Kp(u)p, in particular −D(q ‖ p) < +∞.
(8)

Bq = LΦ1
0 (q) =

{
u ∈ LΦ1(p)

∣∣∣∣Ep [uqp
]

= 0

}
.

(9) eUqp : u 7→ u− Eq [u] is an isomorphism of Bp onto Bq.

2.3. Hilbert bundle, exponential bundle.
10



3. Nonparametric Information Geometry: Smooth densities

Any statistical method that requires the computation of a density function p at a given
sample point x requires the continuity of the density to ensure the existence of p(x) =

∫
p dδx,

that is, the basic sampling operation. Some applications require the computation of derivatives
at a given sample point. In this section, I will consider some examples of this type in order to
motivate a further specification of the formalism of the exponential statistical bundle.

The basic measure space is (Rn,B, µ). The reference measure is either the Lebesgue measure
or, the Gaussian probability measure. Here E (µ) denotes the exponential manifold at µ and
SE (µ) is the exponential bundle.

(1) A inner product on the Hilbert bundle of probability simplex that involves the space
derivatives has been introduced by Otto (2001) in the context of evolution equations.
The construction is not fully formalised in that paper. One full development appears in
Ambrosio, Gigli, and Savaré (2008). Another possible setup is developed Lott (2008),
who, in turn, refers to Kriegl and Michor (1997). I try to retell the story in the language
of exponential manifolds in section 3.1 below.

(2) An interesting similar case was independently developed in Hyvärinen (2005) and Parry,
Dawid, and Lauritzen (2012). They define statistical divergences that depend on deriva-
tives and prompt for a non-Fisherian Information Geometry, that is, a construction
based on a different inner product on the fibers of the relevant bundle. The classical
geometry of divergences is discussed in § 2.7 of Ay et al. (2017). See sections 3.2 and 3.3.
below. Compare § 13.6 of Amari (2016)

(3) Parabolic equations

3.1. F. Otto’s metric. Here is Otto’s definition in the context of the the statistical bundle
SE (µ) with µ(dx) = dx. For each ρ ∈ E (µ) and

s ∈ S1E (µ) =

{
s ∈ L(cosh−1) (µ)

∣∣∣∣E1 [s] =

∫
s(x)dx = 0

}
,

assume there is a solution to the elliptic equation

(5) −∇ · (ρ∇u) = s , u ∈ SρE (µ) .

Notice that the more usual border condition is replaced by an integral condition. This implies∫
s(x)φ(x) dx =

∫
∇u(x) · ∇φ(x) ρ(x)dx

for all test functions φ and prompts for the definition of the following family of inner product
on the statistical bundle:

(6) SρE (p)× SρE (p) 3 (u, v) 7→ 〈〈u, v〉〉ρ = Eρ [∇u · ∇v] .

If the velocity of the curve t 7→ ρ(t) ∈ E (µ) is computed with the score Sρ(t) = d
dt log ρ(t),

we want the natural gradient of the mapping F (ρ) = Eρ [f ] with respect to the inner product
of eq. (6). We know how to compute the natural gradient in the statistical bundle:

d

dt
F (ρ(t)) =

∫
(f − Eρ(t) [f ])Sρ(t) ρ(t)dµ .

Now consider that
∫

(f −Eρ [f ])ρ dµ = 0, so that it is possible to assume that (f −Eρ [)] ρ ∈
S1E (µ) and hence solve eq. (5). In conclusion, if V is the section of SE (µ) defined by

−∇ · (ρ∇V (ρ)) = (f − Eρ [f ])ρ , V (ρ) ∈ SρE (µ) ,

then

〈〈V (ρ(t)), Sρ(t)〉〉ρ(t) = −
∫
∇·(ρ(t)∇V (ρ(t)))Sρ(t) dµ =

∫
(f−Eρ(t) [f ])ρ(t)Sρ(t) =

d

dt
F (ρ(t)) .

A similar computation provides the natural gradient for other funcional of interest, for ex-
ample, the entropy H (ρ).
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3.2. Local scoring rules. Consider a statistical model C on a real measure space (Rn, µ) and
assume each density in the model is positive, continuous and differentiable in some (possibly
weak) sense up to an order k.

Definition 16. A local scoring rule is a mapping S : C with values in Borel function x 7→ S(x; q)
which is k-local, that is, such that S(x; q) depends on the value at x of q and the derivatives
up to order k. Moreover, assume that the risk under a positive p ∈ C is well defined as
d(p, q) = Ep(S(q)). The local scoring rule q 7→ S(q) is proper if q 7→ d(p, q) is minimized
at q = p only, that is, d(p, q) ≥ d(p, p) and d(p, q) = d(p, p) implies q = p. The divergence
associated to S is D(p, q) = d(p, q)− d(p, p).

Remark 1. The minimization of q 7→ D(p, q) is equivalent to the minimization of q 7→ d(p, q).
But notice that d and D are not equivalent from the statistician’s point of view. In fact, there
is a sampling version of the risk namely, d̂(q) =

∑N
j=1 S(Xj , q) with (Xj) IID p. Moreover,

q̂ = argmin d̂(q) is an estimator of p. On the other side, D(p, q) has no sampling version.

3.2.1. Example: log-score. It is possible to formalize in this language the construction of the
Kullback-Leibler divergence. Take C be the set of all possible continuous and bounded densities
on the Borel space (X,X , µ) and define the 0-local scoring rule S(x, q) = − log q(x). The
expectation Ep(− log q) is finite because all densities are bounded.3 Clearly,

d(p, q) = −
∫
p(x) log q(x) µ(dx) =∫

p(x)

q(x)
log

p(x)

q(x)
q(x) µ(dx)−

∫
p(x) log p(x) µ(dx) ≥∫
(p(x)− q(x)) µ(dx) + d(p, p) = d(p, p) .

The divergence can be translated to the minimum value to get a non-negative divergence,
which is precisely the Kullback-Leibler divergence,

d(p, q)− d(p, p) =

∫
p(x) log

p(x)

q(x)
µ(dx) =

∫
p(x)

q(x)
log

p(x)

q(x)
q(x) µ(dx) = D (p ‖q) .

Conversely, we could procede the other way round. The KL-divergence is always well defined
and faithful because, if we write f(t) = t log t, then f is strictly convex and bounded below, so

D (p ‖q) =

∫
f

(
p(x)

q(x)

)
q(x) µ(dx) ≥ f

(∫
p(x)

q(x)
q(x) µ(dx)

)
= f(1) = 0

and D (p ‖q) = 0 implies p/q = 1.
From the KL-divergence one could recover the score, which is that part of the divergence

that has a sample version. Notice that the application of the LLN in the sample case requires a
further assumption i.e., log q must be p-integrable for all p, q ∈M. A warranty on convergence
requires further assumptions on log q, for example, sub-exponentiality. This is the case when
the model C is a sub-model of an exponential model.

3.3. Hyvärinen divergence. Here is our main case.

Definition 17 (Hyvärinen divergence). Let us assume now that the sample space is the n-
dimensional real space and each density q ∈ C is strictly positive and such that ∂j log q = ∂jq/q
is square integrable for each p ∈M. The Hyvärinen divergence is

DH(p, q) =
1

2

∫
|∇ log p(x)−∇ log q(x)|2 p(x) dx .

3Weaker assumptions are enough. As− log q ≥ 1−q, D(p, q) is well defined, possibly +∞, if
∫
q(x)p(x) µ(dx) <

+∞ for all p, q ∈ C which is the case if C ⊂ L2(µ).
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Let us see that this divergence comes from a local scoring rule. By expanding the squared
norm of the difference, we obtain

DH(p, q) =
1

2

∫
|∇ log p(x)|2 p(x) dx+

1

2

∫
|∇ log q(x)|2 p(x) dx−

∫
∇ log p(x)·∇ log q(x) p(x) dx .

The first term does not depend on q. Integration by parts in the last term gives

−
∫
∇ log p(x) · ∇ log q(x) p(x) dx = −

∫
∇p(x) · ∇ log q(x) dx =

∫
∆ log q(x) p(x) dx ,

if the second derivatives exist and the border terms vanish. In such a case, we define the
Hyvärinen score to be

SH(q) = ∆ log q(x) +
1

2
|∇ log q(x)|2 .

Recall that minimization of the expected Hyvärinen score is the same as minimization of the
Hyvärinen divergence.

The computations above were done first in Hyvärinen (2005). The paper Parry et al. (2012)
discus the possible forms of a local scoring rule. The Hyvärinen divergence provides us with
an example where a statistical problem requires a detailed discussion of the properties of the
spatial derivatives. This methodology was originally motivated by the need of a divergence that
does not require the computation of the normalizing constant. That is, if p(x) = f(x)/Z, then
log p(x) = log f(x)− logZ and ∇ log p(x) = ∇ log f(x).

3.3.1. Example: Gaussian case. All assumptions are satisfied if C is the multivariate Gaussian
model.

Let us discuss now the case when C is a subset of the maximal exponential model E (µ), that

is q ∈ C implies q = eu−Kp(u) · p, u ∈ Bp. The Kyvärinen score is computable if p and u are
differentiable as

SH(q) = ∆(u−Kp(u))+∆ log p+
1

2
|∇(u−Kp(u)) + log p|2 = ∆u+∆ log p+

1

2
|∇u+∇ log p|2 .

The risk at p (the same as in the chart) is

Ep [SH(q)] = Ep [∆u] + Ep [∆ log p] +
1

2
Ep
[
|∇u+∇ log p|2

]
=

1

2
Ep
[
|∇u|2

]
+ Ep [∇u · ∇ log p] +

1

2
Ep
[
|∇ log p|2

]
=

1

2
Ep
[
|∇u|2

]
+

1

2
Ep
[
|∇ log p|2

]
.

In conclusion, in the exponential parametrization, the Hyvärinen divergence is associated
with a special inner product on the exponential bundle,

〈〈u, v〉〉p = Ep [∇u · ∇v] , u, v ∈ Bp .

3.3.2. Variations on the theme: deformed exponentials. Another option is to substitute the log
function with the Nigel Newton deformed logarithm logA(t) =

∫
ds/A(s), A(t) = s/(1 + s). See

the references to this formalism in Montrucchio and Pistone (2017). A possible definition in
this case is

DAH(p, q) =
1

2

∫
|∇ logA p(x)−∇ logA q(x)|2A(p(x)) dx .

Part 2. Gaussian probability space

In this second part, the idea is to review the construction of the exponential manifold using
tools from the analysis of Gaussian spaces. A short recap of facts about the Gaussian space as
it is defined in P. Malliavin textbook (Malliavin, 1995, Ch. V) is offered in section 4.1. Here, I
consider only the finite-dimensional sample space. References for the infinite-dimensional case
are monographs Malliavin (1997) and Nourdin and Peccati (2012). These notes are partly taken
from Pistone (2017, 2018a).
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Fisherian Information Geometry considers properties of statistical models that are invariant
under measurable transformation of the sample space. This fact is well expressed by Chentsov
characterization of the Fisher information. See Ch. 5 of Ay et al. (2017).

Any assumption on a specific structure of the sample space actually changes the picture. For
example, on the real space is natural to consider statistical models induced by the action of a
flow and the properties of such models could ardly be described with the tools of IG alone.

4. Information Geometry on the Gaussian space

When the sample space is Rn, there is a particular class of statistical models of interest,
namely, translation models. If f is a probability density of the Lebesgue measure, for each
h ∈ Rn, the curve θ 7→ f(x− θh) defines a curve whose Fisher’s score is

d

dθ
log f(x− θh) =

∇f(x− θh) · h
f(x− θh)

and whose Fisher information is

∫
(∇f(x− θh) · h)2

f(x− θh)2
f(x− θh) dx =

∫
(∇f(y) · h)2

f(y)
dy .

It is interesting to note that the quantity above appears in Statistical Physics literature with
the name Fisher Information but without any reference to the Fisher-Rao-Cernov theory. Let
us see an example of its use, taken from § 5.5.2-3 of McKean (2014).

Example. In dimension 1, take a density q with mean value 0 and variance 1. Observe that

F (q) =

∫
(q′ + xq)2

q
=

∫
(q′)2

q
+ 2

∫
xqq′

q
+

∫
x2q2

q
=

∫
(q′)2

q
− 1

is zero only if q′ + xq = 0, that is, q(x) = (2π)−1/2e−x
2/2.

Let q(t) be the density of Y = e−tX +
√

1− e−2tZ with X ∼ q independent of Z ∼ N(0, 1).

One has ∂
∂tq(y; t) = ∂2

∂y2
q(y; t) + ∂

∂y (yq(y; t)). In fact,

∫
φ(y)

d

dt
q(y; t) dy =

d

dt
E
(
φ
(

e−tX +
√

1− e−2tZ
))

=

E
(
φ′
(

e−tX +
√

1− e−2tZ
)(
−e−tX +

e−2t

√
1− e−2t

Z

))
=

E
(
φ′
(

e−tX +
√

1− e−2tZ
)(
−e−tX −

√
1− e−2tZ +

1√
1− e−2t

Z

))
=∫

φ′(y)yq(y; t) dy +
1√

1− e−2t

∫
E
(
φ′
(

e−tX +
√

1− e−2tz
))

zγ(z)dz =∫
φ′(y)yq; t(y) dy − 1√

1− e−2t

∫
E
(
φ′
(

e−tX +
√

1− e−2tz
))

γ′(z)dz =∫
φ′(y)yq(y; t) dy +

∫
E
(
φ′′
(

e−tX +
√

1− e−2tz
))

γ(z)dz =

∫
(φ′(y)y + φ′′(y))q(y; t)

Let us compute the rate of entropy production of t 7→ q(t):
14



d

dt

(
−
∫
q(t) log q(t)

)
= −

∫
(log q(t) + 1)q̇(t) =

−
∫

(log q(y; t) + 1)

(
∂2

∂y2
q(y; t) +

∂

∂y
(yq(y; t))

)
dy =

∫ (
∂
∂y q(y; t)

)2

q(y; t)
+

∫
y
∂

∂y
q(y; t) dy +

∫ (
∂
∂y q(y; t)

)2

q(y; t)
− 1 = F (q(t)) .

This has to be compared with the generic equation:

d

dt
H(q(t)) = 〈gradH(q(t)), Sq(t)〉q(t) = 〈− log(q(t))−H(q(t)), Sq(t)〉q(t) .

Here we have used the specific evolution equation for t 7→ q(t).
McKean proceeds with the proof of a “logaritmic Sobolev inequality.”

4.1. Analysis of the Gaussian space. On the Gaussian space, computations like those illus-
trated in the previous section must be adapted. Let us show, in particular, what happens with
the translations.

We denote by τh the translation operator τhu(x) = u(x− h). The following result shows the
kind of checking we need in the Gaussian space.

Proposition 18 (Translation). If u ∈ L2(γ) then τhu ∈ L1(γ) and the mapping u 7→ τhu is

continuous with norm bounded by e|h|
2

.

Proof. We have

‖u‖L1(γ) =

∫
|u(x− h)|γ(x) dx =∫

|u(y)| γ(y + h) dy =

∫
|u(y)| γ(x+ h)γ−1(y)γ(y) dy ≤(∫

γ2(y + h)γ−1(y) dy

)1/2

‖u‖L2(γ) = e|h|
2

‖u‖L2(γ) ,

where the last equality follows from the computation

γ2(y + h)γ−1(y) = (2π)n/2e
1
2
|y|2−|y+h|2 = (2π)n/2e|h|

2

e−
1
2
|y−2h|2 .

�

Compare with the case of Lebesgue spaces where the translation is an isometry from each
space into itself. If u ∈ L2(γ), we want to consider the differentiability of h 7→ τhu ∈ L1(γ).

If f : Rn → R is differentiable define δjf(x) = xjf(x)− ∂
∂xj

f(x) and δα =
∏n
j=1 δ

αj
j , α ∈ A =

Zn≥, and the Hermite polynomials are defined by Hα(x) = δα1. It is an orthogonal total system

in L2(γ) = L2(Rn,B, γ) with ‖Hα‖2γ =
∫
Hα(x)2γ(x) dx = α! .

Each u ∈ L2(γ) has the Fourier expansion

u =
∑
α∈A

cα(u)
1

α!
Hα , cα(u) = 〈u,Hα〉γ =

∫
u(x)Hα(x)γ(x) dx ,

with ‖u‖2γ =
∑

α∈A c
2
α

1

α!
. Let π be the finite measure on A defined by π(α) = 1/α!. The

mapping u↔ c· is an isometry between L2(γ) and L2(π). In Malliavin (1997) the space (A, π)
is called the numerical model of the Gaussian space.
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As ∂jHα = αjHα−ej if αj ≥ 1, zero otherwise, and δjHα = Hα+ej , we can define the operators

on L2(γ)

∂j

(∑
α∈A

cα
1

α!
Hα

)
=
∑
α∈A

cα+ej

1

α!
Hα ,

δj

(∑
α∈A

cα
1

α!
Hα

)
=

∑
α∈A : αj≥1

αjcα−ej
1

α!
Hα ,

δj∂j

(∑
α∈A

cα
1

α!
Hα

)
=
∑
α∈A

αjcα
1

α!
Hα ,

whose domains are, respectively,

dom (∂j) =

{∑
α∈A

c2
α+ej

α!
<∞

}
,

dom (δj) =

∑
α, 6=0

α2
jc

2
α−ej
α!

<∞

 ,

dom (δj∂j) =

{∑
α∈A

α2
jc

2
α

α!
<∞

}
.

Proposition 19. The operators ∂j, δj, δj∂j are closed.

Proposition 20. If u ∈ dom (∂j) and v ∈ dom (δj). then 〈∂ju, v〉γ = 〈u, δjv〉γ.

In particular, if u ∈ dom (∂j) and φ ∈ C∞0 (Rn) (compact support) then φ, δjφ ∈ L2(γ) and
φ ∈ dom (δj) so that 〈∂ju, φ〉γ = 〈u, δjφ〉γ .

Under the same assumptions, let us consider the ordinary integral and the distributional
definition of partial derivative. The space of infinitely differentiable functions with compact
support is denoted C∞0 (Rn). Notice that, if B is a ball, the restriction to B is continuous
mapping from L2(γ) into L2(B).∫

∂ju(x)φ(x) dx =
∑
α∈A

cα+ej

1

α!

∫
Hα(x)φ(x) dx =

∑
α∈A

cα+ej

1

(α+ ej)!

∫
∂jHα+ej (x)φ(x) dx = −

∫
u(x)∂jφ(x) dx ,

so the operator ∂j coincides with the derivative in the sense of distributions. The following
proposition is a converse statement.

Proposition 21. If u ∈ L2(γ) and u′ is the j-partial derivative in the sense of distributions,∫
u′(x)φ(x) dx = −

∫
u(x)∂jφ(x) dx , φ ∈ C∞0 (Rn) ,

and u′ ∈ L2(γ), then u ∈ dom (∂j) and ∂j = u′.

If u ∈ dom (∂j) for all j, the gradient operator ∇ is defined as the vector field whose compo-
nents are the ∂ju(x). Its domain is the intersection of the domains dom (∇) = ∩nj=1 dom (∂j).

Proposition 22 (Poincaré inequality). If u ∈ dom (∇) then∫ ∣∣∣∣u(x)−
∫
u(y)γ(y) dy

∣∣∣∣2γ(x) dx ≤
∫
‖∇u(x)‖2γ(x) dx .
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Proof. The following proof is given in the numerical model. Other proof are given in the quoted
literature. We have ∂ju =

∑
α cα+ej

1
α!Hα for each j, hence

‖∂ju‖2γ =
∑
α

c2
α+ej

α!
=
∑
α

(αj + 1)
c2
α+ej

(α+ ej)!
=
∑
αj≥1

αj
c2
α

α!
≥
∑
αj≥1

c2
α

α!
.

It follows

‖∇u‖2γ =
n∑
j=1

‖∂ju‖2γ =
n∑
j=1

∑
αj≥1

c2
α

α!
≥
∑
α 6=0

c2
α

α!
.

As c0 =
∫
u(x)γ(x) dx , we have proved the Poincaré inequality, �

Proposition 23 (Gauss-Taylor expansion). If f ∈ C∞(Rn) and ∂αf ∈ L2(γ) for all α ∈ A,
then

f =
∑
α

〈f,Hα〉γ
1

α!
Hα =

∑
α∈A

(∫
∂αf(x)γ(x) dx

)
1

α!
Hα

and

‖f‖2γ =
∑
α∈A

(∫
∂αf(x)γ(x) dx

)2 1

α!
.

Definition 24 (The space D). We denote by D the domain of ∇ endowed with the Hilbert
norm

‖u‖2D = ‖u‖2γ +
n∑
j=1

‖∂ju‖2γ .

Proposition 25. If u ∈ dom (∇) and h ∈ Rn, then h 7→ τ−hu is differentiable as a mapping in
L1(γ) with derivative in L2(γ) given by

τ−h − u =

∫ 1

0
τ−sh∇u · h ds = ∇u · h+

∫ 1

0
(τ−sh∇u− u) · h ds

Proof. Consider the measurable mapping

[0, 1]× Rn 3 (t, x) 7→ ∇u(x+ th) · h
and observe that ∇u(x+ th) · h = τ−th∇u(x+ th) · h. By proposition 18∫ 1

0
dt

∫
|∇u(x+ th) · h|γ(x) dx ≤

∫ 1

0
et

2|h|2 dt < +∞ .

By Fubini theorem, the partial integration

v(x) =

∫ 1

0
∇u(x+ th) · h dt

is a γ-integrable random variable, in particular it is locally integrable. For each φ ∈ C∞0 (Rn),∫
φ(x)v(x) dx =

∫
φ(x)

(∫ 1

0
∇u(x+ th) · h dt

)
dx =

∫ 1

0

∫ φ(x)

n∑
j=1

hj∂ju(x+ sh) dx

 dt =

∫ 1

0

∫ φ(y − sh)

n∑
j=1

hj∂ju(y) dy

 dt =

∫ 1

0

(∫
−∇φ(y − sh) · h u(y) dy

)
dt =

∫ (∫ 1

0

d

ds
φ(y − sh)

)
u(y) dy =∫

(φ(y − h)− φ(y))u(y)dy =

∫
φ(x) (u(x+ h)− u(x)) dx ,

hence v(x) = u(x+ h)− u(x). �
17



4.2. Gaussian Hyvärinen. On the Gaussian space (Rn, γ), γ(x) = (2π)−n/2e−|x|
2/2, consider

two densities of the exponential manifold p, q ∈ E . We have log p, log q ∈ L(cosh−1) (γ) ∈ L2(γ).
If we assume moreover log p, log q ∈ D, the quantity

|∇ log p−∇ log q|2

is well defined in L1(γ), but this is not enough to ensure the finitness of

DGH(p, q) =
1

2

∫
|∇ log p(x)−∇ log q(x)|2 p(x)γ(x) dx ,

unless p = 1. Here, the issue is the dependence on a variable p, that appears both in the
gradient and in the integration.

5. Gaussian Orlicz-Sobolev exponential manifold

This part of the lectures follows closely Pistone (2018a) and is more detailed that the previous
parts. We give essentially full proofs or detailed references and offer the discussion of a number of
critical examples, precisely, the same examples that have been informally discussed in section 3.

In all this section the sample space is the real Gaussian space of dimension n, (Rn,B, γ). The
standard Gaussian density is denote by γ.

5.1. Orlicz spaces. First, we review basic facts about Orlicz spaces, see, for example, Ch. II
of Musielak (1983).

The couple of Young functions (cosh−1) and its conjugate (cosh−1)∗ are associated with

the Orlicz space L(cosh−1) (γ) and L(cosh−1)∗ (γ), respectively. The choice of this specific couple
is inessential. For example, as 1

2ex ≤ coshx ≤ ex, the couple ex − 1 and y log y − y would give
the same results.

The space L(cosh−1) (γ) is called exponential space and is the vector space of all functions
such that

∫
(cosh−1)(αf(x))γ(x) dx <∞ for some α > 0. This is the same as saying that the

moment generating function Gf (t) =
∫

etf(x)γ(x) dx is finite on a open interval containing 0.

Computations. If x, y ≥ 0, we have (cosh−1)′(x) = sinh(x), (cosh−1)′∗(y) = sinh−1(y) = log
(
y +

√
1 + y2

)
,

(cosh−1)∗(y) =
∫ y

0
sinh−1(t) dt. The Fenchel-Young inequality is

xy ≤ (cosh−1)(x) + (cosh−1)∗(y) =

∫ x

0

sinh(s) ds+

∫ y

0

sinh−1(t) dt

and

(cosh−1)(x) = x sinh(x)− (cosh−1)∗(sinh(x)) ;

(cosh−1)∗(y) = y sinh−1(y)− (cosh−1)(sinh−1(y))

= y log
(
y + (1 + y2)1/2

)
− (1 + y2)−1/2 .

The conjugate Young function (cosh−1)∗ is associated with the mixture space L(cosh−1)∗ (γ).
In this case, we have the inequality

(7) (cosh−1)∗(ay) ≤ C(a)(cosh−1)∗(y), C(a) = max(|a| , a2) .

In fact

(cosh−1)∗(ay) =

∫ ay

0

ay − t√
1 + t2

dt = a2

∫ y

0

y − s√
1 + a2s2

ds = a

∫ y

0

y − s√
1
a2

+ s2
ds .

The inequality (7) follows easily by considering the two cases a > 1 and a < 1. As a consequence,

g ∈ L(cosh−1)∗ (γ) if, and only if,
∫

(cosh−1)∗(g(y))γ(y) dy <∞.
In the theory of Orlicz spaces, the existence of a bound of the type (7) is called ∆2-property,

and it is quite relevant. In our case, it implies the following. See the proof in the reference
given above.
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Proposition 26. The mixture space L(cosh−1)∗ (γ) is the dual space of its conjugate, the ex-

ponential space L(cosh−1) (γ). Moreover, a separating sub-vector space e.g., C∞0 (Rn), is norm-
dense.

Other Young couple. In the definition of the associated spaces, the couple (cosh−1) and (cosh−1)∗ is
equivalent to the couple defined for x, y > 0 by Φ(x) = ex − 1− x and Ψ(y) = (1 + y) log (1 + y)− y. In

fact, for t > 0 we have log (1 + t) ≤ log
(
y +
√

1 + t2
)

and

log
(
t+
√

1 + t2
)
≤ log

(
t+
√

1 + 2t+ t2
)

= log (1 + 2t) ,

so that we derive by integration the inequality

Ψ(y) ≤ (cosh−1)∗(y) ≤ 1

2
Ψ(2y) .

In turn, conjugation gives
1

2
Φ(x) ≤ (cosh−1)(x) ≤ Φ(x) .

The exponential space L(cosh−1) (γ) and the mixture space L(cosh−1)∗ (γ) are the spaces of
real functions on Rn respectively defined using the conjugate Young functions cosh−1 and
(cosh−1)∗. The exponential space and the mixture space are given norms by defining the

closed unit balls of L(cosh−1) (γ) and L(cosh−1)∗ (γ), respectively, by{
f

∣∣∣∣ ∫ (cosh−1)(f(x)) M(x)dx ≤ 1

}
,

{
g

∣∣∣∣ ∫ (cosh−1)∗(g(x)) M(x)dx ≤ 1

}
.

Such a norm is called Luxemburg norm.
The Fenchel-Young inequality

xy ≤ (cosh−1)(x) + (cosh−1)∗(y)

implies that (f, g) 7→ EM [fg] is a separating duality, precisely∣∣∣∣∫ f(x)g(x)γ(x) dx

∣∣∣∣ ≤ 2 ‖f‖L(cosh−1)(γ) ‖g‖L(cosh−1)∗ (γ) .

A random variable g has norm ‖g‖L(cosh−1)∗ (γ) bounded by ρ if, and only if, ‖g/ρ‖L(cosh−1)∗ (γ) ≤
1, that is EM [(cosh−1)∗(g/ρ)] ≤ 1, which in turn implies

EM [(cosh−1)∗(αg)] = EM [(cosh−1)∗(αρ(g/ρ))] ≤ ρα

for all α ≥ 0. This is not true for the exponential space L(cosh−1) (γ).
It is possible to define a dual norm, called Orlicz norm, on the exponential space, as follows.

We have ‖f‖(L(cosh−1)∗ (γ))∗ ≤ 1 if, and only if
∣∣∫ f(x)g(x)γ(x) dx

∣∣ ≤ 1 for all g such that∫
(cosh−1)∗(g(x))γ(x) dx ≤ 1. With this norm, we have

(8)

∣∣∣∣∫ f(x)g(x)γ(x) dx

∣∣∣∣ ≤ ‖f‖(L(cosh−1)∗ (γ))∗ ‖g‖L(cosh−1)∗ (γ)

The Orlicz norm and the Luxemburg norm are equivalent, precisely,

‖f‖L(cosh−1)(γ) ≤ ‖f‖L(cosh−1)∗ (γ)∗ ≤ 2 ‖f‖L(cosh−1)(γ) .

We define the Banach space of centered random variables in the exponential space,

SγE =

{
u ∈ L(cosh−1) (γ)

∣∣∣∣ ∫ u(x)γ(x) dx = 0

}
and the moment function Zγ : SγE → R> ∪ {∞}, Zγ(u) =

∫
eu(x)γ(x) dx .

Proposition 27. Zγ is strictly convex ad its proper domain contains the open unit ball of
SγE. The interior S1 of the proper domain of the moment generating function is a convex open
nonempty subset of SγE.
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5.2. Exponential arcs. The use of the exponential space L(cosh−1) (γ) is justified by the fact
that for every 1-dimensional exponential family of the Gaussian space

J 3 θ 7→ p(θ) ∝ eθv , J neighborhood of 0 ,

the sufficient statistics v belongs to the exponential space, v ∈ L(cosh−1) (γ).
Actually, we are going to see now the simple, but crucial, result that extends the construction

to a manifold of positive densities containing γ. This topic has been incrementally developed
in a series of paper, Cena and Pistone (2007); Santacroce, Siri, and Trivellato (2016b, 2018).

Definition 28. Two positive densities p and q of the Gaussian space, p, q ∈ E (γ), are said to
connected by an open exponential arc, p ^ q, if there exists an interval J containing [0, 1] such
that

(9)

∫
p(x)1−θq(x)θγ(x) dx < +∞ , θ ∈ J .

This is the same as the existence of an exponential family p(t) = etu−ψ(t) · p with t ∈ J , I =
◦
J

and p(0) = p, p(1) = q.

The following theorem is the key result for our construction.

Theorem 29. Consider positive densities p, q ∈ P+(γ). If the two densities are connected by

an open exponential arc, p ^ q, then L(cosh−1) (p · γ) = L(cosh−1) (q · γ).

Proof. The relation p ^ q is symmetric, then it is enough to show one inclusion. Let be given
w ∈ L(cosh−1) (p · µ) and let p(t) ∝ etup, t ∈ J , be the open exponential curve that connects p
and q. The function

(10) R× J 3 (α, t) 7→
∫

1

2
(exp (αw + tu) + exp (−αw + tu)) γdµ ,

is clearly convex. At t = 0 the value is proportional to Ep [(cosh−1)(αw)]. Because of the

assumption w ∈ L(cosh−1) (p · γ), that value is finite for all α in an open interval I around 0.
If α = 0, the value is equal to the normalizing constant of the model so that it is finite for
all t ∈ J . It follows that the value of ?? is finite on the convex set generated by I × {0} and
{0} × J , in particular on the vertical section at t = 1, where it is equal to Eq [cosh(αw)]. �

Remark 2. Note that the equality of the two Orlicz spaces implies the equivalence of the norms,
that is the spaces are homeomorphic as Banach spaces. This is a general result for Orlicz spaces,
see Lemma 1 of Cena and Pistone (2007). This is an essential ingredient of the full picture.

Let us show that the open exponential connection is an equivalent relation.

Proposition 30. If p, q ∈ P+(γ) are connected by an open exponential arc, p ^ q, then log p
q

and log q
p belong to both L(cosh−1) (p · γ) and L(cosh−1) (q · γ). Moreover, ·^ · is an equivalence

relation.

Proof. The integral in eq. (9) can be rewritten in exponential form in two ways,∫ (
q

p

)θ
p γ =

∫
exp

(
θ log

q

p

)
p γ < +∞ , θ ∈ J ,

and ∫ (
p

q

)θ
q γ =

∫
exp

(
(1− θ) log

p

q

)
q γ < +∞ , θ ∈ J .

This shows that the condition is necessary.

Conversely, consider that the exponential family p(θ) ∝ exp
(
θ log q

p

)
p is well defined in a

neighborhood of 0 because of log q
p ∈ L

(cosh−1) (p · γ) . Moreover,

exp

(
θ log

q

p

)
p =

(
q

p

)θ
p =

(
p

q

)1−θ
q = exp

(
(1− θ) log

p

q

)
q
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so that the exponential model is defined in a neighborhood of 1 because of log q
p ∈ L

(cosh−1) (q · γ).

The relation ^ is reflexive and symmetric. Assume now p ^ q and q ^ r. In follows
from proposition 29 that L(cosh−1) (p · γ) = L(cosh−1) (q · γ) = L(cosh−1) (r · γ). We want to

show that log p
r ∈ L

(cosh−1) (r · γ). But log p
r = log p

q + log q
r with log p

q ∈ L
(cosh−1) (q · γ) and

log q
r ∈ L

(cosh−1) (r · γ). The equality of all spaces yelds the conclusion. The same when p and
r are exchanged. �

Definition 31. The equivalence class for the relation ^ that contains p is the maximal expo-
nential model at p, denoted E(p).

We focus here on the equivalence class containing 1. It is the maximal exponential model
E = E(1) of the Gaussian space.

Let us write eq. (9) with p = 1 and q(x) = ev(x),

(11)

∫
eθv(x)γ(x) dx < +∞ , θ ∈ J .

It is clear that q ∈ E implies v = log q ∈ L(cosh−1) (γ). Conversely, if q = ev and v ∈
L(cosh−1) (γ) i.e., ∫

cosh (αv(x))γ(x) dx ≤ 2 for some α > 0 ,

then
∫

eθvγ ≤ 4 for θ ∈]− α, 0]. For θ ∈ [0, 1] the convexity of the exponential implies∫
eθv(x)γ(x) dx ≤ (1− θ) + θ

∫
ev(x)γ(x) dx = 1 .

The condition θ ∈]−α, 1] define an exponential arc which connects γ and q, but it is not open.

In conclusion, the condition q = ev, v ∈ L(cosh−1) (γ), does not imply qE .
Here is a possible description of E .

Proposition 32. (1) The cumulant mapping K : L(cosh−1) (γ)→ [0,∞] is convex and L.S.C.
The proper domain {K <∞} = domK contains unit ball. The interior of the proper
domain (domK)◦ is a convex set that contains the open unit ball.

(2) The positive density q ∈ P+(γ) belongs to the class E if, and only if, has the exponential
form q = exp (u−K(u)) with u ∈ (domK)◦.

Proof. (1) The closed unit ball is
{
u ∈ L(cosh−1) (γ)

∣∣E (cosh(u)− 1) ≤ 2
}

. For such an u,
E (eu) ≤ 2E (cosh(u)) ≤ 4 < +∞. From this, the second statement is follows. See
theorem III.(2.5) in Barvinok (2002).

(2) Assume u ∈ (domK)◦. It follows that the set of θ’s such that θu ∈ (domK)◦ is an

open interval that contains [0, 1], so that q = eu−K(u) ^ 1. Conversely, assume q ^ 1,
and consider the exponential curve θ 7→ q(θ) ∝ eθu, θ ∈ J , J open super-interval of
[0, 1]. For each θ1 ∈ J such that θ1 > 1, from the existence of the exponential curve we
get θ1u ∈ domK. As 0 is contained in the interior of domK, and u is a strict convex
combination of 0 and θu, it follows u ∈ (domK)◦ (see lemma III.(2.4) of Barvinok
(2002)).

�

5.3. Entropy. The statistical interest of the mixture space L(cosh−1)∗ (γ) resides in its relation
with entropy.

If f is a positive density of the Gaussian space,
∫
f(x)γ(x) dx = 1, we define its entropy to

be H (f) = −
∫
f(x) log f(x)γ(x) dx . As x log x ≥ x − 1 and it is strictly convex, the integral

is well defined and H (f) > 0 unless f = 1. It holds

(12) −
∫
f(x) log+ f(x)γ(x) dx ≤ H (f) ≤ e−1 −

∫
f(x) log+ f(x)γ(x) dx ,

where log+ is the positive part of log.
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Proposition 33. A positive density f of the Gaussian space has finite entropy if, and only if,
f belongs to the mixture space L(cosh−1)∗ (γ).

Proof. We use Eq. (12) in order to show the equivalence. For x ≥ 1 it holds

2x ≤ x+
√

1 + x2 ≤ (1 +
√

2)x .

It follows

log 2 + log x ≤ log
(
x+

√
1 + x2

)
= sinh−1(x) ≤ log

(
1 +
√

2
)

+ log x ,

and, taking the integral
∫ y

1 with y ≥ 1, we get

log 2(y − 1) + y log y − y + 1 ≤
(cosh−1)∗(y)− (cosh−1)∗(1) ≤

log
(

1 +
√

2
)

(y − 1) + y log y − y + 1 ,

then, substituting y > 1 with max(1, f(x)), f(x) > 0,

(log 2− 1)(f(x)− 1)+ + f(x) log+ f(x) ≤
(cosh−1)∗(max(1, f(x)))− (cosh−1)∗(1) ≤

(log
(

1 +
√

2
)
− 1)(f(x)− 1)+ + f(x) log+ f(x) .

By taking the Gaussian integral, we have

(log 2− 1)

∫
(f(x)− 1)+γ(x) dx +

∫
f(x) log+ f(x)γ(x) dx ≤∫

(cosh−1)∗(max(1, f(x)))γ(x) dx − (cosh−1)∗(1) ≤

(log
(

1 +
√

2
)
− 1)

∫
(f(x)− 1)+γ(x) dx +

∫
f(x) log+ f(x)γ(x) dx ,

which in turn implies the statement because f ∈ L1(M) and∫
(cosh−1)∗(f(x))γ(x) dx + (cosh−1)∗(1) =∫

(cosh−1)∗(max(1, f(x)))γ(x) dx +

∫
(cosh−1)∗(min(1, f(x)))γ(x) dx .

�

Of course, this proof does not depend on the Gaussian assumption.

5.4. Orlicz and Lebesgue spaces. We discuss now the relations between the exponential
space, the mixture space, and the Lebesgue spaces. This provides a first list of classes of
functions that belong to the exponential space or to the mixture space. The first item in
the proposition holds for a general base probability measure, while the other is proved in the
Gaussian case.

Proposition 34. Let 1 < a <∞.

(1)

L∞(M) ↪→ L(cosh−1) (γ) ↪→ La(M) ↪→ L(cosh−1)∗ (γ) ↪→ L1(M) .

(2) If ΩR = {x ∈ Rn | |x| < R}, the restriction operator is defined and continuous in the
cases

L(cosh−1) (γ)→ La(ΩR), L(cosh−1)∗ (γ)→ L1(ΩR)

Proof. (1) See (Musielak, 1983, Ch. II).
22



(2) For all integers n ≥ 1,

1 ≥
∫

(cosh−1)

(
f(x)

‖f‖L(cosh−1)(γ)

)
M(x) dx ≥

∫
ΩR

1

(2n)!

(
f(x)

‖f‖L(cosh−1)(γ)

)2n

M(x) dx ≥

(2π)−n/2e−R
2/2

(2n)! ‖f‖L(cosh−1)(γ)

∫
ΩR

(f(x))2n dx.

�

5.5. Maximal exponential model on the Gaussian space. Here, we read from Ch. V of
Malliavin (1995), Pistone (2013b), Santacroce, Siri, and Trivellato (2016b).

Let us repeat again our construction. If γ is the standard n-dimensional Gaussian density,
consider a 1-dimensional Gibbs model t 7→ etv/Z(t) · γ, with t ∈ I, I open and 0 ∈ I. The

partition function Z(t) =
∫

etv(x) γ(x) dx < +∞, the “energy”random variable v is subject to
a restrictive condition.

More generally, given any positive density p ∈ P≥ of the n-dimensional real space endowed
with the standard Gaussian, the class of possible “energy” random variables is

L(cosh−1) (p) =
{
v ∈ L0(p)

∣∣Ep [cosh(αv)] < +∞ for some α > 0
}
.

It is the Orlicz space we call exponential Orlicz space, see Musielak (1983). The closed unit ball
is {

v ∈ L(cosh−1) (p)
∣∣∣Eγ [ev] ≤ 1

}
.

It is easy to check that

L∞(p) ⊂ L(cosh−1) (p) ⊂ L∞−0 = ∩α≥1L
α(p)

with continuous injections. We define Bp =
{
v ∈ L(cosh−1) (p)

∣∣Ep [v] = 0
}

. The statistical
bundle

SE (γ) = {(p, v) | p ∈ E (γ) , v ∈ Bp}
is the natural non-parametric set-up for Information geometry in the sense of Amari (1982,
1985); Pistone and Sempi (1995).

The function
Kp : Bp 3 u 7→ logEp [eu] ∈ [0,+∞]

is convex and lower semi-continuous. The proper domain dom (Kp) is a convex set and the
interior of the proper domain Sp is an open convex set containing the open unit ball of Bp. For
each u ∈ Sp we define the density

ep(u) = eu−Kp(u) · p ∈ E (γ) .

The set of all such densities in the maximal exponential model at p, E (p). If q = ep(u), then

u = sp(q) = log q
p − Ep

[
log q

p

]
. That is, ep : Sp → E (p) with inverse sp : E (p) → Sp. We

define the binary relation ^ on P≥ by saying that p ^ q if p and q are connected by an open
exponential arc. It is an equivalence relation Cena and Pistone (2007).

The global structure as p varies is clarified by the following “Portmanteau theorem,” cf.
(Santacroce et al., 2016b, Th. 4.7). The following propositions are equivalent:

(1) q ∈ E (p);
(2) p ^ q;
(3) E (p) = E (q);

(4) L(cosh−1) (p) = L(cosh−1) (q);

(5) log q
p ∈ L

(cosh−1) (p) and log q
p ∈ L

(cosh−1) (q);

(6) q
p ∈ L

α(p) and p
q ∈ L

α(q) for some α > 1.
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As a consequence, given a ^-class of densities E , the atlas of charts

sp(q) = log
q

p
− Ep

[
log

q

p

]
∈ L(cosh−1) (p) , q ∈ E ,

p ∈ E , defines the exponential affine manifold and the statistical bundle

SE = {(p, u) | p ∈ E , u ∈ Bp}

is the expression of the tangent bundle in the atlas Pistone (2013b).
In the rest of the talk we focus on the Gaussian case that is E = E (1).
Let (cosh−1)∗ the convex conjugate of (cosh−1),

(cosh−1)∗(y) = sup
x

(xy − (cosh−1)(x)) .

This convex function defines the Orlicz space L(cosh−1)∗ (p) whose dual is L(cosh−1) (p) in the
bilinear form

L(cosh−1) (p)× L(cosh−1)∗ (p) 3 (u, f) 7→
∫
u(x)f(x)γ(x) dx .

We have, for each p ∈ E and a > 1, that

L∞(p) ⊂ L(cosh−1) (p) ⊂ La(p) ⊂ L(cosh−1)∗ (p) ⊂ L1(p) .

with continuous injections.

5.5.1. Gaussian Hyvärinen divergence: special case. The Gaussian version of the Hyvärinen
divergence can be discussed with assumptions the type log p ∈ D to get similar expression for
the Hyvärinen score with some partial derivatives replaced by the operator δ. However, extra
assumptions are still necessary to ensure finite values on the integrals and smoothness of the
relevant quantities.

The GH divergence between the densities p = eu−K(u) and q = ev−K(v), q ∈ E (γ), is

DGH(p, q) =
1

2

∫
|∇ log p(x)−∇ log q(x)|2 p(x) γ(x)dx =

1

2

∫
|∇u(x)−∇v(x)|2 p(x) γ(x)dx .

which is well defined if u, v ∈ L(cosh−1) (γ) ∩ D.
Let us compute the risk. We have

1

2
Ep
[
|∇u−∇v|2

]
=

1

2
Ep
[
|∇u|2

]
+

1

2
Ep
[
|∇v|2

]
+ Ep [∇u · ∇v] =

1

2
Ep
[
|∇u|2

]
+

1

2
Ep
[
|∇v|2

]
+ Ep [∇u · ∇v] =

5.6. Maximal exponential model modeled on Orlicz-Sobolev spaces with Gaussian
weight. It is clear from the preceding discussion that we need to introduce a class of random
variables that ensures both the existence of the exponential manifold and the existence of
derivatives. This is accomplished by the following definitions taken from Pistone (2018b).

Definition 35. The exponential and the mixture Orlicz-Sobolev-Gauss (OSG) spaces are, re-
spectively,

W 1,(cosh−1) (M) =
{
f ∈ L(cosh−1) (M)

∣∣∣ ∂jf ∈ L(cosh−1) (M)
}
,(13)

W 1,(cosh−1)∗ (M) =
{
f ∈ L(cosh−1)∗ (M)

∣∣∣ ∂jf ∈ L(cosh−1)∗ (M)
}
,(14)

where ∂j , j = 1, . . . , n, is the partial derivative in the sense of distributions.
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As φ ∈ C∞0 (Rn) implies φM ∈ C∞0 (Rn), for each f ∈W 1,(cosh−1)∗ (M) we have, in the sense
of distributions, that

〈∂jf, φ〉M = 〈∂jf, φM〉 = −〈f, ∂j(φM)〉 = 〈f,M(Xj − ∂j)φ〉 = 〈f, δjφ〉M ,

with δjφ = (Xj − ∂j)φ. The Stein operator δi acts on C∞0 (Rn).
The meaning of both operators ∂j and δj = (Xj − ∂j) when acting on square-integrable

random variables of the Gaussian space is well known, but here we are interested in the action
on OSG-spaces. Let us denote by C∞p (Rn) the space of infinitely differentiable functions with
polynomial growth. Polynomial growth implies the existence of allM -moments of all derivatives,
hence C∞p (Rn) ⊂W 1,(cosh−1)∗ (M). If f ∈ C∞p (Rn), then the distributional derivative and the
ordinary derivative are equal and moreover δjf ∈ C∞p (Rn). For each φ ∈ C∞0 (Rn) we have
〈φ, δjf〉M = 〈∂jφ, f〉M .

The OSG spaces W 1
cosh−1(M) and W 1

(cosh−1)∗
(M) are both Banach spaces. In fact, both the

product functions (u, x) 7→ (cosh−1)(u)M(x) and (u, x) 7→ (cosh−1)∗(u)M(x) are φ-functions
according the Musielak’s definition. The norm on the OSG-spaces are the graph norms,

(15) ‖f‖W 1
(cosh−1)

(M) = ‖f‖L(cosh−1)(M) +
n∑
j=1

‖∂jf‖L(cosh−1)(M)

and

(16) ‖f‖W 1
(cosh−1)∗

(M) = ‖f‖L(cosh−1)(M) +

n∑
j=1

‖∂jf‖L(cosh−1)(M) .

We review some relations between OSG-spaces and ordinary Sobolev spaces. For all R > 0

(2π)−
n
2 ≥M(x) ≥M(x)(|x| < R) ≥ (2π)−

n
2 e−

R2

2 (|x| < R), x ∈ Rn.

Proposition 36. Let R > 0 and let ΩR denote the open sphere of radius R.

(1) We have the continuous mappings

W 1,(cosh−1) (Rn) ⊂W 1,(cosh−1) (M)→W 1,p(ΩR), p ≥ 1.

(2) We have the continuous mappings

W 1,p(Rn) ⊂W 1,(cosh−1)∗ (Rn) ⊂W 1,(cosh−1)∗ (M)→W 1,1(ΩR), p > 1.

(3) Each u ∈ W 1,(cosh−1) (M) is a.s. Hölder of all orders on each ΩR and hence a.s.

continuous. The restriction W 1,(cosh−1) (M)→ C(ΩR) is compact.

Proof of Item 3. See Brezis (2011). �

5.7. Hyvärinen divergence in the Gaussian space. The Hyvärinen divergence between q
and p in E is

DH(p, q) =
1

2

∫
|∇ log q(x)−∇ log p(x)|2 p(x)γ(x) dx .

As log q = v − K1(v) and log p = u − K1(v) we assume u, v ∈ B1 to be differentiable in the

sense of distributions with derivatives in L(cosh−1) (1). It follows that the expression of the
GH-divergence in the chart at 1 is

DH(u, v) =
1

2

∫
|∇v −∇u|2 eu(x)−K1(u)γ(x) dx .

We proceed as in Hyvärinen computation by parts. First, decompose the squred norm of the
difference to get

DH(u, v) =
1

2

∫
|∇v(x)|2 eu(x)−K1(u)γ(x) dx −

∫
∇v(x) · ∇u(x)eu(x)−K1(u)γ(x) dx +

1

2

∫
|∇u(x)|2 eu(x)−K1(u)γ(x) dx .
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The last term does not depend on v. If we write ∇uey−K1(u) = ∇eu−K1(u) and assume the
equality ∂∗j = δj is correct, the middle term is

−
∫
∇v(x) · ∇u(x)eu(x)−K1(u)γ(x) dx = −

∫
∇v(x) · ∇eu(x)−K1(u)γ(x) dx =

−
∫
δ · ∇v(x)eu(x)−K1(u)γ(x) dx = −Ep [δ∇v] ,

where

δ · ∇v(x) =
n∑
j=1

δj∂jv(x) = −x · ∇v(x)−∆v(x) .

The formal derivative of v 7→ J(v) = Ep
[

1
2 |∇v|

2 − δ · ∇v
]

in the direction h is

dhJ(v) = Ep [∇h · ∇v − δ · ∇h] .

6. Formal results: Gaussian space and derivation

All along this paper, the sample space is the real Borel space (Rn,B) and γ denotes the stan-

dard n-dimensional Gaussian density, γ(z) = (2π)−n/2 exp
(
−1

2 |z|
2
)

, z ∈ Rn. The probability

space (Rn,B, γ) is the Gaussian space.
We list below some useful computations about the Gaussian standard density γ.

(1) γ(z + h)/γ(z) = exp
(
−1

2 |z + h|2 + 1
2 |z|

2
)

= exp
(
−〈h, z〉 − 1

2 |h|
2
)

, z, h ∈ Rn.

(2)
∫

e〈θ,z〉γ(z) dz = e|θ|/2.

(3)
∫

(γ(z + h)/γ(z))2γ(z) dz ≤ e|h|
2

.

7. Notable bounds and examples

There is a large body of literature about the analysis of the Gaussian space L2(M). In order
to motivate our own construction and to connect it up, in this section we have collected some
results about notable classes of functions that belongs to the exponential space L(cosh−1) (γ)

or to the mixture space L(cosh−1)∗ (γ). Some of the examples will be used in the applications
of Orlicz-Sobolev spaces in the Information Geometry of the Gaussian space. Basic references
on the analysis of the Gaussian space are (Malliavin, 1995, V.1.5), (Stroock, 2008, 4.2.1), and
(Nourdin and Peccati, 2012, Ch. 1).

7.1. Polynomial bounds. The exponential space L(cosh−1) (γ) contains all functions f ∈
C2(Rn;R) whose Hessian is uniformly dominated by a constant symmetric matrix. In such

a case, f(x) = f(0) +∇f(0)x+ 1
2x
∗Hess f(x̄)x, with x∗Hess f(y)x ≤ λ |x|2, y ∈ Rn, and λ ≥ 0

being the largest non-negative eigen-value of the dominating matrix. Then for all real α,∫
Rn

eαf(x)M(x) dx <
1

(2π)n/2

∫
Rn

eαf(0)+∇f(0)x+ 1
2

(αλ−1)|x|2 dx

and the RHS is finite for α < λ−1. In particular, L(cosh−1) (γ) contains all polynomials with
degree up to 2.

An interesting simple application of the same argument is the following. Assume p = ev is a
positive density on the Gaussian space such that

eA1(x) ≤ ev(x) ≤ eA2(x), x ∈ Rn ,

for suitable second order polynomials A1, A2. Then v ∈ L(cosh−1) (γ). Inequalities of this type
appear in the theory of parabolic equations e.g., see (Brezis, 2011, Ch. 4).

The mixture space L(cosh−1)∗ (γ) contains all random variables f : Rd → R which are bounded
by a polynomial, in particular, all polynomials. In fact, all polynomials belong to L2(M) ⊂
L(cosh−1)∗ (γ).
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7.2. Densities of exponential form. In this paper, we are specially interested in densities of
the Gaussian space of the form f = ev, that is

∫
ev(x)γ(x) dx = 1. Let us now consider simple

properties of the mappings f 7→ v = log f and v 7→ f = ev.
We have seen in Prop. 33 that f = ev ∈ L(cosh−1)∗ (γ) if, and only if,

−H (ev) =

∫
ev(x)v(x)γ(x) dx <∞ .

As limx→+∞
cosh(x)
xex = 0, we do not expect v ∈ L(cosh−1) (γ) to imply f = ev ∈ L(cosh−1)∗ (γ).

As (cosh−1)(α log y) = (yα + y−α)/2 − 1, α > 0, then v = log f ∈ L(cosh−1) (γ) if, and only
if, both fα and f−α both belong to L1(M) for some α > 0. In the case ‖v‖L(cosh−1)(γ) < 1, then

we can take α > 1 and f ∈ Lα(M) ⊂ L(cosh−1)∗ (γ). In conclusion, exp: v 7→ ev maps the open

unit ball of L(cosh−1) (γ) into ∪α>1L
α(M) ⊂ L(cosh−1)∗ (γ).

This issue is discussed in the next Sec. 8.

7.3. Poincaré-type inequalities. Let us denote by Ckb (Rn) the space of functions with deriva-

tives up to order k, each bounded by a constant. We write Ckp (Rn) if all the derivative are
bounded by a polynomial. We discuss below inequalities related to the classical Gaussian
Poincaré inequality, which reads, in the 1-dimensional case,

(17)

∫ (
f(x)−

∫
f(y)γ(y) dy

)2

γ(x) dx ≤
∫ ∣∣f ′(x)

∣∣2γ(x) dx ,

for all f ∈ C1
p(Rn). We are going to use the same techniques used in the classical proof of (17)

e.g., see Nourdin and Peccati (2012).
If u, Y are independent standard Gaussian variables, then

u′ = e−t +
√

1− e−2tY, Y ′ =
√

1− e−2tu− e−tY

are independent standard Gaussian random variables for all t ≥ 0. Because of that, it is useful
to define Ornstein-Uhlenbeck semi-group by the Mehler formula

(18) Ptf(x) =

∫
f(e−tx+

√
1− e−2ty)γ(y) dy , t ≥ 0, f ∈ Cp(Rn) .

For any convex function Φ, Jensen’s inequality gives

∫
Φ(Ptf(x))γ(x) dx ≤∫ ∫

Φ(f(e−tx+
√

1− e−2ty))γ(y) dy γ(x) dx =∫
Φ(f(x))γ(x) dx .

In particular, this shows that, for all t ≥ 0, f 7→ Ptf is a contraction for the norm of both the
mixture space L(cosh−1)∗ (γ) and the exponential space L(cosh−1) (γ).
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Moreover, if f ∈ C1
p(Rn), we have

f(x)−
∫
f(y)γ(y) dy

= P0(x)− P∞f(x)

= −
∫ ∞

0

d

dt
Ptf(x) dt

=

∫ ∞
0

∫
∇f(e−tx+

√
1− e−2ty) ·

(
e−tx− e−2t

√
1− e−2t

y

)
γ(y) dy dt(19)

≤
∫ ∞

0

e−t√
1− e−2t

dt ×∫ ∣∣∣∇f(e−tx+
√

1− e−2ty)
∣∣∣ ∣∣∣√1− e−2tx− e−ty

∣∣∣γ(y) dy .(20)

Note that ∫ ∞
0

e−t√
1− e−2t

dt =

∫ 1

0

ds√
1− s2

=
π

2
.

We use this remark and (20) to prove our first inequality.

Proposition 37. If f ∈ C1
p(Rn) and λ > 0 is such that

(21) C
(
λ
π

2

)∫
C(|y|)γ(y) dy = 1 , C(a) = max(|a| , a2) ,

then∫
(cosh−1)∗

(
λ

(
f(x)−

∫
f(y)M(y) dy

))
M(x) dx ≤ ∫

(cosh−1)∗(|∇f(x)|)M(x) dx ,

that is ∥∥∥∥f − ∫ f(y)M(y) dy

∥∥∥∥
L(cosh−1)∗ (γ)

≤ λ−1 ‖|∇f |‖L(cosh−1)∗ (γ) .

Proof. Jensen’s inequality applied to Eq. (20) gives

(22) (cosh−1)∗

(
λ

(
f(x)−

∫
f(y)γ(y) dy

))
≤
∫ ∞

0

2

π

e−t√
1− e−2t

dt ×∫
(cosh−1)∗

(
λ
π

2

∣∣∣∇f(
√

1− e−2tx+ e−ty)
∣∣∣ ∣∣∣√1− e−2tx− e−ty

∣∣∣)γ(y) dy

Now we use of the bound in Eq. (7), namely (cosh−1)∗(ay) ≤ C(a)(cosh−1)∗(y) if a > 0,
where C(a) = max(|a| , a2), and further bound for a, k > 0

C(ka) = ka ∨ k2a2 ≤ kC(a) ∨ k2C(a) = C(k)C(a) ,

to get

(23) (cosh−1)∗

(
λ
π

2

∣∣∣∇f(e−tx+
√

1− e−2ty)
∣∣∣ ∣∣∣√1− e−2tx− e−ty

∣∣∣) ≤
C
(
λ
π

2

)
C
(∣∣∣√1− e−2tx− e−ty

∣∣∣) (cosh−1)∗

(∣∣∣∇f(e−tx+
√

1− e−2ty)
∣∣∣) .

Taking the expected value of both sides of the inequality resulting from (22) and (23), we get∫
(cosh−1)∗

(
λ

(
f(y)−

∫
f(x)M(x) dx

))
M(y) dy ≤

C
(
λ
π

2

)∫
C(|y|)γ(y) dy

∫
(cosh−1)∗(|∇f(x)|)γ(x) dx ,
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We conclude by choosing a proper value of λ. �

The same argument does not work in the exponential space. We have assume the boundedness
of derivatives i.e., a Lipschitz assumption.

Proposition 38. If f ∈ C1
b (Rn) with sup {|∇f(x)| |x ∈ Rn} = m then∥∥∥∥f − ∫ f(y)γ(y) dy

∥∥∥∥
L(cosh−1)(γ)

≤ π

2
√

2 log 2
m .

Proof. Jensen’s inequality applied to Eq. (20) and the assumption give

(cosh−1)

(
λ

(
f(x)−

∫
f(y)γ(y) dy

))
≤∫

(cosh−1)
(
λ
π

2
mx
)
γ(x) dx = exp

(
λ2

2

π2

4
m2

)
− 1 .

To conclude, choose λ such that the the RHS equals 1. �

Remark 3. Both Prop. 37 and Prop. 38 are related with interesting results on the Gaussian
space other then bounds on norms. For example, if f is a density of the Gaussian space, then
the first one is a bound on the lack of uniformity f − 1, which, in turn, is related with the
entropy of f . As a further example, consider a case where

∫
f(x)γ(x) dx = 0 and ‖∇f‖∞ <∞.

In such a case, we have a bound on the Laplace transform of f , which in turn implies a bound
on large deviations of the random variable f .

To prepare the proof of an inequality for the exponential space, we start from Eq. (19) and
observe that for f ∈ C2

p(Rn) we can write

f(x)−
∫
f(y)γ(y) dy =∫ ∞

0
e−t
(∫
∇f(e−tx+

√
1− e−2ty)γ(y) dy

)
· x dt

−
∫ ∞

0
e−2t

∫
∇ · ∇f(e−tx+

√
1− e−2ty)γ(y) dy dt ,

where integration by parts and (∂/∂yi)M(y) = −yiM(y) have been used to get the last term.

If we write fi(z) = ∂
∂zi

and fii(z) = ∂2

∂zi2
f(z) then

∂

∂xi
Ptf(x) = e−tPtfi(x)

and

∂2

∂xi2
Ptf(x) = e−2tPtfii(x) ,

so that

f(x)−
∫
f(y)γ(y) dy =

∫ ∞
0

(x · ∇Ptf(x)−∇ · ∇Ptf(x)) dt .
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If g ∈ C2
b (Rn) we have

(24)

∫
g(x)

(
f(x)−

∫
f(y)γ(y) dy

)
γ(x) dx =∫ ∞

0

(∫
g(x)x · ∇Ptf(x)γ(x) dx −

∫
g(x)∇ · ∇Ptf(x)γ(x) dx

)
dt =∫ ∞

0

(∫
g(x)x · ∇Ptf(x)γ(x) dx +

∫
∇(g(x)M(x)) · ∇Ptf(x) dx

)
dt =∫ ∞

0

∫
∇g(x) · ∇Ptf(x)γ(x) dx dt =∫ ∞

0
e−t
∫
∇g(x) · Pt∇f(x)γ(x) dx dt .

Let |·|1 and |·|2 be two norms on Rn such that |x · y| ≤ |x|1 |y|2. Define the covariance of
f, g ∈ C2

p(Rn) to be

CovM (f, g) = ∫ (
f(x)−

∫
f(y)γ(y) dy

)
g(x)γ(x) dx =∫ (

f(x)−
∫
f(y)γ(y) dy

)(
g(x)−

∫
g(y)γ(y) dy

)
γ(x) dx .

Proposition 39. If f, g ∈ C2
p(Rn), then

|CovM (f, g)| ≤
∣∣∣‖∇f‖L(cosh−1)∗ (γ)

∣∣∣
1

∣∣∣‖∇g‖(L(cosh−1)∗ (γ))∗

∣∣∣
2
.

Proof. We use Eq. (24) and the inequality (8).∣∣∣∣∫ ∇g(x) · Pt∇f(x)γ(x) dx

∣∣∣∣ ≤
n∑
i=1

∣∣∣∣∫ gi(x)Ptfi(x)γ(x) dx

∣∣∣∣ ≤
n∑
i=1

‖gi‖L(cosh−1)∗ (γ)∗ ‖Ptfi‖L(cosh−1)∗ (γ) ≤

n∑
i=1

‖gi‖L(cosh−1)∗ (γ)∗ ‖fi‖L(cosh−1)∗ (γ) ≤∣∣∣‖∇g‖L(cosh−1)∗ (γ)∗

∣∣∣
1

∣∣∣‖∇f‖L(cosh−1)∗ (γ)

∣∣∣
2
.

�

If gn is a sequence such that ∇gn → 0 in L(cosh−1) (γ), then the inequality above shows that
gn −

∫
gn(x)γ(x) dx → 0.

8

8.1. Maximal exponential manifold as an affine manifold. The maximal exponential
model E (M) =

{
eU−KM (U)

∣∣U ∈ BM} is an elementary manifold embedded into L(cosh−1)∗ (M)

by the smooth mapping eM : SM → L(cosh−1)∗ (M). There is actually an atlas of charts that
makes it into an affine manifold, see Pistone (2013a). We discuss here some preliminary results
about this important topic.
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An elementary computation shows that

(cosh−1)2(u) =
1

2
(cosh−1)(2u)− 2(cosh−1)(u) ≤ 1

2
.(cosh−1)(2u)

Iterating,

(25) (cosh−1)2k(u) ≤
(

1

2

)a(k)

(cosh−1)(2ku) ,

with a(1) = 1 and a(k + 1) = 2a(k) + 1 i.e., a(k) = 2k+1 − 1.
If Φ = cosh−1 and 2k = b, the inequality becomes

Φ(u)b ≤ 1

22b−1
Φ(bu) .

Proposition 40. If f, g ∈ E (M), then L(cosh−1) (f ·M) = L(cosh−1) (g ·M).

Proof. Given any f ∈ E (M), with f = eU−KM (U) and U ∈ SM , and any V ∈ L(cosh−1) (M), we
have from Fenchel-Young inequality and Eq. (25) that∫

(cosh−1)(αV (x))f(x)γ(x) dx ≤

1

2k+1k

∫
(cosh−1)(2kαV (x))γ(x) dx +

2k − 1

2k
ZM (U)

2k
2k−1

∫
exp

(
2k

2k − 1
U

)
γ(x) dx .

If k is such that 2k
2k−1U ∈ SM , one sees that V ∈ L(cosh−1) (f ·M). We have proved that

L(cosh−1) (M) ⊂ L(cosh−1) (f ·M).
Conversely,∫

(cosh−1)(αV (x))γ(x) dx =

∫
(cosh−1)(αV (x))f−1(x)f(x)γ(x) dx ≤

1

2k+1k

∫
(cosh−1)(2kαV (x))f(x)γ(x) dx +

2k − 1

2k
ZM (U)

1
2k−1

∫
exp

(
1

2k − 1
U

)
γ(x) dx .

If 1
2k−1U ∈ SM , one sees that V ∈ L(cosh−1) (f ·M) implies V ∈ L(cosh−1) (M). � �

The affine manifold is defined as follows. For each f ∈ E (M), we define the Banach space

Bf =
{
U ∈ L(cosh−1) (f ·M)

∣∣∣Ef ·M [U ] = 0
}

=
{
U ∈ L(cosh−1) (M)

∣∣∣EM [Uf ] = 0
}
,

and the chart

sf : E (M) 3 g 7→ log
g

f
− Ef ·M

[
log

g

f

]
.

It is easy to verify the following statement, which defines the exponential affine manifold.
Specific properties related with the Gaussian space are discussed in the next Sec. 8.2 and space
derivatives in Sec. ??.

Proposition 41. The set of charts sf : E (M)→ Bf is an affine atlas of global charts on E (M).

On each fiber SpE (M) = Bp of the statistical bundle the covariance (U, V ) 7→ EM [UV ] =
〈U, V 〉p provides a natural metric. In that metric the natural gradient of a smooth function

F : E (M)→ R is defined by

d

dt
F (p(t)) = 〈gradF (p(t)), Dp(t)〉p(t) ,

where t 7→ p(t) is a smooth curve in E (M) and Dp(t) = d
dt log p(t) is the expression of the

velocity.
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8.2. Translations and mollifiers. In this section, we begin to discuss properties of the expo-
nential affine manifold of Prop. 41 which depend on the choice of the Gaussian space as base
probability space.

Because of the lack of norm density of the space of infinitely differentiable functions with
compact support C∞0 (Rn) in the exponential space L(cosh−1) (M), we introduce the following
classical the definition of Orlicz class.

Definition 42. The exponential class, C
(cosh−1)
0 (γ), is the closure of C0 (Rn) in the exponential

space L(cosh−1) (γ). The space C∞0 (Rn) is dense in C
(cosh−1)
0 (γ).

A characteristic property of the exponential class is the convergence of restrictions to a
bounded domain.

Proposition 43. Assume f ∈ L(cosh−1) (γ) and write fR(x) = f(x)(|x| > R). The following
conditions are equivalent:

(1) The real function ρ 7→
∫

(cosh−1)(ρf(x))γ(x) dx is finite for all ρ > 0;

(2) f ∈ C(cosh−1)
0 (γ);

(3) limR→∞ ‖fR‖L(cosh−1)(γ) = 0.

Proof. This is well known e.g., see (Musielak, 1983, Ch. II). A short proof is given in our note
(Pistone, 2017, Prop. 3). � �

Here we study of the action of translation operator on the exponential space L(cosh−1) (γ)

and on the exponential class C
(cosh−1)
0 (M). We consider both translation by a vector, τhf(x) =

f(x − h), h ∈ Rn, and translation by a probability measure, or convolution, µ, τµf(x) =∫
f(x−y) µ(dy) = f ∗µ(x). A small part of this material was published in the conference paper

(Pistone, 2017, Prop. 4–5).

Proposition 44 (Translation by a vector).

(1) For each h ∈ Rn, the translation mapping L(cosh−1) (γ) 3 f 7→ τhf is linear and bounded

from L(cosh−1) (γ) to itself. In particular,

‖τhf‖L(cosh−1)(γ) ≤ 2 ‖f‖L(cosh−1)(γ) if |h| ≤
√

log 2 .

(2) For all g ∈ L(cosh−1)∗ (M) we have

〈τhf, g〉M = 〈f, τ∗hg〉M , τ∗hg(x) = e−h·x−
1
2
|h|2τ−hg(x) ,

and |h| ≤
√

log 2 implies ‖τ∗hg‖L(cosh−1)(γ))∗ ≤ 2 ‖g‖L(cosh−1)(γ))∗. The translation map-

ping h 7→ τ∗hg is continuous in L(cosh−1)∗ (M).

(3) If f ∈ C(cosh−1)
0 (M) then τhf ∈ C

(cosh−1)
0 (M), h ∈ Rn, and the mapping Rn : h 7→ τhf

is continuous in L(cosh−1) (γ).

Proof. (1) Assume ‖f‖L(cosh−1)(γ) ≤ 1. For each ρ > 0, writing Φ = cosh−1,

∫
Φ(ρτhf(x))γ(x) dx =

∫
Φ(ρf(x− h))γ(x) dx =∫

Φ(ρf(y)) γ(y + h) dy = e−
1
2
|h|2
∫

e−h·yΦ(ρf(y))γ(y) dy ,
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hence, using Hölder inequality and the inequality in Eq. (25),

(26)

∫
Φ(ρτhf(x))γ(x) dx ≤

e−
1
2
|h|2
(∫

e−2h·yγ(y) dy

) 1
2
(∫

Φ2(ρf(y))γ(y) dy

) 1
2

≤

1√
2

e
|h|2
2

(∫
Φ(2ρf(y))γ(y) dy

) 1
2

.

Take ρ = 1/2, so that Eγ
[
Φ
(

1
2τhf(x)

)]
≤ 1√

2
e
|h|2
2 , which in turn implies τhf ∈

L(cosh−1) (γ). Moreover, ‖τhf‖L(cosh−1)(γ) ≤ 2 if 1√
2
e
|h|2
2 ≤ 1.

The semi-group property τh1+h2f = τh1τh2f implies the boundedness for all h.
(2) The computation of τ∗h is

〈τhf, g〉M =

∫
f(x− h)g(x) M(x)dx

=

∫
f(x)g(x+ h)M(x+ h) dx

=

∫
f(x)e−h·x−

1
2
|h|2τ−hg(x) M(x)dx

= 〈f, τ∗hg〉M .

Computing Orlicz norm of the mixture space, we find

‖τ∗hg‖(L(cosh−1)(γ))∗ = sup
{
〈f, τ∗hg〉M

∣∣∣ ‖f‖L(cosh−1)(γ) ≤ 1
}

=

sup
{
〈τhf, g〉M

∣∣∣ ‖f‖L(cosh−1)(γ) ≤ 1
}
.

From the previous item we know that |h| ≤
√

log 2 implies

〈τhf, g〉M ≤ ‖τhf‖L(cosh−1)(γ) ‖g‖(L(cosh−1)(γ))∗ ≤
2 ‖f‖L(cosh−1)(γ) ‖g‖(L(cosh−1)(γ))∗ ,

hence ‖τ∗hg‖(L(cosh−1)(γ))∗ ≤ 2 ‖g‖L(cosh−1)(γ))∗ .

Consider first the continuity a 0. We have for |h| ≤
√

log 2 and any φ ∈ C∞0 (Rn) that

‖τhg − g‖(L(cosh−1)(γ))∗ ≤
‖τh(g − φ)‖(L(cosh−1)(γ))∗ + ‖τhφ− φ‖(L(cosh−1)(γ))∗ + ‖φ− g‖(L(cosh−1)(γ))∗ ≤

3 ‖g − φ‖(L(cosh−1)(γ))∗ +
√

2 ‖τhφ− φ‖∞ .

The first term in the RHS is arbitrary small because of the density of C∞0 (Rn) in

L(cosh−1)∗ (M), while the second term goes to zero as h→ 0 for each φ.
The general case follows from the boundedness and the semi-group property.

(3) If f ∈ C(cosh−1)
0 (M), then , by Prop. 43, the RHS of Eq. (26) is finite for all ρ, which

in turn implies that τhf ∈ C
(cosh−1)
0 (M) because of Prop. 43.1. Other values of h are

obtained by the semi-group property.
The continuity follows from the approximation argument, as in the previous item.

� �

We denote by P the convex set of probability measures on Rn and call weak convergence the
convergence of sequences in the duality with Cb(Rn). In the following proposition we denote

by Pe the set of probability measures µ such that h 7→ e
1
2
|h|2 is integrable. For example, this

is the case when µ is Gaussian with variance σ2I, σ2 < 1, or when µ has a bounded support.
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Weak convergence in Pe means µn → µ weakly and
∫

e
1
2
|h|2 µn(dh) →

∫
e

1
2
|h|2 µ(dh). Note

that we study here convolutions for the limited purpose of deriving the existence of smooth
approximations obtained by mollifiers, see 108–109 of Brezis (2011).

Proposition 45 (Translation by a probability). Let µ ∈ Pe.

(1) The mapping f 7→ τµf is linear and bounded from L(cosh−1) (γ) to itself. If, moreover,∫
e

1
2 |h2| µ(dh) ≤

√
2, then ‖τµf‖L(cosh−1)(γ) ≤ 2 ‖f‖L(cosh−1)(γ).

(2) If f ∈ C(cosh−1)
0 (M) then τµf ∈ C(cosh−1)

0 (M). The mapping P : µ 7→ τµf is continuous

at δ0 from the weak convergence to the L(cosh−1) (γ) norm.

Proof.

(1) Let us write Φ = cosh−1 and note the Jensen’s inequality

Φ (ρτµf(x)) = Φ

(
ρ

∫
f(x− h) µ(dh)

)
≤∫

Φ (ρf(x− h)) µ(dh) =

∫
Φ (ρτhf(x)) µ(dh) .

By taking the Gaussian expectation of the previous inequality we have, as in the previous
item,

(27) EM [Φ (ρτµf)] ≤
∫ ∫

Φ (ρf(x− h))γ(x) dx µ(dh) =∫
e−

1
2
|h|2
∫

e−h·zΦ (ρf(z))γ(z) dz µ(dh) ≤

1√
2

∫
e

1
2
|h|2 µ(dh) EM [Φ(2ρf)] .

If ‖f‖L(cosh−1)(γ) ≤ 1 and ρ = 1/2, the RHS is bounded, hence τµf ∈ L(cosh−1) (γ). If,

moreover,
∫

e
1
2
|h|2 ≤

√
2, then the RHS is bounded by 1, hence ‖τµf‖L(cosh−1)(γ) ≤ 2.

(2) We have found above that for each ρ > 0 it holds (27), where the right-end-side if
finite for all ρ under the current assumption. It follows from Prop. 43 that τhf ∈
C

(cosh−1)
0 (M).

To prove the continuity at δ0, assume
∫

e
1
2
|h|2 µ(dh) ≤

√
2, which is always feasible if

µ→ δ0 in Pe weakly. Given ε > 0, choose φ ∈ C∞0 (Rn) so that ‖f − φ‖L(cosh−1)(γ) < ε.

We have

‖τµf − f‖L(cosh−1)(γ) ≤
‖τµ(f − φ)‖L(cosh−1)(γ) + ‖τµφ− φ‖L(cosh−1)(γ) + ‖φ− f‖L(cosh−1)(γ) ≤

3ε+A−1 ‖τµφ− φ‖∞ ,

where A = ‖1‖L(cosh−1)(γ). As limµ→δ0 ‖τµφ− φ‖∞ = 0, see e.g. § III-1.9 ofMalliavin

(1995), the conclusion follows.

� �

We use the previous propositions to show the existence of smooth approximations through
sequences of mollifiers. A bump function is a non-negative function ω in C∞0 (Rn) such that∫
ω(x) dx = 1. It follows that

∫
λ−nω(λ−1x) dx = 1, λ > 0 and the family of mollifiers

ωλ(dx) = λ−nω(λ−1x)dx, λ > 0, converges weakly to the Dirac mass at 0 as λ ↓ 0 in Pe.
Without restriction of generality, we shall assume that the support of ω is contained in [−1,+1]n.

For each f ∈ L(cosh−1) (γ) we have

τωλ(x) = f ∗ ωλ(x) =

∫
f(x− y)λ−nω(λ−1y) dy =

∫
[−1,+1]n

f(x− λz)ω(z) dz .
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For each Φ convex we have by Jensen’s inequality that

Φ (f ∗ ωλ(x)) ≤ (Φ ◦ f) ∗ ωλ(x)

and also∫
Φ (f ∗ ωλ(x))M(x) dx ≤

∫ ∫
[−1,+1]n

Φ ◦ f(x− λz)ω(z) dzM(x) dx =

∫
Φ ◦ f(y)

(∫
[−1,+1]n

exp

(
−λ 〈z, y〉 − λ2

2
|z|2
)
ω(z) dz

)
M(y) dy ≤∫

Φ ◦ f(y)M(y) dy .

Proposition 46 (Mollifiers). Let be given a family of mollifiers ωλ, λ > 0. For each f ∈
C

(cosh−1)
0 (M) and for each λ > 0 the function

τωλf(x) =

∫
f(x− y)λ−nω(λ−1y) dy = f ∗ ωλ(x)

belongs to C∞(Rn). Moreover,

lim
λ→0
‖f ∗ ωλ − f‖L(cosh−1)(γ) = 0 .

Proof. Any function in L(cosh−1) (γ) belongs to L1
loc(Rn), hence

x 7→
∫
f(x− y)ωλ(y)dy =

∫
f(z)ωλ(z − x)dz

belongs to C∞(Rn), see e.g. Ch. 4 of . Note that
∫

e|h|
2/2ωλ(dh) < +∞ and then apply Prop.

45(2).
�

Remark 4. Properties of weighted Orlicz spaces with the ∆2-property can be sometimes deduced
from the properties on the un-weighted spaces by suitable embeddings, but this is not the case
for the exponential space. Here are two examples.

(1) Let 1 ≤ a <∞. The mapping g 7→ gM
1
a is an isometry of La(M) onto La(Rn). As a con-

sequence, for each f ∈ L1(Rn) and each g ∈ La(M) we have
∥∥∥[f ∗ (gM

1
a )
]
M−

1
a

∥∥∥
La(M)

≤

‖f‖L1(Rn) ‖g‖La(M).

(2) The mapping

g 7→ sign (g) (cosh−1)−1
∗ (M(cosh−1)∗(g))

is a surjection of L(cosh−1)∗ (Rn) onto L(cosh−1)∗ (M) with inverse

h 7→ sign (h) (cosh−1)−1
∗ (M−1(cosh−1)∗(f)) .

It is surjective from unit vectors (for the Luxemburg norm) onto unit vectors.

We conclude this section by recalling the following tensor property of the exponential space
and of the mixture space, see Lods and Pistone (2015).

Proposition 47. Let us split the components Rnx 7→ (x1, x2) ∈ Rn1 × Rn2 and denote by M1,
M2, respectively, the Maxwell densities on the factor spaces.

(1) A function f belongs to L(cosh−1) (γ) if and only if for one α > 0 the partial integral
x1 →

∫
(cosh−1)(αf(x1, x2))M(x2) dx2 is M1-integrable.

(2) A function f belongs to L(cosh−1)∗ (M) if and only if the partial integral x1 →
∫

(cosh−1)∗(f(x1, x2))M(x2) dx2

is M1-integrable.
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8.3. Gaussian statistical bundle. It is an essential feature of the exponential affine manifold
on E (M) discussed in Sec. 8.1 that the exponential statistical bundle

SE (M) = {(p, U) | p ∈ E (M) , U ∈ Bp} ,

with Bp =
{
U ∈ L(cosh−1) (p ·M)

∣∣Ep·M [U ] = 0
}

is an expression of the tangent bundle in the
atlas {sp | p ∈ E (M)}. This depends on the fact that all fibers Bp are actually a closed subspace

of the exponential space L(cosh−1) (γ). This has been proved in Prop. 40. The equality of the

spaces L(cosh−1) (p ·M) and L(cosh−1) (γ) is equivalent to p ∈ E (M), see the set of equivalent
conditions called Portmanteau Theorem in Santacroce et al. (2016a).

We now investigate whether translation statistical models are sub-set of the maximal exponen-
tial model E (M) and whether they are sub-manifolds. Proper sub-manifolds of the exponential
affine manifold should have a tangent bundle that splits the statistical bundle.

Let p ∈ E (M) and write f = p ·M . Then f is a positive probability density of the Lebesgue
space and so are all its translations

τhf(x) = p(x− h)M(x− h) = eh·x−
1
2
|h|2τhp(x) ·M(x) = τ∗−hp(x) ·M(x) .

From Prop. ?? and Prop. 44.2 we know that the translated densities τ∗−hp, are in L(cosh−1)∗ (M)
for all h ∈ Rn and the dependence on h is continuous.

Let us consider now the action of the translation on the values of the chart sM . If sM (p) = U ,

that is p = eU−KM (U) with U ∈ SM , then

τ∗−hp(x) =

eh·u−
1
2
|h|2eU(x−h)−KM (U) = exp

(
h · u− 1

2
|h|2 + τhU −KM (U)

)
=

exp

(
(h · u+ τhU − EM [τhU ])−

(
KM (U) +

1

2
|h|2 − EM [τhU ]

))
.

Here τhU ∈ L(cosh−1) (γ) because of Prop. 44.1. If τ∗−hp ∈ E (M), then

sM (τ∗−hp) = h · u+ τhU − EM [τhU ] .

The expected value of the translated τhU is

EM [τhU ] =

∫
U(x− h)γ(x) dx = e−

1
2
|h|2
∫

e−h·xU(x)γ(x) dx .

We have found that the action of the translation on the affine coordinate U = sM (p) of a
density p ∈ E (M) is

(28) U 7→ h · u+ τhU − e−
1
2
|h|2 EM

[
e−h·uU

]
,

and we want the resulting value belong to SM , i.e. we want to show that

EM [exp (γ (h · u+ τhU − EM [τhU ]))] =

eγ EM [τhU ] EM
[
eγh·u

]
EM

[
eγτhU

]
=

e
γ2

2
|h|2+γ EM [τhU ] EM

[
eγτhU

]
.

is finite for γ in a neighborhood of 0.
We have the following result.

Proposition 48. (1) If p ∈ E (M), for all h ∈ Rn the translated density τ∗−hp is in E (M).

(2) If sM (p) ∈ C
(cosh−1)
0 (M), then sM (τ∗−hp) ∈ C

(cosh−1)
0 (M) ∩ SM for all h ∈ Rn and

dependence in h is continuous.
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Proof. (1) For each γ and conjugate exponents α, β, we have

EM
[
eγτhU

]
= e−

1
2
|h|2
∫

e−h·xeγU(x)γ(x) dx ≤

e−
1
2
|h|2
(

1

α
e
α2

2
|h|2 +

1

β
EM

[
eβγU

])
.

As U ∈ SM , then EM
[
e±aU

]
< ∞ for some a > 1, and we can take β =

√
a and

γ = ±
√
a.

(2) Under the assumed conditions on U the mapping h 7→ τhU is continuous in C
(cosh−1)
0 (M)

because of Prop. 44.3. So is h 7→ EM [τhU ]. As ui ∈ C
(cosh−1)
0 (M), i = 1, . . . , n,

the same is true for h 7→ h · u. In conclusion, the translated U of (28) belongs to

C
(cosh−1)
0 (M).

� �

The proposition above shows that the translation statistical model τ∗−hp, h ∈ Rm is well
defined as a subset of E (M). To check if it is a differentiable sub-manifold, we want to compute
the velocity of a curve t 7→ τ∗h(t)p, that is

d

dt

(
h(t) · u+ τh(t)U − EM

[
τh(t)

]
U
)
.

That will require first of all the continuity in h, hence U ∈ C
(cosh−1)
0 (M), and moreover we

want to compute ∂/∂hiU(x− h), that is the gradient of U . This task shall be the object of the
next section.

Cases other than translations are of interest. Here are two sufficient conditions for a density
to be in E (M).

Proposition 49.

(1) Assume p > 0 M -a.s., EM [p] = 1, and

(29) EM
[
pn1/(n1−1)

]
≤ 2n1/(n1−1), EM

[
p−1/(n2−1)

]
≤ 2n2/(n2−1)

for some natural n1, n2 > 2. Then p ∈ E (M), the exponential spaces are equal,

L(cosh−1) (γ) = L(cosh−1) (p ·M), and for all random variable U

‖U‖L(cosh−1)(p·M) ≤ 2n1 ‖U‖L(cosh−1)(γ) ,(30)

‖U‖L(cosh−1)(γ) ≤ 2n2 ‖U‖L(cosh−1)(p·M) .(31)

(2) Condition (29) holds for p =
√
π/2 |ui| and for p = u2

i , i = 1, . . . , n.
(3) Let χ be a diffeomorphism of Rn and such that both the derivatives are uniformly bounded

in norm. Then the density of the image under χ of the standard Gaussian measure
belongs to E (M).

Proof. (1) The bound on the moments in Eq.s (29) is equivalent to the inclusion in E (M)
because of the definition of SM , or see (Santacroce et al., 2016a, Th. 4.7(vi)). Assume
‖U‖L(cosh−1)(γ) ≤ 1, that is EM [(cosh−1)(U)] ≤ 1. From Hölder inequality and the

elementary inequality in Eq. (25), we have

Ef ·M
[
(cosh−1)

(
U

2n1

)]
= EM

[
(cosh−1)

(
U

2n1

)
f

]
≤

EM
[
(cosh−1)

(
U

2n1

)n1
]1/n1

EM
[
fn1/(n1−1)

](n1−1)/n1

≤ 1

2
· 2 = 1

For the other direction, assume ‖U‖L(cosh−1)(f ·M) ≤ 1, that is EM [Φ(U)f ] ≤ 1, so that
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EM
[
(cosh−1)

(
U

2n2

)]
= EM

[
(cosh−1)

(
U

2n2

)
f1/n2f−1/n2

]
≤

EM
[
(cosh−1)

(
U

2n2

)n2

f

]1/n2

EM
[
f−1/(n2−1)

](n2−1)/n2

≤ 1

2
· 2 = 1 .

(2) Simple computations of moments.
(3) We consider first the case where χ(0) = 0, in which case we have the following in-

equalities. If we define α−1 = sup
{
‖dχ(x)‖2

∣∣∣x ∈ Rn
}

, then α |χ(x)| ≤ |x| for all

x ∈ Rn and equivalently, α |x| ≤
∣∣χ−1(x)

∣∣. In a similar way, if we define β−1 =

sup
{∥∥dχ−1(y)

∥∥2
∣∣∣ y ∈ Rn

}
, then β

∣∣χ−1(y)
∣∣ ≤ |y| and β |x| ≤ |χ(x)|.

The density of the image probability is M ◦χ−1
∣∣det dχ−1

∣∣ and we want to show that
for some ε > 0 the following inequalities both hold,

EM

(M ◦ χ−1
∣∣det dχ−1

∣∣
M

)1+ε
 <∞

and

EM◦χ−1|det dχ−1|

[(
M

M ◦ χ−1 |det dχ−1|

)1+ε
]
<∞ .

The first condition is satisfied as

∫ ∣∣det dχ−1(x)
∣∣1+ε

(
M
(
χ−1(x)

)
M(x)

)1+ε

M(x) dx =∫ ∣∣det dχ−1(x)
∣∣1+ε

M
(
χ−1(x)

)1+ε
M(x)−ε dx ≤

(2π)−n/2β−
(1+ε)n

2

∫
exp

(
−1

2

(
(1 + ε)

∣∣χ−1(x)
∣∣2 − ε |x|2)) dx =

(2π)−n/2β−
(1+ε)n

2

∫
exp

(
−|x|

2

(
(1 + ε)

∣∣χ−1(x)
∣∣

|x|
− ε

))
dx ≤

(2π)−n/2β−
(1+ε)n

2

∫
exp

(
−|x|

2
((1 + ε)α− ε)

)
dx ,

where we have used the Hadamard’s determinant inequality∣∣det dχ−1(x)
∣∣ ≤ ∥∥dχ−1(x)

∥∥n ≤ β−n/2
and the lower bound α ≤ |χ

−1(x)|
|x| , x ∈ Rn∗ . If α ≥ 1 then (1 + ε)α− ε = α+ ε(α− 1) ≥

α > 0 for all ε. If α < 1, then (1 + ε)α − ε > 0 if ε < α/(1 − α) e.g., ε = α/2(1 − α),
which in turn gives (1 + ε)α− ε = α/2. In conclusion, there exist an ε > 0 such that

∫ ∣∣det dχ−1(x)
∣∣1+ε

(
M
(
χ−1(x)

)
M(x)

)1+ε

M(x) dx ≤

(2π)−n/2
∣∣det dχ−1(x)

∣∣1+ε
∫

exp

(
−α |x|

4

)
dx =

(α
2

)n/2
.

For the second inequality,
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∫ (
M(y)

M (χ−1(y)) |det dχ−1(y)|

)1+ε

M
(
χ−1(y)

) ∣∣det dχ−1(y)
∣∣ dy =∫

M(y)1+εM
(
χ−1(y)

)−ε ∣∣det dχ−1(y)
∣∣−ε dy =∫

M(χ(x))1+εM(x)−ε
∣∣det dχ−1(χ(x))

∣∣−ε |det dχ(x)| dx =∫
|det dχ(x)|1+εM(χ(x))1+εM(x)−ε dx .

As the last term is equal to the expression in the previous case with χ−1 replaced by
χ, the same proof applies with the bounds α and β exchanged.

� �

Remark 5. While the moment condition for proving p ∈ E (M) has been repeatedly used,
nonetheless the results above have some interest. The first one is an example where an explicit
bound for the different norms on the fibers of the statistical bundle is derived. The second case
is the starting point for the study of transformation models where a group of transformation
χθ is given.

8.4. Orlicz-Sobolev spaces with Gaussian weight. The section offers an improvement
upon the results presented in previous works i.e., Lods and Pistone (2015) ,Pistone (2018a).
The aim is to discuss in detail the calculus of Orlicz-Sobolev spaces with Gaussian weight. There
is an obvious relation with Stochastic Analysis in the sense of Malliavin Malliavin (1997).

Definition 50. The exponential and the mixture Orlicz-Sobolev-Gauss (OSG) spaces are, re-
spectively,

W 1,(cosh−1) (γ) =
{
f ∈ L(cosh−1) (γ)

∣∣∣ ∂jf ∈ L(cosh−1) (γ)
}
,(32)

W 1,(cosh−1)∗ (γ) =
{
f ∈ L(cosh−1)∗ (γ)

∣∣∣ ∂jf ∈ L(cosh−1)∗ (γ)
}
,(33)

where ∂j , j = 1, . . . , n, is the partial derivative in the sense of distributions.

As φ ∈ C∞0 (Rn) implies φγ ∈ C∞0 (Rn), for each f ∈ W 1,(cosh−1)∗ (γ) we have, in the sense
of distributions, that

〈∂jf, φ〉γ = 〈∂jf, φγ〉 = −〈f, ∂j(φγ)〉 = 〈f, γ(uj − ∂j)φ〉 = 〈f, δjφ〉γ ,

with δjφ = (uj − ∂j)φ. Here, the Stein operator δi acts on C∞0 (Rn).
The meaning of both operators ∂j and δj = (uj − ∂j) when acting on square-integrable

random variables of the Gaussian space is well known, but here we are interested in the action
on OSG-spaces. Let us denote by C∞p (Rn) the space of infinitely differentiable functions with
polynomial growth. Polynomial growth implies the existence of all γ-moments of all derivatives,
hence C∞p (Rn) ⊂ W 1,(cosh−1)∗ (γ). If f ∈ C∞p (Rn), then the distributional derivative and the
ordinary derivative are equal and moreover δjf ∈ C∞p (Rn). For each φ ∈ C∞0 (Rn) we have
〈φ, δjf〉γ = 〈∂jφ, f〉γ .

The OSG spaces W 1
cosh−1(M) and W 1

(cosh−1)∗
(M) are both Banach spaces, see (Musielak,

1983, Sec. 10). In fact, both the product functions (u, x) 7→ (cosh−1)(u)M(x) and (u, x) 7→
(cosh−1)∗(u)M(x) are φ-functions according the Musielak’s definition. The norm on the OSG-
spaces is the graph norms,

(34) ‖f‖W 1
(cosh−1)

(γ) = ‖f‖L(cosh−1)(γ) +
n∑
j=1

‖∂jf‖L(cosh−1)(γ)

39



and

(35) ‖f‖W 1
(cosh−1)∗

(γ) = ‖f‖L(cosh−1)(γ) +
n∑
j=1

‖∂jf‖L(cosh−1)(γ) .

Because of Prop. 40, see also Th. 4.7 of Santacroce, Siri, and Trivellato (2016b), for each

p ∈ E (M), we have both equalities and isomorphisms on L(cosh−1) (p) = L(cosh−1) (γ) and

L(cosh−1)∗ (p) = L(cosh−1)∗ (γ). It follows

W 1,(cosh−1) (γ) = W 1,(cosh−1) (p · γ)

=
{
f ∈ L(cosh−1) (p)

∣∣∣ ∂jf ∈ L(cosh−1) (p)
}
,(36)

W 1,(cosh−1)∗ (γ) = W 1,(cosh−1)∗ (p · γ)

=
{
f ∈ L(cosh−1)∗ (p)

∣∣∣ ∂jf ∈ L(cosh−1)∗ (p)
}
,(37)

and the graph norms are equivalent for any density p ∈ E (γ). The OSG spaces are compatible
with the structure of the maximal exponential family E (γ). In particular, as all Gaussian
densities of a given dimension belong into the same exponential manifold, one could have defined
the OSG spaces with respect to any of such densities.

Example 6. Assume q = ev−Kγ(v) · γ and p = eu−Kγ(u) · γ with q, p ∈ E (γ) and v, u ∈ Sγ ∩
W 1,(cosh−1) (γ). The the Hyvärinen divergence is

DH (p|q) =
1

2

∫
‖∇(u− v)‖2 p(x)γ(x) dx < +∞

because ∇(u− v) ∈ L(cosh−1) (γ) = L(cosh−1) (p) ⊂ L2(p · γ).

Moreover, if we write ∂ju(x)p = ∂ju(x)eu−K1(u) = ∂je
u−K1(u), it holds∫

∇u(u) · ∇v(x)p(x)γ(x) dx =

n∑
j=1

∫
∂ju(x)∂jv(x)p(x)γ(x) dx =

n∑
j=1

∫
∂jp(x)∂jv(x)γ(x) dx ,

and if we assume also ∂jv ∈ D in the Gaussian space to get∫
∇p(x) · ∇v(x)γ(x) dx =

∫
p(x)

(
n∑
i=1

δj∂j

)
v(x)γ(x) dx = Ep

[(
n∑
i=1

δj∂j

)
v

]
.

We review some relations between OSG-spaces and ordinary Sobolev spaces. We underline
that much more precise results are available in the specialised literature on OSG-spaces.

For all R > 0

(2π)−
n
2 ≥ γ(x) ≥ γ(x)(|x| < R) ≥ (2π)−

n
2 e−

R2

2 (|x| < R), x ∈ Rn.

Proposition 51. Let ΩR denote the open sphere of radius R > 0 and consider the restriction
u 7→ uR of u to ΩR.

(1) We have the continuous mappings

W 1,(cosh−1) (Rn) ⊂W 1,(cosh−1) (γ)→W 1,p(ΩR), p ≥ 1.

(2) We have the continuous mappings

W 1,p(Rn) ⊂W 1,(cosh−1)∗ (Rn) ⊂W 1,(cosh−1)∗ (γ)→W 1,1(ΩR), p > 1.

(3) Each u ∈W 1,(cosh−1) (γ) is a.s. Hölder of all orders on each ΩR and hence a.s. contin-

uous. The restriction W 1,(cosh−1) (γ)→ C(ΩR) is compact.
40



(4)

Proof. (1) From the inequality on M and from (cosh−1)(y) ≥ y2n/(2n)!.
(2) From the inequality onM and from y2/2 ≥ (cosh−1)∗(y) and cosh(1)−1+(cosh−1)∗(y) ≥
|y|.

(3) It is one of the Sobolev’s embedding theorem, see Ch. 9 of Brezis (2011).

(4) By definition, u ∈ W 1,(cosh−1) (γ) if, and only if, u, ∂ju ∈ L(cosh−1) (γ), j = 1, . . . , n.
Clearly, for all a, b > 1

ue−
1
2a
|x|2 ∈ La(Rn)

∂jue−
1
2b
|x|2 ∈ Lb(Rn)

For all φ ∈ C∞0 (Rn),〈
∂j

(
ue−

1
2b
|u|2
)
, φ
〉

= −
〈
ue−

1
2b
|u|2 , ∂jφ

〉
= −

〈
u, e−

1
2b
|u|2∂jφ

〉
=

−
〈
u, ∂j

(
e−

1
2b
|u|2φ

)
− xj

a
e−

1
2b
|u|2φ

〉
=〈

∂ju, e
− 1

2b
|u|2φ

〉
+
〈
u,
uj
b

e−
1
2b
|u|2φ

〉
=〈

∂jue−
1
2b
|u|2 + u

uj
b

e−
1
2b
|u|2 , φ

〉
.

We have shown that

∂j

(
ue−

1
2b
|u|2
)

= ∂jue−
1
2b
|u|2 + u

uj
b

e−
1
2b
|u|2 .

The first term in the RHS belongs to Lb(Rn). For the second term,∫ ∣∣∣u(x)
xj
b

e−
1
2b
|x|2
∣∣∣b dx ∝ ∫ |xju(x)|bγ(x) dx ,

which is bounded.
We have shown that u ∈W 1,b(Rn) for all b. It follows from Morrey’s theorem (Brezis,

2011, Th. 9.12) that x 7→ u(x)e− 1
2b |x|

2 with b > n is a.s. continuous (hence u is
continuous) and for the continuous version∣∣∣∣u(x)e− 1

2b
|x|2 − u(y)e− 1

2b
|x|2
∣∣∣∣ ≤ C(b, n)

�

Let us consider now the extension of the ∂j operator to the OSG-spaces and its relation with
the translation operator.

The operator given by the ordinary partial derivative ∂j : C∞p (Rn)→ C∞p (Rn) ⊂ L(cosh−1)∗ (γ)

is closable. In fact, if both fn → 0 and ∂jfn → η in L(cosh−1)∗ (γ), then for all φ ∈ C∞0 (Rn),

〈φ, η〉γ = lim
n→∞

〈φ, ∂jfn〉γ = lim
n→∞

〈δφ, fn〉γ = 0 ,

hence η = 0. The same argument shows that ∂j : C∞0 (Rn) → C∞0 (Rn) ⊂ L(cosh−1) (γ) is
closable.

For f ∈ L(cosh−1) (γ) we define τhf(x) = f(x−h) and it holds τhf ∈ L(cosh−1) (γ) because of

Prop. 44(1). For each given f ∈W 1,(cosh−1) (γ) we denote by ∂jf ∈W 1,(cosh−1) (γ), j = 1, . . . , n
its distributional partial derivatives and write ∇f = (∂jf : j = 1, . . . , n).

Proposition 52 (Continuity and directional derivative).

(1) For each v ∈W 1,(cosh−1) (γ), each unit vector h, and all t ∈ R, it holds

v(x+ th)− v(x) = t

∫ 1

0
∇v(x+ sth) · h ds .
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Moreover, |t| ≤
√

2 implies

‖v(x+ th)− v(x)‖L(cosh−1)(γ) ≤ 2t ‖∇v‖L(cosh−1)(γ) ,

especially, limt→0 ‖v(x+ th)− v(x)‖L(cosh−1)(γ) = 0 uniformly in h.

(2) For each v ∈W 1,(cosh−1) (γ) the mapping h 7→ τhv is differentiable from Rn to L∞−0(M)
with gradient ∇v at h = 0.

(3) For each v ∈ W 1,(cosh−1) (γ) and each f ∈ L(cosh−1)∗ (γ), the mapping h 7→ 〈τhv, f〉γ
is differentiable with derivative 〈τh∇v · h, f〉γ. Conversely, if v ∈ L(cosh−1) (γ) and

h 7→ 〈τhv, v〉γ is differentiable for all f ∈ L(cosh−1)∗ (γ), with derivative 〈d(f, h), f〉γ
then f ∈W 1,(cosh−1) (γ) and .

(4) If ∂jv ∈ C(cosh−1)
0 (γ), j = 1, . . . , n, then strong differentiability in L(cosh−1) (γ) holds.

Proof. (1) The measurable mapping (s, x) 7→ t∇v(x+ sth) · h is integrable as

∫ 1

0

∫
|t∇v(x+ sth) · h|γ(x) dx ds =

∫ 1

0

∫
|t∇v(y) · h| γ(y − sth) dy ds =

t

∫
|∇v(y) · h|

∫ 1

0
esth·y−

s2t2|h|2
2 ds γ(y) dy ≤

t |h| ‖∇v‖L2(γ)

(∫ 1

0

∫
e2sth·y−s2t2|h|2γ(y) dy ds

)1/2

and the value of the last integral is bounded,

∫ 1

0

∫
e2sth·y−s2t2|h|2γ(y) dy ds =

∫ 1

0
e−s

2t2|h|2
∫

e2sth·yγ(y) dy ds =∫ 1

0
e−s

2t2|h|2+4s2t2|h|2 ds =

∫ 1

0
e3s2t2|h|2 ds ≤ e3t2|h|2 .

The partial integral x 7→ t
∫ 1

0 ∇v(x + sth) · h ds is a.s. defined and it is integrable
with respect to γ(x)dx. Recall that for each test function φ ∈ C∞0 (Rn) we have

〈∂jv, φ〉γ = −〈v, ∂j(φγ)〉 = 〈v, δjφ〉γ .
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We check the equality τ−thv − v = t
∫ 1

0 τ−sth(∇v) · h ds in the scalar product with a
generic φ ∈ C∞0 (Rn):

〈τ−thv − v, φ〉γ =

∫
v(x+ th)φ(x)γ(x) dx−

∫
v(x)φ(x)γ(x) dx

=

∫
v(x)φ(x− th)γ(x− th) dx−

∫
v(x)φ(x)γ(x) dx

=

∫
v(x) (φ(x− th)γ(x− th)− φ(x)γ(x)) dx

= −t
∫
v(x)

∫ 1

0

n∑
j=1

∂j(φγ)(x− sth)hj ds dx

= −t
∫ 1

0

∫
v(x)

n∑
j=1

∂j(φγ)(x− sth)hj dx ds

= t

∫ 1

0

∫ n∑
j=1

∂jv(x)hj φ(x− sth)γ(x− sth) dx ds

= t

∫ 1

0

∫ n∑
j=1

∂jv(x+ sth)hj φ(x)γ(x) dx ds

=

〈
t

∫ 1

0
τ−sth(∇v) · h ds, φ

〉
γ

.

If |t| ≤
√

log 2 then the translation sth is small, |sth| ≤
√

log 2 so that, according
to Prop. 44(1), we have‖τ−sth(∇v · h)‖L(cosh−1)(γ) ≤ 2 ‖∇v · h‖L(cosh−1)(γ) and the thesis

follows.
(2) We want to show that the following limit holds in all Lα(M)-norms, α > 1:

lim
t→0

τ−thv − v
t

= h · ∇v .

Because of the identity in the previous Item, we need to check the limit

lim
t→0

∫ ∣∣∣∣∫ 1

0
(τ−sth(∇v(x) · h)−∇v(x) · h) ds

∣∣∣∣αγ(x) dx = 0 .

Jensen’s inequality gives∫ ∣∣∣∣∫ 1

0
(τ−sth(∇v(x) · h)−∇v(x) · h) ds

∣∣∣∣αγ(x) dx ≤∫ 1

0

∫
|τ−sth(∇v(x) · h)−∇v(x) · h)|αγ(x) dx ds

and the result follows because translations are bounded and continuous in Lα(M).
(3) We have〈∫ 1

0
(τ(−sth)v − v) ds, f

〉
γ

=

∫ 1

0

〈
τ(−sth)v − v, f

〉
γ
ds = ∫ 1

0

〈
v, τ∗(−sth)f − f

〉
γ
ds .

Conclusion follows because t 7→ τ∗−sthf is continuous in L(cosh−1)∗ (γ).
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Assume now v ∈ L(cosh−1) (γ) and h 7→ τhv is weakly differentiable. There exist

v1, . . . , vn ∈ L(cosh−1) (γ) such that for all φ ∈ C0 (Rn) and j

〈vj , φγ〉 = 〈vj , φ〉γ =
d

dt

〈
τ−tejv, φ

〉
γ

∣∣∣∣
t=0

=
d

dt

〈
τ−tejv, φγ

〉∣∣∣∣
t=0

=

d

dt

〈
v, τtej (φγ)

〉
= −〈v, ∂j(φγ)〉 .

The distributional derivative holds because φγ is the generic element of C∞0 (Rn).
(4) For each ρ > 0 Jensen’s inequality implies∥∥∥∥∫ 1

0
(τ−sth(∇f · h)−∇f · h) ds γ(x)dx

∥∥∥∥
L(cosh−1)(γ)

≤∫ 1

0
‖(τ−sth(∇f · h)−∇f · h) γ(x)dx‖L(cosh−1)(γ) ds .

As in Prop. 44(1) we choose |t| ≤
√

log 2 to get |stej | ≤
√

log 2, 0 ≤ s ≤ 1, so
that ‖τ−sth∇f · h‖L(cosh−1)(γ) ≤ 2 ‖∇f · h‖L(cosh−1)(γ), hence the integrand is bounded

by ‖∇f · h‖L(cosh−1)(γ). The convergence for each s follows from the continuity of the

translation on C
(cosh−1)
0 (γ).

�

Notice that in Item 2. of the proposition we could have derived a stronger differentiability if
the mapping h 7→ τh∇f were continuous in L(cosh−1) (γ). That, and other similar observations,
lead to the following definition.

Definition 53. The Orlicz-Sobolev-Gauss exponential class is

C
1,(cosh−1)
0 (γ) =

{
f ∈W 1,(cosh−1) (γ)

∣∣∣ f, ∂jf ∈ C(cosh−1)
0 (M) , j = 1, . . . , n

}
The following density results will be used frequently in approximation arguments. We denote

by (ωn)n∈N a sequence of mollifiers.

Proposition 54 (Calculus in C
1,(cosh−1)
0 (γ)). (1) For each f ∈ C1,(cosh−1)

0 (γ) the sequence

f∗ωn, n ∈ N, belongs to C∞(Rn)∩W 1,(cosh−1) (γ). Precisely, for each n and j = 1, . . . , n,
we have the equality ∂j(f ∗ωn) = (∂jf) ∗ωn; the sequences f ∗ωn, respectively ∂jf ∗ωn,

j = 1, . . . , n, converge to f , respectively ∂jf , j = 1, . . . , n, strongly in L(cosh−1) (γ).

(2) Same statement is true if f ∈W 1,(cosh−1)∗ (γ).

(3) Let be given f ∈ C
1,(cosh−1)
0 (γ) and g ∈ W 1,(cosh−1)∗ (γ). Then fg ∈ W 1,1(M) and

∂j(fg) = ∂jfg + f∂jg.

(4) Let be given F ∈ C1(R) with ‖F ′‖∞ < ∞. For each U ∈ C
1,(cosh−1)
0 (γ), we have

F ◦ U,F ′ ◦ U∂jU ∈ C
(cosh−1)
0 (γ) and ∂jF ◦ U = F ′ ◦ U∂jU , in particular F (U) ∈

C
1,(cosh−1)
0 (γ).

Proof. (1) We need only to note that the equality ∂j(f ∗ ωn) = (∂jf) ∗ ωn is true for

f ∈W 1,(cosh−1) (γ). Indeed, the sequence f ∗ωn belongs to C∞(Rn)∩L(cosh−1) (γ) and

converges to f in L(cosh−1) (γ)-norm according from Prop. 46. The sequence ∂jf ∗ωn =

(∂jf) ∗ ωn converges to ∂jf in L(cosh−1) (γ)-norm because of the same theorem.
(2) Same proof.
(3) Note that fg, ∂jfg + f∂jg ∈ L1(M). The following converge in L1(M) holds

∂jfg + f∂jg = lim
n→∞

∂jf ∗ ωng ∗ ωn + f ∗ ωn∂j ∗ ωn = lim
n→∞

∂jf ∗ ωng ∗ ωn ,
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so that for all φ ∈ C∞0 (Rn)

〈∂jfg + f∂jg, φ〉 = lim
n→∞

〈∂jf ∗ ωng ∗ ωn, φ〉 =

lim
n→∞

−〈f ∗ ωng ∗ ωn, ∂jφ〉 = −〈fg, ∂jφ〉 .

It follows that the distributional partial derivative of the product is ∂jfg = ∂jfg+f∂jg,
in particular belongs to L1(M), hence fg ∈W 1,1(M).

(4) From the assumption on F we have |F (U)| ≤ |F (0)| + ‖F ′‖∞ |U |. It follows F ◦ U ∈
L(cosh−1) (γ) because

∫
(cosh−1) (ρF (U(x))) γ(x)dx ≤

1

2
(cosh−1)(2ρF (0)) +

1

2

∫
(cosh−1)

(
2ρ
∥∥F ′∥∥∞ U(x))

)
γ(x)dx ,

and ρ ‖F (U)‖L(cosh−1)(γ) ≤ 1 if both

(cosh−1)(2ρF (0)) ≤ 1, 2ρ
∥∥F ′∥∥∞ ‖U‖L(cosh−1)(γ) ≤ 1 .

In the same way we show that F ′ ◦ U∂jU ∈ L(cosh−1) (γ). Indeed,

∫
(cosh−1)

(
ρF ′(U(x))∂jU(x)

)
γ(x)dx ≤

∫
(cosh−1)

(
ρ
∥∥F ′∥∥∞ ∂jU(x)

)
γ(x)dx ,

so that ρ ‖F ′ ◦ U∂jU‖L(cosh−1)(γ) ≤ 1 if ρ ‖F ′‖∞ ‖∂jU(x)‖L(cosh−1)(γ) = 1. Because of the

Item (1) the sequence U ∗ ωn belongs to C∞ and converges strongly in L(cosh−1) (γ) to
U , so that from

‖F ◦ (U ∗ ωn)− F ◦ U‖L(cosh−1)(γ) ≤
∥∥F ′∥∥∞ ‖U ∗ ωn − U‖L(cosh−1)(γ)

we see that F ◦ (U ∗ ωn)→ F ◦ U in L(cosh−1) (γ). In the same way,

∥∥F ′ ◦ (U ∗ ωn)∂j(U ∗ ωn)− F ′ ◦ U∂jU
∥∥
L(cosh−1)(γ)

≤∥∥F ′ ◦ (U ∗ ωn)(∂j(U ∗ ωn)− ∂jU)
∥∥
L(cosh−1)(γ)

+
∥∥(F ′ ◦ (U ◦ ωn)− F ′ ◦ U)∂jU

∥∥
L(cosh−1)(γ)

≤∥∥F ′∥∥∞ ‖∂j(U ∗ ωn)− ∂jU‖L(cosh−1)(γ) +∥∥(F ′ ◦ (U ◦ ωn)− F ′ ◦ U)∂jU
∥∥
L(cosh−1)(γ)

.

The first term goes clearly to 0, while the second term requires consideration. Note the
bound ∣∣(F ′ ◦ (U ◦ ωn)− F ′ ◦ U)∂jU

∣∣ ≤ 2
∥∥F ′∥∥∞ |∂jU | ,

so that the sequence (F ′◦(U ◦ωn)−F ′◦U)∂jU goes to zero in probability and is bounded

by a function in C
(cosh−1)
0 (γ). This in turn implies the convergence in L(cosh−1) (γ).
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Finally we check that the distributional derivative of F ◦ U is F ′ ◦ U∂jU : for each
φ ∈ C∞0 (Rn)

〈∂jF ◦ U, φγ〉 = −〈F ◦ U, ∂j(φM)〉
= −〈F ◦ U, δjφ〉γ
= lim

n→∞
〈F ◦ (U ∗ ωn), δjφ〉γ

= lim
n→∞

〈∂jF ◦ (U ∗ ωn), φ〉γ
= lim

n→∞

〈
F ′ ◦ (U ∗ ωn)∂j(U ∗ ωn), φ

〉
γ

=
〈
F ′ ◦ U∂jU, φ

〉
γ

=
〈
F ′ ◦ U∂jU, φγ

〉
.

�

We conclude our presentation by re-stating a technical result from Prop. 15 of Lods and
Pistone (2015), where the assumptions where not sufficient for the stated result.

Proposition 55.

(1) If U ∈ Sγ and f1, . . . , fm ∈ L(cosh−1) (γ), then f1 · · · fmeM−KM (M) ∈ Lγ(M) for some

γ > 1, hence it is in L(cosh−1)∗ (γ).

(2) If U ∈ Sγ ∩ C1,(cosh−1)
0 (γ) and f ∈ C1,(cosh−1)

0 (γ), then

feu−KM (u) ∈W 1,(cosh−1)∗ (γ) ∩ C(Rn) ,

and its distributional partial derivatives are (∂jf + f∂ju)eu−KM (u)

Proof. (1) From We know that eU−KM (U) · γ ∈ E (γ) and eU−KM (U) ∈ L1+ε(M) for some

ε > 0. From that, let us prove that f1 · · · fmeU−KM (U) ∈ Lγ(M) for some γ > 1.
According to classical (m+1)-term Fenchel-Young inequality,

|f1(x) · · · fn(x)| eU(x)−KM (U) ≤
m∑
i=1

1

αi
|fi(x)|αi +

1

β

∣∣∣eU(x)−KM (U)
∣∣∣β ,

α1, . . . , αm, β > 1,
m∑
i=1

1

αi
+

1

β
= 1, x ∈ Rn.

Since (cosh−1)∗ is convex, we have

EM
[
(cosh−1)∗(|f1 · · · fm| eU−KM (U))

]
≤

m∑
i=1

1

αi
Eγ [(cosh−1)∗(|fi|αi)] +

1

β
EM

[
(cosh−1)∗

(
eβ(U−KM (U))

)]
.

Since f1, . . . , fm ∈ L(cosh−1) (γ) ⊂ ∩α>1L
α(M), one has |fi|αi ∈ L(cosh−1)∗ (γ), for

i = 1, . . . ,m and all αi > 1, hence EM [(cosh−1)∗(|fi|αi)] < ∞ for i = 1, . . . ,m

and all αi > 1. By choosing 1 < β < 1 + ε one has eβ(U(x)−KM (U)) ∈ Lγ(M) ⊂
L(cosh−1)∗ (γ), γ = 1+ε

β , so that EM
[
(cosh−1)∗

(
eβ(U−KM (U))

)]
< ∞. This proves

that (cosh−1)∗(f1 · · · fmeU−KM (U)) ∈ L1(M), which implies f1 · · · fmeU(x)−KM (U) ∈
L(cosh−1)∗ (γ).

(2) From the previous item we know feU−KM (U) ∈ L(cosh−1)∗ (γ). For each j = 1, . . . , n from

prop. 54(3) we have the distributional derivative ∂j(feU ) = ∂feU +f∂je
U−KM (U) we we

need to show a composite function derivation, namely ∂je
U−KM (U) = ∂jueU−KM (U). Let

χ ∈ C∞0 (Rn) be a cut-off equal to 1 on the ball of radius 1, zero outside the ball of radius
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2, derivative bounded by 2, and for n ∈ N consider the function x 7→ Fn(x) = χ(x/n)ex

which is C∞(Rn) and whose derivative is bounded:

F ′n(x) =

(
1

n
χ′(x/n) + χ(x/n)

)
ex ≤

(
2

n
+ 1

)
e2n .

As Prop. 54(4) applies, we have ∂jFn(U) = F ′n(U)∂jU ∈ C(cosh−1)
0 (γ). Finally, for each

φ ∈ C∞0 (Rn), 〈
∂je

U , φ
〉

= −
〈
eU , ∂jφ

〉
= − lim

n→∞
〈Fn(U), ∂jφ〉

= lim
n→∞

〈∂Fn(U), φ〉

= lim
n→∞

〈
(
1

n
χ′(U/n) + χ(U/n))∂jUeU , φ

〉
=
〈
∂jUeU , φ

〉
.

�

Remark 7. As a particular case of the above proposition, we see that U ∈ Sγ ∩ C1,(cosh−1)
0 (γ)

implies

eU−KM (U) ∈W 1,(cosh−1)∗ (γ) with ~∇eU−KM (U) = ~∇u eU−KM (U) .
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