
Chapter 1
Optimization via Information Geometry

Luigi Malagò and Giovanni Pistone

Abstract Information Geometry has been used to inspire efficient algorithms for
stochastic optimization, both in the combinatorial and the continuous case. We give
an overview of the authors’ research program and some specific contributions to the
underlying theory.

1.1 Introduction

The present paper is based on the talk given by the second author on May 21, 2013,
to the Seventh International Workshop on Simulation in Rimini. Some pieces of
research that were announced in that talk have been subsequently published [17, 21,
22]. Here we give a general overview, references to latest published results, and a
number of specific topics that have not been published elsewhere.

Let (Ω ,F ,µ) be a measure space, whose strictly positive probability densities
form the algebraically open convex set P>. An open statistical model (M ,θ ,B)
is a parametrized subset of P>, that is, M ⊂P> and θ : M → B, where θ is a
one-to-one mapping onto an open subset of a Banach space B. We assume in the
following that Ω is endowed with a distance and F is its Borel σ -algebra.

If f : Ω → R is a bounded continuous function, the mapping M 3 p 7→ Ep [ f ]
is a Stochastic Relaxation (SR) of f . The strict inequality Ep [ f ] < supω∈Ω f (ω)
holds for all p ∈M , unless f is constant. However, supp∈M Ep [ f ] = supω∈Ω f (ω)
if there exist a probability measure ν in the weak closure of M ·µ whose support is
contained in the set of maximizing points of f , that is to say
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ν

{
ω ∈Ω : f (ω) = sup

ω∈Ω

f (ω)

}
= 1, or

∫
f dν = sup

ω∈Ω

f (ω).

Such a ν belongs to the border of M · µ . For a discussion of the border issue for
finite Ω , see [18]. Other relaxation methods have been considered, e.g., [4, 25].

A SR optimization method is an algorithm producing a sequence pn ∈M , n ∈N,
which is expected to converge to the probability measure ν , so that limn→∞Epn [ f ] =
supω∈Ω f (ω). Such algorithms are best studied in the framework of Information
Geometry (IG), that is, the differential geometry of statistical models. See [2] for a
general treatment of IG and [4, 6, 13, 14, 15, 16, 17] for applications to SR. All the
quoted literature refers to the case where the model Banach space of the statistical
manifold, i.e., the parameter space, is finite dimensional, B=Rd . An infinite dimen-
sional version of IG has been developed, see [22] for a recent presentation together
with new results, and references therein for a detailed bibliography. The nonpara-
metric version is unavoidable in applications to evolution equations in Physics [21],
and it is useful even when the sample space is finite [19].

1.2 Stochastic relaxation on an exponential family

We recall some basic facts on exponential families, see [8].

1. The exponential family qθ = exp
(

∑
d
j=1 θ jTj−ψ(θ)

)
· p, Ep [Tj] = 0, is a statis-

tical model M = {qθ} with parametrization qθ 7→ θ ∈ Rd .
2. ψ(θ) = log

(
Ep
[
eθ ·T ]), θ ∈ Rd , is convex and lower semi-continuous.

3. ψ is analytic on the (non empty) interior U of its proper domain.
4. ∇ψ(θ) = Eθ [T ], T = (T1, . . . ,Td).
5. Hessψ(θ) = Varθ (T ).
6. U 3 θ 7→∇ψ(θ)=η ∈N is one-to-one, analytic, and monotone; N is the inte-

rior of the marginal polytope, i.e., the convex set generated by {T (ω) : ω ∈Ω}.
7. The gradient of the SR of f is

∇(θ 7→ Eθ [ f ]) = (Covθ ( f ,T1) , . . . ,Covθ ( f ,Td)),

which suggests to take the least squares approximation of f on Span(T1, . . . ,Td)
as direction of steepest ascent, see [16].

8. The representation of the gradient in the scalar product with respect to θ is called
natural gradient, see [2, 3, 19].

Different methods can be employed to generate a maximizing sequence of den-
sities pn is a statistical model M . A first example is given by Estimation of Dis-
tribution Algorithms (EDAs) [12], a large family of iterative algorithms where the
parameters of a density are estimated after sampling and selection, in order to favor
samples with larger values for f , see Example 1. Another approach is to evaluate
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the gradient of Ep [ f ] and follow the direction of the natural gradient over M , as
illustrated in Example 2.

Example 1 (EDA from [17]). An Estimation of Distribution Algorithm is a SR opti-
mization algorithm based on sampling, selection and estimation, see [12].

Input: N,M . population size, selected population size
Input: M = {p(x;ξ )} . parametric model

t← 0
Pt = INITRANDOM() . random initial population
repeat

Pt
s = SELECTION(Pt ,M) . select M samples

ξ t+1 = ESTIMATION(Pt
s ,M ) . opt. model selection

Pt+1 = SAMPLER(ξ t+1,N) . N samples
t← t +1

until STOPPINGCRITERIA()

Example 2 (SNGD from [17]). Stochastic Natural Gradient Descent [16] is a SR
algorithm that requires the estimation of the gradient.

Input: N,λ . population size, learning rate
Optional: M . selected population size (default M = N)

t← 0
θ t ← (0, . . . ,0) . uniform distribution
Pt ← INITRANDOM() . random initial population
repeat

Pt
s = SELECTION(Pt ,M) . opt. select M samples

∇̂E[ f ]← Ĉov( f ,Ti)
d
i=1 . empirical covariances

Î← [Ĉov(Ti,Tj)]
d
i, j=1 . {Ti(x)} may be learned

θ t+1← θ t −λ Î−1∇̂E[ f ]
Pt+1← GIBBSSAMPLER(θ t+1,N) . N samples
t← t +1

until STOPPINGCRITERIA()

Finally, other algorithms are based on Bregman divergence. Example 3 illustrates
the connection with the exponential family.

Example 3 (Binomial B(n, p)). On the finite sample space Ω = {0, . . . ,n} with
µ(x) =

(n
x

)
, consider the exponential family p(x;θ) = exp

(
θx−n log

(
1+ eθ

))
.

With respect to the expectation parameter η = neθ/(1+eθ )∈]0,n[ we have p(x;η)=
(η/n)x(1−η/n)n−x, which is the standard presentation of the binomial density.

The standard presentation is defined for η = 0,n, where the exponential formula
is not. In fact, the conjugate ψ∗(η) of ψ(θ) = n log

(
1+ eθ

)
is

ψ∗(η) =


+∞ if η < 0 or η > n,
0 if η = 0,n,

η log
(

η

n−η

)
−n log

(
n

n−η

)
if 0 < η < n.
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We have

log p(x;η) = log
(

η

n−η

)
(x−η)+ψ∗(η), η ∈]0,n[

= ψ
′
∗(η)(x−η)+ψ∗(η)≤ ψ∗(x).

For x 6= 0,n, the sign of ψ ′∗(η)(x−η) is eventually negative as η → 0,n, hence

lim
η→0,n

log p(x;η) = lim
η→0,n

ψ
′
∗(η)(x−η)+ψ∗(η) =−∞.

If x = 0,n, the sign of both ψ ′∗(η)(0−η) and ψ ′∗(η)(n−η) is eventually positive
as η → 0 and η → n, respectively. The limit is bounded by 0 = ψ∗(x), for x = 0,n.

The argument above is actually general. It has been observed by [5] that the
Bregman divergence Dψ∗(x‖η) = ψ∗(x)−ψ∗(η)−ψ ′∗(η)(x−η) ≥ 0 provides an
interesting form of the density as p(x;η) = e−Dψ∗ (x‖η)eψ∗(x) ∝ e−Dψ∗ (x‖η).

1.3 Exponential manifold

The set of positive probability densities P> is a convex subset of L1(µ). Given a
p ∈P>, every q ∈P> can be written as q = ev · p where v = log

(
q
p

)
. Below we

summarize, together with a few new details, results from [21, 22] and references
therein, and the unpublished [24].

Definition 1 (Orlicz Φ-space [11], [20, Chapter II], [23]). Define φ(y) = coshy−
1. The Orlicz Φ-space LΦ(p) is the vector space of all random variables such that
Ep [Φ(αu)] is finite for some α > 0. Equivalently, it is the set of all random variables
u whose Laplace transform under p ·µ , t 7→ ûp(t) = Ep [etu] is finite in a neighbor-
hood of 0. We denote by MΦ(p) ⊂ LΦ(p) the vector space of random variables
whose Laplace transform is always finite.

Proposition 1 (Properties of the Φ-space).

1. The set S≤1 =
{

u ∈ LΦ(p) : Ep [Φ(u)]≤ 1
}

is the closed unit ball of the complete
norm

‖u‖p = inf
{

ρ > 0: Ep

[
Φ

(
u
ρ

)]
≤ 1
}

on the Φ-space. For all a ≥ 1 the continuous injections L∞(µ) ↪→ LΦ(p) ↪→
La(p) hold.

2. ‖u‖p = 1 if either Ep [Φ(u)] = 1 or Ep [Φ(u)]< 1 and Ep

[
Φ

(
u
ρ

)]
= ∞ for ρ >

1. If ‖u‖p > 1 then ‖u‖p ≤ Ep [Φ(u)]. In particular, lim‖u‖p→∞Ep [Φ (u)] = ∞.

3. MΦ(p) is a closed and separable subspace of LΦ(p).
4. LΦ(p) = LΦ(q) as Banach spaces if, and only if,

∫
p1−θ qθ dµ is finite on a

neighborhood of [0,1].



1 Optimization via Information Geometry 5

Proof.

1. See [11], [20, Chapter II], [23].
2. The function R≥ 3 α 7→ û(t) = Ep [Φ(αu)] is increasing, convex, lower semi-

continuous. If for some t+ > 1 the value û(t+) is finite, we are in the first case and
û(1) = 1. Otherwise, we have û(1) ≤ 1. If ‖u‖p > a > 1, so that

∥∥∥ a
‖u‖p

u
∥∥∥

p
> 1,

hence

1 < Ep

[
Φ

(
a
‖u‖p

u

)]
≤ a
‖u‖p

Ep [Φ (u)] ,

and ‖u‖p < aEp [Φ (u)], for all a > 1.
3. See [11], [20, Chapter II], [23].
4. See [9, 24].

Example 4 (Boolean state space). In the case of a finite state space, the moment
generating function is finite everywhere, but its computation can be challenging. We
discuss in particular the Boolean case Ω = {+1,−1}n with counting reference mea-
sure µ and uniform density p(x) = 2−n, x ∈Ω . In this case there is a huge literature
from statistical physics, e.g., [10, Ch. VII]. A generic real function on Ω—called
pseudo-Boolean [7] in the combinatorial optimization literature—has the form
u(x) = ∑α∈L û(α)xα , with L = {0,1}n, xα = ∏

n
i=1 xαi

i , û(α) = 2−n
∑x∈Ω u(x)xα .

As eax = cosh(a)+ sinh(a)x if x2 = 1 i.e., x =±1, we have

etu(x) = exp

(
∑

α∈Supp û
tû(α)xα

)
= ∏

α∈Supp û
etû(α)xα

= ∏
α∈Supp û

(cosh(tû(α))+ sinh(tû(α))xα)

= ∑
B⊂Supp û

∏
α∈Bc

cosh(tû(α)) ∏
α∈B

sinh(tû(α))x∑α∈B α .

The moment generating function of u under the uniform density p is

t 7→ ∑
B∈B(û)

∏
α∈Bc

cosh(tû(α)) ∏
α∈B

sinh(tû(α)),

where B(û) are those B⊂ Supp û such that ∑α∈B α = 0 mod 2. We have

Ep [Φ ] (tu) = ∑
B∈B0(û)

∏
α∈Bc

cosh(tû(α)) ∏
α∈B

sinh(tû(α))−1,

where B0(û) are those B⊂ Supp û such that ∑α∈B α = 0 mod 2 and ∑α∈Supp û α =
0.

If S is the {1, . . . ,n}×Supp û matrix with elements αi we want to solve the system
Sb = 0 mod 2 to find all elements of B; we add the equation ∑b= 0 mod 2 to find
B0. The simplest example is u(x) = ∑

n
i=1 cixi,
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Example 5 (The sphere is not smooth in general). We look for the moment generat-
ing function of the density

p(x) ∝ (a+ x)−
3
2 e−x, x > 0,

where a is a positive constant. From the incomplete gamma integral

Γ

(
−1

2
,x
)
=
∫

∞

x
s−

1
2−1e−s ds, x > 0,

we have for θ ,a > 0,

d
dx

Γ

(
−1

2
,θ(a+ x)

)
=−θ

− 1
2 e−θa(a+ x)−

3
2 e−θx.

We have, for θ ∈ R,

C(θ ,a) =
∫

∞

0
(a+ x)−

3
2 e−θx dx =


√

θeθaΓ
(
− 1

2 ,θa
)

if θ > 0.
1

2
√

a if θ = 0,

+∞ if θ < 0.

or, C(θ ,a) = 1
2 a−

1
2 −

√
πθ

2 eθaR1/2,1(θa) if θ ≤ 1, +∞ otherwise, where R1/2,1 is the
survival function of the Gamma distribution with shape 1/2 and scale 1.

The density p is obtained with θ = 1,

p(x) =C(1,a)−1(a+ x)−
3
2 e−x =

(a+ x)−
3
2 e−x

eaΓ
(
− 1

2 ,a
) , x > o,

and, for the random variable u(x) = x, the function

α 7→ Ep [Φ(αu)] =
1

eaΓ
(
− 1

2 ,a
) ∫ ∞

0
(a+ x)−

3
2

e−(1−α)x + e−(1+α)x

2
dx−1

=
C(1−α,a)+C(1+α,a)

2C(1,a)
−1

is convex lower semi-continuous on α ∈R, finite for α ∈ [−1,1], infinite otherwise,
hence not steep. Its value at α = 1 is

Ep [Φ(u)] =
1

eaΓ
(
− 1

2 ,a
) ∫ ∞

0
(a+ x)−

3
2

1+ e−2x

2
dx−1

=
C(0,a)+C(2,a)

2C(1,a)
−1

Example 6 (Normal density). Let p(x) = (2π)−1/2e−(1/2)x2
. Consider a generic

quadratic polynomial u(x) = a+bx+ 1
2 cx2. We have for tc 6= 1
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t(a+bx+
1
2

cx2)− 1
2

x2 ==− 1
2(1− tc)−1

(
x− tb

1− tc

)2

+
1
2

t2b2−2ta(1− tc)
(1− tc)

,

hence

Ep
[
etu]=

+∞ if tc≤ 1,
√

1− tcexp
(

1
2

t2b2−2ta(1− tc)
(1− tc)

)
if tc < 1.

If, and only if, −1 < c < 1, we have

Ep [Φ(u)] =

1
2

√
1− cexp

(
1
2

b2−a(1− c)
(1− c)

)
+

1
2

√
1+ cexp

(
1
2

b2−a(1+ c)
(1+ c)

)
−1.

1.4 Vector bundles

Vector bundles are constructed as sets of couples (p,v) with p ∈ P> and v is
some space of random variables such that Ep [v] = 0. The tangent bundle is ob-
tained when the vector space is LΦ

0 (p). The Hilbert bundle is defined as HP> ={
(p,v) : p ∈P>,v ∈ L2

0(p)
}

. We refer to [21] and [19] were charts and affine con-
nections on the Hilbert bundle are derived from the isometric transport

L2
0(p) 3 u 7→

√
p
q

u−
(

1+Eq

[√
p
q

])−1(
1+
√

p
q

)
Eq

[√
p
q

u
]
∈ L2

0(q).

In turn, an isometric trasport Uq
p : L2

0(p)→ L2
0(q) can be used to compute the deriva-

tive of a vector field in the Hilbert bundle, for example the derivative of the gradient
of a relaxed function.

The resulting second order structure is instrumental in computing the Hessian
of the natural gradient of the SR function. This allows the design a second order
approximation method, as it is suggested in [1] for general Riemannian manifolds,
and applied to SR in [19]. A second order structure is also used to define the cur-
vature of a statistical manifold and, possibly, to compute its geodesics, see [6] for
applications to optimization.
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