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Abstract. We discuss the optimization of the stochastic relaxation of
a real-valued function, i.e., we introduce a new search space given by
a statistical model and we optimize the expected value of the original
function with respect to a distribution in the model. From the point of
view of Information Geometry, statistical models are Riemannian mani-
folds of distributions endowed with the Fisher information metric, thus
the stochastic relaxation can be seen as a continuous optimization prob-
lem defined over a differentiable manifold. In this paper we explore the
second-order geometry of the exponential family, with applications to
the multivariate Gaussian distributions, to generalize second-order op-
timization methods. Besides the Riemannian Hessian, we introduce the
exponential and the mixture Hessians, which come from the dually flat
structure of an exponential family. This allows us to obtain different Tay-
lor formulæ according to the choice of the Hessian and of the geodesic
used, and thus different approaches to the design of second-order meth-
ods, such as the Newton method.

In this paper we study the optimization of a real-valued function by means of
its Stochastic Relaxation (SR), i.e., we search for the optimum of the function by
optimizing the expected value of the function itself over a statistical model. This
approach in optimization is very general and it has been developed in many
different fields, from statistical physics and random-search methods, e.g., the
Gibbs sampler in optimization [1], simulated annealing and the cross-entropy
method [2]; to black-box optimization in evolutionary computation, e.g., Esti-
mation of Distribution Algorithms [3] and evolutionary strategies [4–7]; going
through well known techniques in polynomial optimization, such as the method
of the moments [8].

By optimizing the SR of a function, we move from the original search space to
a new search space given by a statistical model, i.e., a set of probability densities.
Once we introduce a parameterization for the statistical model, the parameters
of the model become the new variables of the relaxed problem. Notice that the
notion of stochastic relaxation differs from the common notion of relaxation in
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optimization, indeed the minimum of the relaxed problem does not provide a
lower bound for the minimum of the original problem, since the expected value
of a function is always greater of equal to the minimum of the function. The
term stochastic relaxation has been borrowed from [1], and used in the context
of optimization for the first time in [9]. In the original work Geman and Ge-
man introduced the Gibbs sampler, which is described as a stochastic relaxation
technique to sample a joint probability distribution, and that, combined with an
annealing schedule, can be used as a maximization tool as well.

The choice of the statistical model in the SR plays a fundamental role, indeed
there is a tradeoff between the complexity of the statistical model, expressed for
instance by its dimension, and the difficulty of the relaxed problem, expressed
for example in terms of the non-linearities which appear in the formula of the
expected value of the function. For instance, consider the case of a finite search
space. One could be tempted to define a relaxation over the whole probability
simplex, so that the SR would become linear in the probabilities, and thus easy
to optimize. However, the dimension of relaxed problem would equal that of
the search space, and there would be no advantage in moving the search over a
statistical model. Instead, it is more reasonable to choose a lower-dimensional
statistical model in the search for the optimum. For finite search spaces this
would correspond to constraining the search to a subset of the probability sim-
plex. In this work we focus on the SR of a continous function with respect to
a statistical model in the multivariate Gaussian distributions, however the the-
ory we use applies in the general case of exponential families, with ether finite,
discrete or continuous sample space.

In solving the SR, we are looking for an optimal density in a statistical
model. This corresponds to the distribution that in the discrete case concentrate
the probability mass over an optimal solutions of the original function, while
in the continous case it is more appropriate to talk about concentration of the
probability density in a neighborhood of the optimal solution in the original
search space. The optimization of the SR can be performed according to dif-
ferent paradigms. In particular, a common approach in the family of first-order
methods is given by gradient descent. However, it is well known in statistics that
the geometry of a statistical model is not Euclidean, indeed it was first shown
by Rao [10] that the set of positive distributions on a finite state space is a
Riemannian manifold endowed with the Fisher information metric. Follows that
the gradient of the stochastic relaxation should be evaluated with respect to the
Fisher information metric, which leads us to the definition of natural gradient
introduced by Amari [11]. Natural gradient has been proved to be efficient in
different contexts besides the optimization of the SR [5–7], such as the training
of neural networks [12] and, more recently, in deep learning [13]; policy gradi-
ents in reinforcement learning [14]; and last but not least variational inference
techniques, e.g., [15].

In this paper we follow a geometric approach based on Information Geom-
etry [16–19] to study the first and second-order geometry of the exponential
family. The purpose of this analysis is to introduce the proper tools to define
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second-order optimization methods over a statistical model, and in particular
the notion of Riemannian Hessian which is required when the geometry of the
space is not Euclidean. Notice that despite second-order methods over manifolds
are widely used, as in the case of matrix manifolds [20], they appear to be new in
the context of statistical manifolds. As we already mentioned, exponential fam-
ilies of distributions have an intrinsic Riemannian geometry, where the Fisher
Information matrix plays the role of metric tensor. However, it was pointed out
by Amari [16, 18] that besides the Riemannian geometry there are two other
relevant dually-flat affine geometries of Hessian type for an exponential family:
the exponential and the mixture one. The existence of (at least) three geometries
provides three definitions of connections for an exponential family, three types of
geodesics and, as we will see in the following, three types of Hessian, which are
at the basis of the study of second-order optimization methods over a statistical
manifold.

In the first part of the paper we review the first-order geometry of the expo-
nential family. Next we move to second-order calculus, by introducing the notion
of covariant derivative, and we provide formulæ for the Riemannian, exponen-
tial, and mixture Hessians over a statistical manifold. This analysis allows us to
generalize the Newton algorithm to the optimization over a statistical manifold.
We conclude the paper with some remarks about the case of multivariate Gaus-
sian distributions. A preliminary version of this paper has been presented as a
poster [21] at the NIPS 2014 Workshop on Optimization for Machine Learning
(OPT2014).

1 Geometry of the Exponential Family

Given a real-valued function f : Ω → R to be minimized, and a statistical
model M, the Stochastic Relaxation (SR) F of f is defined as the expected
value of the function itself with respect to p in M, i.e., F (p) = Ep[f ]. Under
some regularity conditions over the choice of M, F is a continuous function
independently from the nature of the sample space Ω, which can be either finite,
discrete or continuous.

We are interested in developing second-order optimization methods for the
SR of f based on the Gaussian distribution. However, the approach we present is
more general and can be applied to any exponential family, thus in the following
we will use the formalism of the exponential family and we will come back to
the Gaussian distribution in the last part of the paper. In the first part of this
section we review some general properties of the exponential family and we refer
to the monograph [22]. Consider the exponential family E :

p(x;θ) = exp

(
d∑
i=1

θiTi(x)− ψ(θ)

)
, (1)

with θ ∈ B, where B is an open convex set in Rd. The real-valued functions
T1, . . . , Tk, are the sufficient statistics of the exponential family, and ψ(θ) is
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the log-partition function, i.e., ψ(θ) = log
∫
x

exp
(∑d

i=1 θiTi(x)
)

dx. The ex-

ponential family also admits a dual parameterization based on the expectation
parameters η with η = Eθ[T ] = ∇ψ(θ).

First and second-order methods to optimize a function F defined over an
exponential family require the evaluation of the gradient and of the Hessian
of F . The evaluation of such quantities depend on the geometry of the space,
which is known to be non-Euclidean in the case of statistical models. To better
understand the nature of E , we refer to notions from Information Geometry [16,
18], which studies the geometry of statistical models and of the exponential
family from the point of view of differential geometry [25]. Statistical models
are considered as manifolds of distributions endowed with a Riemannian metric,
given by the Fisher information metric.

In the following we denote with TpE the tangent space of E at p, i.e., the
space of the tangent vectors to any curve p(t) in E that goes through p. Rao
showed that the tangent vector to p(t) can be evaluated as d

dt log p(t), so that the
tangent space TpE can be equivalently characterized as the space of all random
variable centered in p, with the canonical basis given by the centered sufficient
statistics Ti−Ep[Ti]. Given two tangent vector U, V in TpE , the tangent space is
endowed with the inner product given by g(U, V )(p) = Ep[UV ]. In the basis of
the sufficient statistics we have Ep[UV ] =

∑
ij UiEp[(Ti−Ep[Ti])(Tj−Ep[Tj ])]Vj ,

where eI(p) = Ep[(Ti − Ep[Ti])(Tj − Ep[Tj ])]ij = [Cov(Ti, Tj)]ij is the Fisher
information matrix.

Given an exponential family E , a function F : E → R and the metric g for
E , which in our case is the Fisher information metric, the Riemannian gradient
gradF is the unique vector such that for any direction identified by the vector
X ∈ TpE , we have:

g(gradF,X)(p) = DX F (p), (2)

i.e., gradF is defined as the unique vector such that the inner product with
respect to the metric between gradF and an arbitrarily direction X, evaluated
at p ∈ E , is the directional derivative DX F (p) of F along X in p. The previous
definition of Riemannian gradient is coordinate independent. If we consider a
parameterization for the exponential family, and we choose a basis for the tangent
space, we can write a formula for the components of the Riemannian gradient.
In the exponential family, the natural gradient gives the components of the
Riemannian gradient evaluated with respect to the Fisher information matrix
eI(θ), expressed in the basis of the centered sufficient statistics:

∇̃F (θ) = eI(θ)−1∇F (θ) . (3)

Due to the properties of the exponential family eI(θ) can be obtained as the
Hessian of ψ(θ), i.e., the matrix of second-order partial derivatives [∂i∂jψ(θ)]ij ,
and ∇F (θ) = (∂iF (θ))i is the vector of first-order partial derivatives. Here ∂i
denotes the partial derivative with respect to θi, i.e., ∂i = ∂

∂θi
. We denote the

natural gradient with ∇̃F to distinguish it from ∇F , which corresponds to the
components of the gradient evaluated with respect to the Euclidean metric.
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In order to move to second-order calculus, we need a definition of Hessian
of the function F over a manifold, which generalizes the Euclidean case. In the
following we refer to [20], where second-order methods have been applied to the
optimization over manifolds, cf. [23] for a similar approach. We study the second-
order geometry of the exponential family in a general way, similar to what has
been done in [24], where the focus was on applications to binary optimization.
For basic notions of differential geometry, we refer to the standard book [25].

The first step in the geometric construction of the Riemannian Hessian, which
is required to write a second-order Taylor approximation of the function in a
neighborhood of a point, is the generalization to a manifold of the concept of di-
rectional derivative of a vector field. Indeed, differently from the Euclidean case,
a definition based on the derivation of a vector field along a curve is not possible,
since in each point of the curve tanget vectors belong to different tangent spaces,
and without a correspondence between tangent spaces, no comparison is possible.
The notion of affine connection provides a way to define such correspondence.

A connection ∇ over a manifold M is an operator ∇ : TM× TM → TM
which given two vector fields X and Y defined over M returns a new vector
field ∇XY given by the directional derivative DX Y of the Y in the direction
X. The vector field ∇XY is called the covariant derivative of Y with respect to
X for the given affine connection ∇. Notice that in general a manifold admits
infinitely many connections. Each connection can be specified by d2 vector fields
which represent the covariant derivate∇Ei

Ei where Ei and Ej are the coordinate
vector fields. Then, a connection can be fully determined by d3 symbols, called
the Christoffel symbols Γ kij , which represent the components of ∇Ei

Ej in the

basis E1, . . . , Ed, i.e., ∇Ei
Ej =

∑
k Γ

k
ijEk.

Among all possible connections, there is a unique connection, called Rieman-
nian or Levi-Civita connection, denoted by 0∇, which satisfies the properties
of being symmetric and invariant with respect to the Riemannian metric. The
Christoffel symbols 0Γ kij , with i, j, k = 1, . . . , d, for the Levi-Civita connection

can be derived from the metric, using the formula 0Γ kij =
∑
l g
kl 0Γ ijl, with

0Γ ijk = 1
2 (∂igjk + ∂jgik − ∂kgij). The symbols Γijk =

∑
l gilΓ

l
jk are called the

Christoffel symbols of the first type, to distinguish them from Γ kjk =
∑
l g
klΓ lij

which are sometimes referred as Christoffel symbols of the second type. Here
the gij ’s denote the entries of the inverse Fisher information matrix, i.e., [gij ] =
[gij ]

−1. Notice that when g can be expressed as the Hessian of a function for a
given parameterization, then by symmetry we have 0Γ ijk = 1

2∂igjk.
As pointed out previously, besides the Riemannian connection, two other

affine geometries, namely the exponential and the mixture geometry, play an
important role for the exponential family. Amari [18] introduced the following
family of α-connections, given by the Christoffel symbols:

αΓ ijk(ξ) = Eξ

[(
∂i∂j log p(x; ξ) +

1− α
2

∂i log p(x; ξ)∂j log p(x; ξ)

)
∂k log p(x; ξ)

]
For α = 0 we recover the Christoffel symbols of the Levi-Civita connection
0Γ ijk(ξ), while for α = ±1 we obtain a characterization for the exponential
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and mixture connection. In particular, for an exponential family parametrized
by θ, it is easy to show that the Christoffel symbols of the exponential con-
nection eΓ ijk(θ), for α = 1, are identically equal to zero, i.e., the exponential
family is e-flat. Similarly, once the exponential family is parametrized by η, it
turns out that the Christoffel symbols of the mixture connection mΓ ijk(η), for
α = −1, are identically zero, i.e., the exponential family is m-flat as well. This
is a consequence of the duality between the exponential and mixture geometry
of the exponential family. It follows that we can introduce at least two alter-
native definitions of covariant derivative, based on the exponential and mixture
geometries, which we call exponential and mixture covariant derivatives. Given
the connection through its Christoffel symbols, the covariant derivative can be
evaluated by the following formula:

∇XY =
∑
ij

Xj

(∑
k

Y kΓ ijk + ∂jY
i

)
Ei . (4)

The introduction of a connection over the manifold allows to define the notion
of acceleration along a curve, which is based on the differentiation of tangent vec-
tors along the curve itself. Thus, we can introduce a geodesic between two points
as the curve with zero acceleration. Different definitions of covariant derivatives
produce different geodesics between two points.

We can now introduce the Riemannian Hessian of a function defined over
a manifold. In the following we interpret the Hessian as an operator which is
applied to a vector field X and returns a vector field DX gradF given by the
directional derivative of the Riemannian gradient along the direction identified
by X. On a Riemannian manifold M endowed with the metric g, the Rieman-
nian Hessian of F is the linear mapping

0
HessF (p) : TpM → TpM such that

0
HessF (p)[X(p)] = ∇X(p) gradF (p), where 0∇ is the Levi-Civita connection as-

sociated to g on M. The coordinate representation of the Riemannian Hessian
in the basis of the centered sufficient statistics [24] is given by:

0
HessF (p)[X(p)] = eI(p)−1

(
HessF (p)− 1

2

∑
k

∂k
eI(p)(∇̃F (p))k

)
X(p), (5)

where HessF (p), with no arguments, denotes the Euclidean Hessian of F in p, i.e,
the matrix of second-order partial derivatives. Notice that in the natural param-
eters, and more in general for any Hessian manifolds, since eI(θ) = Hessψ(θ),
then 0Γ ijk(θ) = 1

2∂i∂j∂kψ(θ) becomes symmetric with respect to the three in-
dices. Eq. (5) can be derived from Eq.(4), where the Christoffel symbols of the
second type are given by the tensor contraction 1

2
eI(p)−1∂ eI(p). By choosing

different Christoffel symbols associated to the exponential and mixture connec-
tions, we can obtain similar formulæ for

e
HessF (p)[X(p)] and

m
HessF (p)[X(p)].

2 Second-Order Optimization: The Newton Method

The Newton method is an optimization method which generates a sequence of
distributions {pt}, t ≥ 0, in M which converges towards a stationary point
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of F , i.e., a critical point of the vector field p 7→ gradF (p). At the basis of
this optimization technique there is a Taylor expansion F (p) which provides a
second-order approximation of the function over the manifold.

Let t 7→ p(t) be a Riemannian geodesic connecting p = p(0) to q = p(1) in
E , and Dp(t) denote the tangent velocity vector d

dt log p(t), then the following
Taylor formula holds:

F (q) ≈ F (p) + 〈gradF (p), Dp(0)〉p +
1

2

〈
0
HessF (p)[ Dp(0)], Dp(0)

〉
p
. (6)

However, this is not the only possible second-order approximation of F . Two
similar formula can be obtained by consider the exponential geodesic connect-
ing p and q together with the mixture Hessian

m
HessF (p)[ Dp(0)], and dually,

using the mixture geodesic and the exponential Hessian. Proofs are omitted due
to space limitation, however they are based on the duality between covariant
derivatives in terms of preserving inner products with respect to the metric, and
the fact that the acceleration along the corresponding geodesic is zero.

In order to determine the next point at each iteration, the Newton method is
based on the idea of choosing the step in such a way that the Taylor expansion
attains its minimum in the new point. This step can be found by ensuring that
the derivative of the approximation is equal to zero in the new point. This
requires to solve in X(p) ∈ TpM the following Newton equation:

HessF (p)[X(p)] = − gradF (p) . (7)

Once the previous equation has been solved, the last step consists in finding a
point over the manifold along the geodesic starting from the current point with
initial velocity given by the Newton step. This last step is required for any first
or second-order optimization method over a manifold to find a correspondence
between tangent vectors in a point and the neighborhood of the point itself in
the manifold. The computation of a geodesic determined by the Newton step
can be an expensive task in general, for instance when the geometry is not flat,
however this step could be relaxed and approximated by the notion of retraction.
The retraction over a manifold [20] is a mapping between the tangent space in a
point and the manifold, with local rigidity conditions which preserves gradients
at the point where it is evaluated.

3 Applications to the Gaussian Distribution

In this section we give some details about the application of the general theory
of second-order calculus over an exponential family to the case of the Gaussian
distribution. In the first part we recall some results about exponential families.

Due to the properties of the exponential family, the Fisher information ma-
trix, the Euclidean gradient, and thus the natural gradient can be evaluated in
terms of covariances, indeed we have ∇̃F (θ) = Covθ(T ,TT)−1 Covθ(T , f) . As
remarked above, since the exponential family parameterized by θ is a Hessian
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manifold, it follows that ∂I(θ) = [∂i∂j∂kψ(θ)] = Covθ(T ,T ,T ) = Eθ[(T −
Eθ[T ])(T −Eθ[T ])(T −Eθ[T ])], and HessF (p) = [∂i∂jF (θ)] = (Covθ(T ,TT, f).

The Riemannian Hessian
0
HessF (θ)[X(θ)] can then be written in coordinates:

Covθ(T ,T )−1

(
Covθ(T ,T , f)− 1

2

∑
k

Covθ(T ,T , Tk)(∇̃F (θ))k

)
X(θ), (8)

The implementation of an optimization algorithm for the SR based on the ex-
ponential family requires the evaluation of the covariances among the sufficient
statistics and between the sufficient statistics and the function to be optimized.
In the general case, to determine these quantities exactly can be computationally
unfeasible, for this reason it is a common approach to replace the exact value
with Monte Carlo estimations of the covariances based on the current sample.

We have now all the elements to write explicitly an updating formula in the
natural parameters for the Newton method, where the sequence of distributions
generated is identified by a corresponding sequence of parameter vectors {θt},
t ≥ 0. The iterative formula for the Newton method can be written as:

θt+1 = θt −Rθt(λHessF (θt)
−1∇̃F (θt)) , (9)

where the function Rθ returns the coordinates of the image of the retraction,
which is a mapping from the tangent space to the manifold that identifies a point
along the direction specified by the vector given as an argument, which in our
case is the Newton step. The parameter λ > 0 is used to control the step size
and thus the convergence to a critical point of F .

We conclude this section with some comments about the application to the
Gaussian case. We refer to [27] as a standard reference for the geometry of the
Gaussian distribution, and to our paper [26] for a presentation of the different
parameterizations of the Gaussian distribution in view of the SR. The Gaus-
sian distribution is one of the special cases in the exponential family, where the
computation of the transformation between natural parameters and expectation
parameters can be done in an efficient way, through the inversion of the covari-
ance matrix. Indeed, the natural parameters of the Gaussian distribution are
a function of the inverse covariance matrix and of the mean vector, while the
expectation parameters correspond to a function of covariance matrix and mean
vector. This suggests an implementation of the Newton method based on the ex-
ponential Hessian in the natural parameters, for which the Christoffel symbols
vanish, combined with a retraction based on the mixture geodesic, which can be
evaluated efficiently in the expectation parameters.

4 Discussion and Future Work

In this paper we studied the second-order geometry of a Riemannian manifold,
in the special case of exponential statistical models. We extended the analysis
carried out in [24], by defining not only the Riemannian Hessian, but also the
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exponential and the mixture Hessians. The three Hessians we introduced, which
are associated to the three privileged geometries of an exponential family, allow
to derive three different Taylor formulæ and thus three alternative generaliza-
tions of the updating rule of the Newton method over an exponential family.

The alternative approaches we proposed appear to be equally well motivated
from a theoretical perspective, however they are not equivalent in practice, in-
deed they are based on the computation of different covariant derivates and
different geodesics. Moreover we expect different computational costs in the eval-
uation of the Newton step according to the choice of the parameterization and
of the connection, as well as the type of geodesic which needs to be computed.
An experimental comparison is required in order to investigate the advantages
and disadvantages of the different approaches we proposed, for instance in terms
of computational complexity and speed of convergence.

We conclude the paper with a remark about second-order optimization tech-
niques. Indeed, even if the Newton method and more in general second-order
methods are very popular and well-known for their quadratic local convergence
properties, in practice a number of issues has to be taken into account. The
Newton step does not always points in the direction of the natural gradient,
and close enough to a saddle point of the function the Newton step will tend to
converge to it. In order to obtain a direction of descent for the function to be
optimized, the Hessian must be negative-definite, i.e., its eigenvalues must be
strictly negative. In order to overcome these issues, different methods have been
proposed in the literature, such as quasi-Newton methods, where the update
vector is obtained using a modified Hessian which is guaranteed to be negative
definite. Finally, a number of other issues has to be taken into account in the
design of an algorithm, such as the uncertainty in the estimation of the Hessian
and of the gradient, when they are estimated from a sample, and the choice of
other parameters of the algorithm, such as the step size.
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26. Malagò, L., Pistone, G.: Information geometry of the gaussian distribution in view
of stochastic optimization. In: Proc. of FOGA ’15. (2015) 150–162

27. Skovgaard, L.T.: A Riemannian Geometry of the Multivariate Normal Model.
Scandinavian Journal of Statistics 11 (1984) 211–223


