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Abstract—The geometric framework based on Stochastic
Relaxation allows to describe from a common perspective
different model-based optimization algorithms that make use of
statistical models to guide the search for the optimum. In this
paper Stochastic Relaxation is used to provide theoretical
results on Estimation of Distribution Algorithms (EDAs). By the
use of Stochastic Relaxation we show how the estimation of the
fitness model by least squares linear regression corresponds to
the estimation of the natural gradient. This equivalence allows
to simultaneously perform model selection and robust
estimation of the natural gradient. Finally, we interpet Linear
Programming relaxation as an example of Stochastic
Relaxation, with respect to the regular gradient.

I. INTRODUCTION

Model-based search covers a variegate family of
heuristics and algorithms for optimization, used mainly in
black-box optimization, i.e., when the analytic formula of the
function to be optimized is unknown, cf. [1]. In model-based
search, the search for the optimum takes place in the space
of probability distributions, where the algorithms generate
minimizing sequences for the expected value of the function
to be minimized. In this paper we propose to use the
theoretical framework of Stochastic Relaxation [2] to study
model-based search from a unifying geometric perspective
based on the optimization the expected value of the original
function, with respect to a probability distribution in a
statistical model. We focus on the discrete case, in particular
on the optimization of functions defined over binary vectors,
although generalizations to the continuous case are possible.

In Section II we describe Stochastic Relaxation, and we
review the geometry of the exponential family by introducing
the notion of the natural gradient, i.e., the direction of
maximum increment of a function evaluated with respect to
the Fisher information metric. Then, in Section III, we
review different model-based heuristics, such as the large
family of Estimation of Distribution Algorithms [3], fitness
modelling techniques, alike the DEUM framework [4], [5],
and gradient descent algorithms, see for instance SNGD [2],
IGO [6], or NES [7], for the continuous case.

Sections IV and V contain the main contributions of this
work. We show how, under the hypothesis of centered
sufficient statistics, the least squares estimator of a regression
problem for the function to be optimized corresponds to the
evaluation of the natural gradient of the expected value of
the function. This result opens to the use of robust

techniques in the estimation of the gradient, by introducing a
penalizing term in the regression problem. Moreover, it
follows that DEUM can be described as a natural gradient
descent algorithm, which is a novel result in the literature. A
similar statement can be obtained for those model-based
algorithms which employ the Boltzmann distribution, i.e., the
one dimensional exponential family that starting from any
probability distribution follows the direction of the natural
gradient. We conclude Section IV by providing a new
perspective on Linear Programming relaxation, a standard
technique in Integer Programming, by showing how the
minimization of the linearization of the fitness function
corresponds to the stochastic relaxation in the expectation
parametrization.

The choice of the model plays a fundamental role in
model-based search too; indeed it may induce the presence of
local minima for the expected value of the original function
and increase the probability of premature convergence. It is
known that by choosing an exponential family that captures
all the interactions among the variables of the original
function, we have no local minima for the relaxed problem.
In Section V we introduce a rank-preserving transformation
of the function to be optimized which is able to remove
unnecessary correlations among variables and yet guarantee
the absence of local minima.

II. STOCHASTIC RELAXATION

The Stochastic Relaxation (SR) [2] of an optimization
problem is a geometric framework for model-based search
algorithms, where the search for the optimum of a function
is guided by a sequence of probability distributions in a
statistical model. The original optimization problem is
replaced by the optimization of the expected value of the
original function, where the new variables of the relaxed
problem are the parameters of the model. Under common
assumptions, the two problems admit the same minimum,
however the choice of the statistical model influences the
presence of local optima in the relaxed problem.

A. Notation

We want to minimize a real-valued function defined over
a finite set, or equivalently, a pseudo-Boolean function, i.e.,
a function defined over a vector of binary variables. Instead
of the classical {0, 1} encoding for binary variables, we use
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the harmonic {+1,−1} encoding, which corresponds to the
linear transformation 1− 2x of the binary variables. Let x =
(x1, . . . , xn) be a vector of n binary variables, xi = {+1,−1},
and Ω = {+1,−1}n. Any mapping f : Ω → R is called a
pseudo-Boolean function, see [8] for a comprehensive review
of pseudo-Boolean optimization, which is known to be a NP-
hard task. Since x2i = 1, any f admits the unique multi-linear
(square-free) polynomial representation

f(x) =
∑

α∈L

cαx
α, (1)

where we employed a multi-index notation, with αi = {0, 1},
α = (α1, . . . , αn), x

α =
∏n
i=1 x

αi

i . The set L ⊂ {0, 1}n

represents the correlations among the variables of f
expressed as product of variables, i.e., monomials. Let Ep[·]
be the expected valued with respect to p, and E0[·] the
expected value with respect to the uniform distribution p0.
The monomials {xα}, also known as Walsh functions, form
an orthogonal basis for f with respect to the inner product
〈X,Y 〉0 = E0[XY ].

B. The Exponential Family

The choice of the statistical model M used in the
Stochastic Relaxation has a strong impact on the fitness
landscape of the relaxed problem. In the following, we focus
on models from the exponential family E [9]

p(x; θ) = exp

{
m∑

i=1

θiTi(x)− ψ(θ)

}
, θi ∈ R, (2)

where ψ(θ) = ln
∑

Ω exp {
∑m
i=1 θiTi(x)} is the normalizing

factor, {Ti(x)}
m
i=1 are the sufficient statistics, which we

suppose to be linear independent, and θ is the vector of
natural parameters. The exponential family includes a large
number of models, both in the discrete and continuous case,
such as Markov Random Fields, and multivariate Gaussian
distributions.

The choice of a specific parametrization for M ∋ p
determines the variables of the relaxed problem, and a
different formulation for Ep[f ]. For the exponential family E ,
there exists a dual parametrization to the natural parameters
θ, given by the expectation parameters η, with ηi = Eθ[Ti].
The relationship between η and θ is one-to-one, with

η = ∇θψ(θ) = Eθ[T ], (3)

where ∇ represents the vector of the partial derivatives, and
T = (T1(x), . . . , Tm(x)) the vector of sufficient statistics.
Differently from θ, the η parameters are not free, their
domain is the interior of the convex hull P of the image
T (Ω) of Ω under the trasformation of the sufficient statistics
T . In the literature, P is called marginal or expectation
polytope [9].

In Stochastic Relaxation the optimum of f is obtained by
sampling from a distribution p ∈ M, where the probability
mass is concentrated around the minima (or a neighborhood) of
f , in other words, where minEp[f ] reaches is minimum. From
a practical point of view, such distribution can be approximated
with a minimizing sequence of distributions, that is why it
becomes revalent, both from a practical and theoretical point
of view, to determine the direction of maximum decrement of

Ep[f ]. Given a probability distribution p(x; θ) ∈ E , it is easy
to verify that the directional derivative Dv Eθ[f ] of Eθ[f ] in
the direction v ∈ Tθ in θ corresponds to Covθ(f, v), where Tθ
is the tangent space at p, and that such derivative is maximum
when v ∝ f , see Proposition 11 in [2]. It follows that we can
define a vector field over the statistical model that assigns at
each point p ∈ E the direction of maximum decrement. If f
belongs to the Span {Ti(x)}, this gives rise to the differential
equation d

dθ
ln p(θ) = f−Eθ[f ], that, given an initial condition

q, admits as solution the one dimensional exponential family

p(x; θ) =
qeθf(x)

Eq[eθf(x)]
, θ ∈ R. (4)

In statistical physics, for β = −θ, β > 0, Equation (4) is
known as Gibbs or Boltzmann distribution, f is usually
called energy function, and β the inverse temperature, i.e.,
T = β−1, and Eq[e

θf(x)] corresponds to the partition
function. It is easy to show that as β → 0, the Gibbs
distribution converges weakly to q, while for β → −∞ it
converges to the uniform distribution over the states with
zero (minimal) energy, so that the expected value converges
to the minimum of f .

If f does not belong to Span {Ti(x)}, the directional
derivative is maximum in the direction given by the

projection f̂ of f , evaluated in p, onto the span itself. In this
case the solution to the differential equation is not an

exponential family, and the projection f̂ may vanish for some
p, so that different basins of attractions for the gradient field
may appear. In other words, some local minima for Ep[f ]
may appear, cf. Theorem 12 in [2]. For this reason, in a
black-box context, the choice of the sufficient statistics for E
becomes fundamental to reduce the probability of the
existence of multiple local optima.

C. Natural Gradient

In order to proceed with the description of the
pseudo-code for a gradient based model-search algorithm, we
need to define the direction of the gradient. However, the
search space M is not Euclidean and this influences the
evaluation of the steepest direction. To better understand the
nature of M, we need some geometrical notions which
comes from Information Geometry. Information
Geometry [10], [11] studies the geometry of statistical
models and describes them as differential manifolds endowed
with a Riemannian metric. This field reached the maturity
with the work of Amari and other researchers, even if the
connections between differential geometry and mathematical
statistics have been investigated starting from the work of
Rao and Jeffreys. One important result in Information
Geometry, is that the Fisher information metric is the proper
metric for a statistical manifold. The existence of a non
Euclidean metric g over M changes how the gradient is
evaluated, and it may different from the vector of partial
derivates, indeed the definition of gradient intrinsically
depends on the choice of the metric. Given a function
H :M→ R, a metric g for M, and a direction associated to
a vector X , we have

g(∇H,X) = DX H,
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i.e., the gradient ∇H is defined as the unique vector such that
the inner product between ∇H and an arbitrarily direction X ,
evaluated at p ∈ M, is the directional derivative DX of H
along the direction X in p.

By moving from an intrinsic definition to a definition which
involves the choice of a set of coordinates for the exponential
family, the natural gradient is defined as the gradient evaluated
with respect to the Fisher information metric I(θ), and it reads

∇̃θH(θ) = I(θ)−1∇θH(θ), (5)

where I(θ) = [∂i∂jψ(θ)]
m
i,j=1, ∇θH(θ) = (∂iH(θ))mi=1, and

∂i denotes the partial derivative with respect to θi. We denote

the natural gradient with ∇̃ to distinguish it from the regular
gradient ∇, evaluated with respect to the Euclidean metric.

III. COMMON PARADIGMS IN MODEL-BASED SEARCH

The geometric framework of Stochastic Relaxation can be
applied to a large class of algorithms that make use of a
statistical model to guide the search for the optimum of a
function. In this section we describe some common
paradigms in model-based search, which have been
implemented in different algorithms in the literature. Our
review is far from being comprehensive, more references can
be found in [1] and [6]. We start from algorithms based on
the natural gradient, such as NES [7], SNGD [2] and the
IGO [6] framework. Next, we briefly review the large class
of Estimation of Distribution Algorithms (EDAs) [3]. Finally,
we conclude with the DEUM framework [4], [5], based on
fitness modelling using Markov Random Fields.

A. Natural Gradient Descent

The gradient descent is one of the simplest and best known
methods in optimization, with a rich history which dates back
to Cauchy. The basic idea is that of searching for the optimum
iteratively, by updating the value of the variables with a step
in the direction of the gradient. In model-based search, it is
a common practice to minimize the expected value Ep[f ] :
M→ R, which, under common assumptions on the regularity
of the statistical model and the choice of the parametrization,
is a continuous and differentiable function. To limit the search
space, the search is usually restricted to a lower dimensional
statistical model, however this may determine the appearance
of local minima in the relaxed optimization problem.

The updating rule of a gradient descent algorithm with
respect to the natural gradient of Eθ[f ] in E becomes

θt+1 = θt − λ∇̃θEθ[f ] = θt − λI(θ)−1∇θEθ[f ], (6)

where λ > 0 is the learning rate that controls the step size in
the direction of the gradient. The natural gradient introduced
by Amari [12] has been proved to be efficient in many
different learning tasks where the search space is given by a
set of probability distributions. The natural gradient reflects
the intrinsic geometry of the manifold and thus benefits of
some remarkable properties. It has better convergence
properties compared to the regular gradient, moreover it is
parametric invariant, i.e., it does not depend on the choice of
the specific parameterization.

Algorithm 1 Stochastic Natural Gradient Descent

Input: N,λ ⊲ population size, learning rate
Optional: M ⊲ selected population size (default M = N )

1: t← 0
2: θt ← (0, . . . , 0) ⊲ uniform distribution
3: Pt ← INITRANDOM() ⊲ random initial population
4: repeat
5: Pts = SELECTION(Pt,M) ⊲ opt. select M samples

6: ∇̂E[f ]← Ĉov(f, Ti)
m
i=1 ⊲ empirical covariances

7: Î ← [Ĉov(Ti, Tj)]
m
i,j=1 ⊲ {Ti(x)} may be learnt

8: θt+1 ← θt − λÎ−1∇̂E[f ]
9: Pt+1 ← GIBBSSAMPLER(θt+1, N) ⊲ N samples

10: t← t+ 1
11: until STOPPINGCRITERIA()

Algorithm 2 Gibbs Sampler with Cooling Scheme

Input: θ,N ⊲ natural parameters, sample size
Optional: P0, T0 ⊲ pool of samples, initial temperature

1: function GIBBSSAMPLER(θ,N, P0, T0)
2: P ← ∅
3: t← 1
4: repeat
5: x← RANDOM(P0) ⊲ random point if P0 = ∅
6: T ← T0 ⊲ initial temp, T = 1 default value
7: repeat
8: i← RANDOM({1, . . . , n}) ⊲ random variable
9: x\i ← (x1, . . . , xi−1, xi+1, . . . , xn)

10: pi(xi|x\i; θ) =
1

1+exp{2T−1xi

∑
α∈Mi

θα\ix
α\i}

11: xi ←

{
+1, with Pi(Xi = 1|X\i = x\i; θ)

−1, otherwise

12: T ← COOLINGSCHEME(T ) ⊲ decrease T
13: until STOPPINGCRITERIA()
14: P ← P ∪ {x} ⊲ add new point
15: t← t+ 1
16: until t = N
17: return P
18: end function

The exact evaluation of ∇̃Eθ[f ] is computationally
intractable for large n, unless we choose M from a restricted
class of models. A common approach consists in replacing
the exact gradient with an estimate based on a sample. For
the exponential family we have

∇θEθ[f ] =
(
Cov(f, Ti)

)m
i=1

, I(θ) =
[
Cov(Ti, Tj)

]m
i,j=1

.

Given an i. i. d. sample with respect to θ, we can replace the
exact evaluation of the gradient of Eθ[f ] with an estimate
based on empirical covariances. This leads to two different
algorithms, Stochastic Gradient Descent (SGD), based on the
regular gradient, and Stochastic Natural Gradient Descent
(SNGD), based on the natural gradient, reported in
Algorithm 1 and 2, cf. [2] and [13]. Notice that, differently
from other model-based algorithms, selection is not
necessary.

In the last decade, the natural gradient has been applied
successfully in different fields, from machine learning to
signal processing. To the best knowledge of the authors, in
Evolutionary Computation the first example of model-based
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Algorithm 3 Estimation of Distribution Algorithm

Input: N,M ⊲ population size, selected population size
Input: M = {p(x; ξ)} ⊲ parametric model

1: t← 0
2: Pt = INITRANDOM() ⊲ random initial population
3: repeat
4: Pts = SELECTION(Pt,M) ⊲ select M samples
5: ξt+1 = ESTIMATION(Pts,M) ⊲ opt. model selection
6: Pt+1 = SAMPLER(ξt+1, N) ⊲ N samples
7: t← t+ 1
8: until STOPPINGCRITERIA()

algorithms based on the natural gradient is the Natural
Evolution Strategies (NES) framework, first appeared in [7].
NES algorithms implement the paradigm in Equation (6) for
the minimization of Ep[f ], by updating the parameters of a
multivariate Gaussian distribution, which is used for the
optimization of continuous functions. NES has strong a
relationship with another evolutionary strategy called
CMA-ES [14], see for instance [15].

There is a close relationship between the geometric
framework based on Stochastic Relaxation, previously
presented in [2], and the work by Arnold et al. [6], where the
authors describe a similar framework based on the
minimization of the E[f ] using the natural gradient, named
Information-Geometric Optimization (IGO). Their
generalization to the exponential family leads the evaluation
of the natural gradient based on empirical covariances as in
SNGD. In addition, in IGO, a rank-preserving transformation
of the fitness function based on quantiles is introduced, in
order to make the algorithm invariant with respect to
trasformations of the original function.

B. Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) are
iterative Evolutionary Algorithms, often presented as an
evolution of Genetic Algorithms. Instead of the classical
genetic operators of crossover and mutation, in EDAs, a
parametric statistical models is introduced. At each iteration
a statistical distribution is estimated from the current selected
population of individuals, and then a new population is
obtained by sampling. The basic iteration of an EDA is
described in Algorithm 3.

Several EDAs have been described in the literature, see [3]
for a comprehensive review. Since the type of statistical model
used by the algorithm is probably the most distinctive choice,
in terms of how estimation and sampling are performed, with a
strong impact on the success rate and performances, EDAs are
usually classified according to the type of interactions which
can be encoded by the class of models used.

A run of and EDA can be represented as a sequence of
probability distributions {p(x; ξt)}t in a statistical model M,
where the parameters of each distribution are estimated from
a selected sample. Two aspects are crucial. First the presence
of selection, which, differently from SNGD, is required to
allow the sequence of distributions to converge, i.e., to
concentrate the probability mass over regions of the search
space Ω. Second, the choice of the statistical model, which is

intrinsically related to f . In the black-box scenario, most
effective EDAs adopt some model selection techniques to
estimate M from the current sample, either in advance or
iteratively.

The Gibbs distribution appears to be a good candidate
model to be used in model-based search. For instance it has
been explicitly analyzed in the context of EDAs in [16],
where the authors present BEDA, an algorithm with nice
theoretical properties, able to converge to the global minima
of the fitness function. However BEDA is more a conceptual
algorithm, since it cannot be used in practice due to the
computational complexity associated to the use of the Gibbs
distribution.

C. Markov Fitness Modelling: The DEUM Framework

Distribution Estimation Using Markov Random Fields
(DEUM) is a framework for stochastic optimization based on
estimation and sampling using undirected graphical models.
One of the characteristic features of DEUM algorithms with
respect to other EDAs is that parameter estimation is
performed by fitness modelling, i.e., a model for the
interactions among the variables in f is estimated.

A common approach in EDAs consists in estimating the
correlations among the variables in the selected sample Ps,
where only points with lower fitness appear. The value of f is
not involved in the estimation process, and it only determines
the composition of Ps. In DEUM the value of f plays a
direct role in the estimation. With respect to the maximization
of a function, probability distributions are estimated under the
hypothesis that higher probabilities should be associated to
points with higher fitness value, and probabilities should be
proportional to f ,

p(x) ≡
f(x)

Z
, Z =

∑

Ω

f(x), (7)

where we suppose without loss of generalization that f > 0
for every x ∈ Ω, cf. [5].

In the DEUM framework, probability distributions belong
to the Gibbs distribution associated to an undirected graph.
Given an undirected graphical model, the associated joint
probability distribution of the nodes factorizes according to
some potential functions defined over the cliques of the
graph. The joint probability distribution takes the form of an
exponential family, with sufficient statistics equal to
{uα(xα)}, α ∈ C ⊂ {0, 1}n, where C identifies the set of
cliques α of the MRF, and uα is the clique potential defined
over the variables of the clique identified by α, where
xα = (xi) is a subvector of x, with components xi : αi = 1.

Let us denote the clique potentials uα by the
corresponding sufficient statistics Ti. From the relationship
between probabilities p and the evaluations of f in
Equation (7), and the choice of the probabilities in the
exponential family in Equation (2), we obtain

f(x)∑
Ω f(x)

≡ exp

{
m∑

i=1

θiTi(x)− ψ(θ)

}
.

Such equivalence in particular is satisfied if the numerator on
the left-hand side equals the numerator of the right-hand side,
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Algorithm 4 The DEUM framework

Input: N,M ⊲ population size, selected population size
Optional: {Ti(x)}i, i = 1, . . . ,m ⊲ sufficient statistics of E

1: t← 0
2: Pt = INITRANDOM() ⊲ random initial population
3: repeat
4: Pts = SELECTION(Pt,M) ⊲ select M samples
5: A = [Ti(x)]x,i, x ∈ P

t
s, i = 1, . . . ,m ⊲ opt. model

selection, {Ti(x)} may be learnt

6: y = (− ln f(x))x, x ∈ P
t
s

7: θt+1 = (A⊤A)−1A⊤y
8: Pt+1 = GIBBSSAMPLER(θt+1, N) ⊲ N samples
9: t← t+ 1

10: until STOPPINGCRITERIA()

once the partition function appears at the denominator of the
exponential family, i.e.,

− ln f(x) =
∑

α∈L

θiTi(x). (8)

Such equation corresponds to the Markov Fitness Model
(MFM) for f , where the minus has been introduced since we
are interested in the minimization of f . According to the
relationship between probabilities and f in Equation (7), the
MFM may have a different form. Moreover, notice that if
ln f can be expressed as a linear combination of the
sufficient statistics {Xα}α∈L up to a constant term, the
exponential family used in DEUM includes the Gibbs
distribution associated to f . The estimation of the parameters
of the MFM corresponds to solving a linear regression
problem for − ln f . Then, once the parameters of the
exponential family are estimated, new instances can be
sampled from the current distribution, see Algorithm 4 for
details. Since the clique functions are defined over binary
variables, they admit the expansion in Equation (1), so that it
is common to choose monomials as sufficient statistics for E .

In case the interactions of f are not known, we can
employ model selection techniques in order to estimate the
set of sufficient statistics to be used in the exponential
family. Different techniques can be used, for instance
methods based on Cross-Entropy [17], or ℓ1-penalized
regression, as in sDEUM [18].

IV. A UNIFYING PERSPECTIVE

In this section we apply the framework of Stochastic
Relaxation to describe the behavior of some existing random
search algorithms and to create a bridge with other standard
techniques in optimization. First we present a comparison of
model fitting techniques and gradient techniques. We prove a
general result about the relationship between the least
squares estimator of the MFM and the estimation of the
stochastic natural gradient, which is one of the main
contributions of this paper. Next, we review the use of the
Gibbs distribution in model-based search. Finally, we present
a novel perspective on a standard state-of-the-art technique in
Integer Programming, by showing how the Linear
Programming relaxation of a function defined over a finite
set amounts to the minimization of its Stochastic Relaxation
with respect to the expectation parameters.

A. DEUM performs Natural Gradient Descent

The behavior of the algorithms in the DEUM framework
and those which perform stochastic gradient descent, such as
SNGD and SGD, is strictly correlated. To prove it, first we
state a general result which says that when the sufficient
statistics {Ti} are centered, the least squares estimator of a
linear regression model for f and the natural gradient of the
expected value of f , with respect to the same set of sufficient
statistics {Ti}, are equivalent for large N .

Theorem 1: If the sufficient statistics {Ti} of p(x; θ) ∈
E are centered in θ, i.e., Eθ[Ti] = 0, then the least squares
estimator ĉ with respect to an i. i. d. sample P from p of the
regression model

f(x) =
∑

i

ciTi(x)

converges to the natural gradient ∇̃θEθ[f ], as N → ∞.

Similarly, Î(θ)−1∇̂E[f ]→ c as N →∞.

Proof: Let A be the design matrix A = [Ti(x)]x,i, with
i = 1, . . . ,m, and x ∈ P , let y be the column vector y =
(f(x))x. The least squares estimator is

ĉN = (A⊤A)−1A⊤y

=

[
1

N

∑

x∈P

Ti(x)Tj(x)

]−1

x,i

(
1

N

∑

x∈P

f(x)Ti(x)

)

i

=
[
Ĉov(Ti, Tj) + Ê[Ti]Ê[Tj ]

]−1

x,i

(
Ĉov(f, Ti) + Ê[f ]Ê[Ti]

)
i
.

Since Ê[Ti] is a consistent and unbiased estimator for Eθ[Ti],
and Eθ[Ti] = 0, follows that Ê[Ti] → 0, as N → ∞.
Covariances are consistent and asymptotically unbiased, thus

ĉN → ∇̃θEθ[f ] as N →∞. Similarly, Î−1∇̂E[f ]→ c.

This result, which is a direct consequence of the formula of
ordinary least squares in the case of centered variables,
derives from the definition of natural gradient as the least
squares projection of the steepest direction of Eθ[f ] onto the
tangent space of E , cf. [2]. To the best knowledge of the
authors, least squares estimator has neven been related to the
estimation of the natural gradient. This result is quite
relevant in the context of information geometry, and in
particular for machine learning and model-based search.
Indeed, by characterizing the estimation of the natural
gradient of Eθ[f ] as a regression problem for f , we can
apply standard techniques from linear regression to obtain

robust estimates of ∇̃θEθ[f ], for instance, by applying
shrinkage algorithms, such as ridge regression or the
lasso [19]. Moreover, it is possible to define penalized
estimates of the gradient, and apply subset selection methods
to simultaneously perform gradient estimation and model
selection, as discussed in Section V.

Proposition 2: For large population size, if no selection
is applied, the first iteration of DEUM equals SNGD in the
direction of the natural gradient of ln f . Under the same
hypothesis sDEUM implements a ℓ1-penalized estimation of
the natural gradient.

Proof: At the first iteration P0 is i. i. d. with respect to
the uniform distribution, θ0 = 0. To keep notation concise, we
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denote θ1 with θ. By Theorem 1, for N →∞, the least squares

estimator θ̂ of the linear regression problem in Equation (8) and
the empirical estimation of the natural gradient in Equation (5)

both converge to ∇̃θEθ[ln f ]. Let λ = 1, we obtain the update
rule of SNGD at the first iteration for the minimization of ln f .
As to sDEUM, the result comes from the ℓ1-penalizing term
which has been added to the estimation of the MFM parameters
to enforce sparsity and obtain variable selection.

We conclude with a remark about the similarities between SGD
and SNGD, in presence of orthogonal sufficient statistics. First
we state a general result.

Proposition 3: For orthogonal sufficient statistics {Ti},
the estimation of the regular gradient in the θ coordinates

converges to ∇̃θEθ[f ], as N →∞.

Proof: In case of orthogonal sufficient statistics, Î → 1

as N →∞, so that ∇θEθ[f ] = ∇̃θEθ[f ].

It follows that the estimation of the regular gradient in the
θ coordinates converges to the natural gradient for N → ∞.
However, the estimation of the natural gradient is more robust
compared to the regular gradient, due to the presence of the
covariance matrix.

Proposition 4: For large uniform populations, when no
selection is applied, the behaviors of SGD and SNGD at the
first iteration coincide. In all other cases, the same result
applies once the sufficient statistics {Ti} are orthogonalized.

Follows that the evaluation of the natural gradient compared
to that of the regular gradient provides a tradeoff between the
number of function evaluations to reach convergence, which
is smaller in SNGD compared to SGD, and the additional
computational cost of solving a regression problem in SNGD.

The results we presented in this section apply when the
sample comes from the uniform distribution over Ω and no
selection is applied, to ensure that the variables are centered,
and the sufficient statistics are orthogonal. However, in case
selection is applied, or more in general when samples come
from a non uniform distribution, it is possible to center

variables by replacing Ti with Ti − Ê[Tj ], and
orthonormalize the design matrix A with respect to the inner
product 〈X,Y 〉θ = Eθ[XY ], for instance using the
Gram-Schmidt algorithm.

B. Gibbs Distribution and Boltzmann Selection

In this section we review from a theoretical point of view,
the role of Boltzmann selection in model-based search, and in
particular we see how it corresponds to an implicit step in the
direction of the natural gradient.

Proposition 5: Let P be an i. i. d. sample with respect to
p ∈ M. A subsample Ps obtained by applying Boltzmann
selection with parameter β, is i. i. d. with respect to

q(x;β) =
peβf(x)

Ep[eβf(x)]
, β > 0,

that is, q = p − β∇̃Ep[f ] corresponds to an implicit step in
the direction of the natural gradient.

Proof: The result follows from definition of Boltzmann
selection, cf. [16], and from the characterization of the Gibbs

distribution discussed in Section II. The parameters of q
remains unknown, that is why the step in the direction of the
natural gradient has been defined as implicit.

This result can be applied to model-based search algorithms
or stochastic meta-heuristics which sample from a series of
probability distributions that belong to the Gibbs distribution,
for instance in the case of BEDA [16], Simulated Annealing
for optimization [20], or the Gibbs sampler in Algorithm 2,
where the inverse temperature describes the Gibbs
distribution. However, due to the unfeasibility of computation
for the partition function, these algorithms only provide
approximations during sampling, so that the previous
proposition gives mostly insights on the expected behavior of
the algorithm, and has a more theoretical value. From the
point of view of interpreting the role of selection in EDAs
and in other evolutionary algorithms, this result gives an
intuition on how Boltzmann selection, from a geometrical
point of view, corresponds to a implicit step in the direction
of the natural gradient, which does not necessary belong to
the tangent space of the selected model. For other selection
schemes, the expected direction will be different from the
natural gradient, however, it is expected to guarantee that the
average fitness over the sample will decrease.

The choice of a statistical model M for the Stochastic
Relaxation guides the search for the optimum of f . By
constraining the choice to a lower dimensional model, local
minima for E[f ] may appear, and a gradient descent policy
may lead to local minima of f . Even if at different extents,
according to the selection policy, selection allows an implicit
move outside of the tangent space of the model, from which
a gradient descent policy could not escape. This behavior
introduces a bias in the estimation of the gradient that in
some cases could help to escape local minima, and thus
could suggest the use of selection in gradient descent
algorithms.

C. Linear Programming Relaxation is a Stochastic Relaxation

Linear Programming (LP) relaxation is a standard
technique in Integer Programming, where integrality
constraints for the variables are relaxed, so that the original
NP-hard integer program is replaced by a linear program,
cf. [21]. The LP relaxation of the pseudo-Boolean
optimization of f , can be obtained by replacing every
monomial xα in the expansion of f with a new
corresponding variable zα ∈ [−1,+1], so that

f̂ =
∑

α∈L

cαzα.

The relaxed function f̂ : [−1,+1]#(L) → R is linear in z,
however the minimization to the LP problem provides only a
lower bound for the minimum of f . The integrality gap, i.e.,

the difference between the min f̂ and min f , can be reduced by
introducing extra contraints for the z variables. The monomials
in f are not free, e.g., xi = 1 and xj = −1 imply xixj =
−1, and this holds also for the z variables. The LP relaxation
provides an optimal solution for f when the set of constraints
that describe the polytope P given by the image under the z
transformation of the convex hull of Xα(Ω) is added to the
linear program. However, the number of such inequalities can
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be more than exponential in n. A common approach in this
situation is to find a tight approximation of P to improve the
quality of the approximation given by the LP relaxation.

It is easy to see that under the choice of an exponential
family where the monomials of f are sufficient statistics of E ,
the LP relaxation corresponds to the Stochastic Relaxation of
the original function in the expectation parameters, cf [22].

Proposition 6: The LP relaxation of f corresponds to the
Stochastic Relaxation with respect to the exponential family E ,
parametrized in η and with sufficient statistics equal to {Xα}.

Proof: By the linearity of E[·] and the definition of
expectation parameters η in Equation (3), we have

Eθ[f ] = Eθ

[∑

α∈L

cαX
α

]
=
∑

α∈L

cαEθ[X
α] =

∑

α∈L

cαηα,

so that f̂ = Eη[f ].

As in the θ parametrization, evaluating the natural gradient
in the η parameters is unfeasible in general, since it requires
a summation over the entire search space. However, in the η
parametrization, the estimation of the natural gradient does not
require to evaluate the Fisher matrix, and no matrix inversion is

involved in the estimation of ∇̃ηEη[f ]. Conversely, the domain
of the η is described by an exponential number of inequalities,
and this makes the optimization problem NP-hard.

Theorem 7: The natural gradient of E[f ] in the η
parametrization corresponds to the covariance between f and
T evaluated in θ = (∇θψ)

−1(η), i.e.,

∇̃ηEη[f ] = E(∇ψ)−1(η)[f(T − η)].

Proof: The equality can be easily obtained by noticing
that the transition matrix from one parametrization to the other
equals the Jacobian J of the variable trasformation from η =
Eθ[T ] = ∇θψ(θ) to θ = (∇θψ)

−1(η), that is

∇ηEη[f ] = J(∇θψ)
−1(η)∇(∇θψ)−1(η)E(∇θψ)−1(η)[f ].

By the inverse function theorem,

J(∇θψ)
−1(η) = [J(∇θψ)(θ)]

−1 = [∂i∂jψ((∇θψ)
−1(η))]i,j ,

which is equal to I((∇θψ)
−1(η)). Follows that

∇̃ηEη[f ] = I(η)−1∇ηEη[f ]

= I(η)−1I((∇θψ)
−1(η))∇(∇θψ)−1(η)E(∇θψ)−1(η)[f ]

= Cov(∇θψ)−1(η)(f, T ) = E(∇θψ)−1(η)[f(T − η)].

See Proposition 22 in [6] for an alternative proof.

If the exponential model used in Stochastic Relaxation captures
all the interactions of f , Eη[f ] becomes linear in η, however
the natural gradient differs from regular gradient.

Proposition 8: In case of a Stochastic Relaxation based on
the independence model, Eη[f ] = cαx

α is a polynomial in the
η1, . . . , ηn variables, with ηi = Eθ[Xi].

Proof: Similarly to Proposition 6, due to the factorization
of joint probability distribution, we have

Eθ[f ] =
∑

α∈L

cαEθ[X
α] =

∑

α∈L

cα

n∏

i=1

Eθ[Xi]
αi =

∑

α∈L

cαη
α,

with ηα =
∏n
i=1 η

αi

i . The expected value Eθ[f ] is a multilinear
polynomial defined over the marginal polytope P , that for the
independence model is the hypercube [−1,+1]n.

V. MODEL SELECTION

The choice of the sufficient statistics of the exponential
family can be formalized as a regression problem, as in
model fitting for DEUM in Equation (8). Moreover, we
proved how solving a regression problem for f , in case of
centered {Ti}, corresponds to evaluate the natural gradient.
Follows that the evaluation of the gradient and the choice of
a model for the stochastic relaxation are strictly correlated,
and they can be solved simultaneously, for instance by
employing subset selection techniques in linear regression.
By rescaling the values of f , in order to make model
selection and the evaluation of the natural gradient invariant
with respect to rank-preserving transformations, the
regression model may change, and a different set of
sufficient statistics could be identified. For this reason, any
transformation of the fitness not only should be defined
invariant with respect to the output of model selection, not to
introduce extra correlations among the variables, but,
whenever possible, it should reduce the complexity of the
model, for instance by favoring lower dimensional models.

In this section we propose to learn a rank-preserving
transformation of f , such that the new transformed function
does not introduce extra correlations in the regression model,
on the contrary, it can remove unnecessary correlations
whenever they are present. In the binary case, for instance,
we can remove all those monomials from the regression
function that do not alter the ranking of the poins with
respect to f . We formalize the learning of a rank-preserving
trasformation as an inference problem, which can be solved
together with the model fitting, by linear regression.

A. Fitness Modelling and Rescaling

A common approach to reach invariance for all those
algorithms whose behavior depends on the specific evaluation
of f , and not just on the ranking of the points, such as in the
estimation of the MFM for DEUM or the evaluation of the
gradient for SNGD, consists in applying rescaling and
shifting with affine or monotone transformations of f . Such
transformations do not affect the global optimum, and ensure
invariance with respect to f . For instance, in IGO [6], the
minimization of Ep[f ] has been replaced by the minimization

of Ep[W
f
p ], where W f

p : Ω → R is a rank preserving
transformation of f based on quantiles.

We present a novel approach to fitness modelling and
rescaling which produces a transformation of the fitness
function f and at the same time identifies a statistical model
for the Stochastic Relaxation. Let ∆ : Ω→ R, such that

F (x) = f(x) + ∆(x) =
∑

α∈L′

cαx
α (9)

is a rank-preserving monotone transformation of f , i.e.,
f(x) ≤ f(x′) implies F (x) ≤ F (x′). Furthermore, choose ∆
such that minF = −1 and maxF = 1. Such transformation
is not unique and it always exists.1

1For instance, let ∆ = 2(f−min f)/(max f−min f)−1, with L′ = L.
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Since at least one global minimum of f and F are the
same, minimizing Ep[F ] is equivalent to minimize Ep[F ],
however, for some f there may exist a ∆ such that L′ ⊂ L,
so that it is possible to employ a lower dimensional model
compared to that associated to f , and still guarantee that no
local minima exist. The transformation in Equation (9)
depends on the ranking of points in Ω with respect to f , and
not only it makes model-based algorithms invariant with
respect to monotone transformations of f , but also it may
reduce the strength of higher-order interactions, or even
remove them, whenever they do not affect the ranking.

Since f is unknown in the black-box scenario, the
trasformation ∆ can be estimated from a sample,
simultaneously with the estimation of the linear regression
function, by the minimization of the Residual Sum of
Squares (RSS) with respect to the transformed function. This
can be done by solving a quadratic optimization problem
with extra variables ∆ = (∆1, . . . ,∆N ) ∈ RN and linear
constraints that guarantee the rank is preserved

min

N∑

j=1

(
yj+∆j −

∑

α∈M

cαx
α
j

)2
(10a)

s.t. yi +∆i ≤ yj +∆j + ǫ,

∀i, j ∈ [N ] : yi < yj ∧ ∄k ∈ [N ] : yi < yk < yj , (10b)

yj +∆j = −1 j ∈ [N ] : ∀i ∈ [N ], yj ≤ yi, (10c)

yj +∆j = 1 j ∈ [N ] : ∀i ∈ [N ], yj ≥ yi, (10d)

cα ∈ R ∀α ∈M, (10e)

∆j ∈ R ∀j ∈ [N ], (10f)

with [N ] = {1, . . . , N},M ⊂ {0, 1}n. Equations (10c)-(10d)
have been introduced to avoid trivial solutions with cα = 0.

Model selection can be obtained by solving a sequence of
convex quadratic optimization problems of the form of (10),
adding at each step new variables to the regression function
in M , until the RSS gets sufficiently small. The constant ǫ ≥
0 can be used to relax some of the contraints, and obtain a
lower bound for the RSS. There is no closed form solution for
the quadratic problem, however it can be efficiently solve, by
iteratively fixing the value of ∆ and solving for β, and then
fixing β and solving for ∆, until convergence.

VI. CONCLUDING REMARKS

In this paper, we applied the geometric framework of
Stochastic Relaxation to two different paradigms in
model-based search: model fitting and gradient descent. In
Section IV, we proved the most important contribution of the
work, which shows how under the choice of centered
sufficient statistics in the exponential family, the evaluation
of the natural gradient is equivalent to the solution of a linear
regression model for the function to be optimized. This novel
result has both theoretical and practical consequences. From
one side, we can prove that for large population size, SNGD
and the algorithms in the DEUM framework have the same
asymptotic behavior. From the other side, we have access to
a large family of estimation techniques for the natural
gradient, based on robust linear regression. The second
contribution of this work appears in Section IV, and it can be
considered as a direct consequence of the relationship

between natural gradient and linear regression. We propose a
novel technique to estimate a ranking-preserving
trasformation of f based on linear regression, able to identify
a statistical model for the Stochastic Relaxation where
unnecessary correlations are removed, and simultaneously
provide an estimate of the stochastic natural gradient.
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