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Introduction
Consider a response surface on a given real domain D
(usually a rectangle). A measurement is available at each
testing points x ∈ D. We want to assess the conformity
of the shape of the response surface to some standard.
For example: “is the surface bended in some direction?”
Or: “Is there a waviness of a type associate to a specific
technology?” These are possible defects that cannot be
specified in a parametric way [5, 6].
A very popular modeling method relies on the assumption
that the surface under study is the realization of a ran-
dom field, for example, a Gaussian random field (ζx)x∈D.
In such a case, the observed characteristics of the surface
will in fact depend on the auto-covariance of the random
field.
More specifically, under the intrincic stationarity assum-
pion E (ζx) = m and E (|ζx − ζy|) = γ(d(x, y)), the
properties of the random surface depend on the random
field variogram γ [1]. This approach is sometimes called
Kriging method or Matheron method and can be used
both in a parametric or non-parametric approach. Cf.
[2, 3, 4].
G. Vicario has suggested in [7] to use the variogram as
a non-parametric method, without assuming any random-
ness of the surface, but using instead the idea of a sistem-
atic or random sampling of couples of test points on the
given domain.

Methodology
The following definition is intended to mimic the definition
of the Matheron empirical estimator of the variogram.
Definition Let X and Y be independent random variables
whose common distribution µ is supported by the domain
D ∈ Rn and let d be a distance on D. Let F : D→ R be
a response function. The empirical variogram γ is defined
by

γ(d(X, Y)) =
1

2
E

|F(X) − F(Y)|2
∣∣∣∣∣∣∣d(X, Y)

 .

If ν ∼ T = d(X, Y), for an arbitrary Φ it holds∫
Φ(t)γ(t) ν(dt) =∫

D×D
Φ(d(x, y))

1

2
|F(x) − F(y)|2 µ(dx)µ(dy) .

The theoretical computation of the variogram for given
F and µ is relevant to test the methodological relevance
(if any) of this defintion. Such a computation is simpler
when the distance is of the form d(x, y) = ‖x− y‖, for
some norm on Rn and the µ is a Lebesgue probability
measure, µ(dx) = dx. In such a case, the defining equa-
tion becomes, with the change of variables u = x−y and
v = x,∫
Φ(t)γ(t) ν(dt) =∫

D×D
Φ(‖u‖)1

2
|F(v) − F(u+ v)|2 dudv .

Here are some immediate properties of the empirical var-
iogram in the norm case.

1 If F is constant, then γ = 0.
2 The variogram depends quadratically on the
gradient ∇F. In fact,

F(v+ u) − F(v) =

∫ 1
0

∇F(v+ θu) · u dθ .

3 If D =]0, 1[ and X, Y are uniform,

γ(t) =
1

2(1− t)

∫ 1−t
0

(F(s) − F(s+ t))2 ds .

4 If F is linear, F(x) = a · x, then
|F(v+ u) − F(v)|2 = (a · u)2 and the defining
equation becomes∫
Φ(t)γ(t) ν(dt) = ∫

D

Φ(‖u‖)1
2
(a · u)2 dudv .

5 If F is Lipschitzs, we can derive an upper bound for
the variogram. In fact,

|F(v+ u) − F(v)|2 ≤ ‖F‖2Lip ‖u‖
2 ,

implies
γ(t) ≤ 1

2
‖F‖2Lip t

2 .

Examples

With D =]0, 1[ and uniform X, Y, we show below the
function F and a graph of

√
2γ.

Affine: F(x) = 1+ 1
4
x

Parabolic bump: F(x) = x(1− x)

Parabolic bend: F(x) = 1− x2

Sine function: F(x) = sin(6(2π)x)

Superposed functions
The variogram of F1+ F2 appears to be difficult to unde-
stand in terms of the separate variograms because there
is an interaction term:

γ1+2 = γ1 + γ2 + γ12 ,

where γ1,2 is defined by the polarised version of the defi-
nition of γ. Here are two examples.

F(x) = 1
4
x+ sin(6(2π)x)

F(x) = 4x+ sin(6(2π)x)
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