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Abstract: Statistical bundle

The statistical bundle is an extension of the exponential manifold
introduced by G. Pistone and C. Sempi (1995). In particular, we consider
a finite state space Ω and its positive probability functions, i.e. the points
in the interior of the probability simplex, γ ∈ ∆◦(Ω). For each such a γ,
we consider the vector space Bγ of random variables V with EγV = 0.
Each one dimensional regular statistical model θ 7→ γ(θ) has Fisher score
Dγ(θ) = d log γ(θ)/dθ ∈ Bγ(θ). It follows that Bγ is an expression of the
tangent space at γ. The statistical bundle is the set of couples couples
(γ,V ), V ∈ Bγ , see [2]. Given a regular function F : ∆◦(Ω), its
statistical gradient is a section of the statistical bundle, γ 7→ F ′(γ) ∈ Bγ ,
such that dF (γ(θ))/dθ = Eγ(θ)(F

′(γ(θ))Dγ(θ)). It corresponds to S-i.
Amari’s natural gradient. The gradient flow of F is the solution of the
equation Dγ(θ) = −F ′(γ(θ). The gradient flow equation is expected to
go towards a minimum point of F . The most interesting cases arise when
the curve γ(·) is restricted to belong to some smooth sub-model, either
exponential or mixture, see eg [1].

1. Luigi Malagò and Giovanni Pistone. Natural gradient flow in the mixture geometry of a discrete
exponential family.

Entropy, 17(6):4215–4254, 2015



Abstract: Gradient flow to optimal transport
Assume Ω = Ω1 × Ω2 and denote by Γ◦(µ1, µ2) the set of positive
probability functions with given marginals µ1, µ2. Given a cost function
c : Ω, we consider minimising F (γ) = Eγ(c) under the condition
γ ∈ Γ◦(µ1, µ2). The minimum value of this problem for c(x , y) = |x − y |
is the Gini’s dissimilarity index, while for c(x , y) = |x − y |2 its square
root is the Wasserstein 2-distance. The problem does not have a
minimum on positive probability function, but it does have a solution γ∗

if we allow zero probabilities. In this last case it is an instance of a linear
programming problem whose dual has been identified and studied by L.
Kantorovich. There is a considerable body research we cannot refer to
here. We want to discuss an analytic approach, consisting in computing
the statistical gradient of the minimum expected cost problem and
looking for a a gradient flow trajectory going from the product of the
marginals µ1 ⊗ µ2 toward the solution γ∗. To this aim we compute the
sub-bundle of scores when a curve is restricted to have assigned
marginals and show that such scores at each point are random variables
of the interaction type, i.e. they are γ-orthogonal to constants and to
simple effects.

2. Giovanni Pistone. Examples of the application of nonparametric information geometry to statistical physics.

Entropy, 15(10):4042–4065, 2013.
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C. Radhakrishna Rao. Information and the accuracy attainable in the estimation of statistical parameters.
Bull. Calcutta Math. Soc., 37:81–91, 1945.
ISSN 0008-0659



Amari
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Shun-Ichi Amari. Natural gradient works efficiently in learning.
Neural Computation, 10(2):251–276, feb 1998.
ISSN 0899-7667.
doi: 10.1162/089976698300017746



Statistical bundle

Definition

1.

Bp =

{
U : Ω→ R

∣∣∣∣∣Ep [U] =
∑
x∈Ω

U(x) p(x) = 0

}
p ∈ ∆◦(Ω)

2.
〈U,V 〉p = Ep [UV ] =

∑
x∈Ω

U(x)V (x) p(x) .

3.
S∆◦(Ω) = {(p,U)|p ∈ ∆◦(Ω),U ∈ Bp} .

4. It is an open subset of an algebraic variety of RΩ × RΩ

5. A vector field F of the statistical bundle is a section of the bundle
i.e.,

F : ∆◦(Ω) 3 p 7→ (p,F (p)) ∈ T∆◦(Ω)



Affine statistical bundle

Definition

1.

Bη =

{
U : Ω→ R

∣∣∣∣∣Eη [U] =
∑
x∈Ω

U(x) η(x) = 0

}
η ∈ A1(Ω)

2.
〈U,V 〉η = Eη [UV ] =

∑
{x∈Ω|η(x)6=0}

U(x)V (x) η(x) .

3. The statistical bundle of the affine space A1(Ω) is the linear bundle
on A1(Ω)

SA1(Ω) = {(η,U)|η ∈ A1(Ω),U ∈ Bη} .

4. It is a manifold isomorphic to the open subset of the Grassmanian
manifold Grass(RΩ,#Ω− 1) of sub-spaces B that do not contain
constant vectors.



Why the Statistical Bundle?

• The notion of statistical bundle appears as a natural set up for
Information Geometry IG, where the notions of score and statistical
gradient do not require any parameterization.

• The setup based on the full simplex ∆(Ω) is of interest in
applications to data analysis. Methods based on the simplex lead
naturally to the treatment of the infinite sample space case in cases
where no natural parametric model is available.

• There are special affine atlases (frames) such that the tangent space
identifies with the statistical bundle. This is a version of the Amari’s
dual affine connections.

• The construction extends to the affine space generated by the
simplex, see the paper [1].

• In the statistical bundle there is a natural treatment of differential
equations e.g. gradient flow.

1. Nihat Ay, Jürgen Jost, Hông Vân Lê, and Lorenz Schwachhöfer. Parametrized measure models.

arXiv:1510.07305 [math.DG], Oct 2015



Regular curve
Theorem

1. Let I 3 t 7→ p(t) be a C 1 curve in ∆◦(Ω).

d

dt
Ep(t) [f ] =

〈
f − Ep(t) [f ] ,Dp(t)

〉
p(t)

, Dp(t) =
d

dt
log (p(t))

2. Let I 3 t 7→ η(t) be a C 1 curve in A1(Ω) such that η(t) ∈ ∆(Ω) for
all t. For all x ∈ Ω, η(x ; t) = 0 implies d

dt η(x ; t) = 0.

d

dt
Eη(t) [f ] =

〈
f − Eη(t) [f ] ,Dη(t)

〉
η(t)

Dη(x ; t) =
d

dt
log |η(x ; t)| if η(x ; t) 6= 0, otherwise 0.

3. Let I 3 t 7→ η(t) be a C 1 curve in A1(Ω) and assume that
η(x ; t) = 0 implies d

dt η(x ; t) = 0. Hence, for each f : ∆(Ω)→ R,

d

dt
Eη(t) [f ] =

〈
f − Eη(t) [f ] ,Dη(t)

〉
η(t)



Statistical gradient

Definition

1. Given a function f : ∆◦(Ω)→ R, its statistical gradient is a vector
field ∆◦(Ω) 3 p 7→ (p, gradF (p)) ∈ S∆◦(Ω) such that for each
regular curve I 3 t 7→ p(t) it holds

d

dt
f (p(t)) = 〈grad f (p(t)),Dp(t)〉p(t) , t ∈ I .

2. Given a function f : A1(Ω)→ R, its statistical gradient is a vector
field A1(Ω) 3 η 7→ (η, grad f (η)) ∈ TA1(Ω) such that for each curve
t 7→ η(t) with a score Dp, it holds

d

dt
f (η(t)) = 〈grad f (η(t)),Dη(t)〉η(t)



Computing grad

1. If f is a C 1 function on an open subset of RΩ containing ∆◦(Ω), by
writing ∇f (p) : Ω 3 x 7→ ∂

∂p(x) f (p), we have the following relation

between the statistical gradient and the ordinary gradient:

grad f (p) = ∇f (p)− Ep [∇f (p)] .

2. If f is a C 1 function on an open subset of RΩ containing A1(Ω), we
have:

grad f (η) = ∇f (η)− Eη [∇f (η)] .



Differential equations

Definition (Flow)

1. Given a vector field F : ∆◦(Ω) or F : A1(Ω), the trajectories along
the vector field are the solution of the (statistical) differential
equation

D

dt
p(t) = F (p(t)) .

2. A flow of the vector field F is a mapping
S : ∆◦(Ω)× R>0 3 (p, t) 7→ S(p, t) ∈ ∆◦(Ω), respectively
S : A1(Ω)× R>0 3 (p, t) 7→ S(p, t) ∈ A1(Ω), such that S(p, 0) = p
and t 7→ S(p, t) is a trajectory along F .

3. Given f : ∆◦(Ω)→ R, or f : A1(Ω)→ R, with statistical gradient
p 7→ (p, grad f (p)) ∈ S∆◦(Ω), respectively
η 7→ (η, grad f (p)) ∈ SA1(Ω), a solution of the statistical gradient
flow equation, starting at p0 ∈ ∆◦(Ω), respectively η0 ∈ A1(Ω), at
time t0, is a trajectory of the field − grad f starting at p0,
respectively η0.



Polarization measure

POL: ∆n 3 p 7→ 1− 4
n∑

x=0

(
1

2
− p(x)

)2

p(x) = 4
n∑

x=0

p(x)2(1− p(x)) .

• Marta Reynal-Querol. Ethnicity, political systems and civil war.

Journal of Conflict Resolution, 46(1):29–54, February 2002



Polarization gradient flow

ṗ(x ; t) = p(x ; t)

8p(x ; t)− 12p(x ; t)2 − 8
∑
y∈Ω

p(y ; t)2 + 12
∑
y∈Ω

p(y ; t)3



● ●

●

● ●

●

• Giovanni Pistone and Maria Piera Rogantin. The gradient flow of the polarization measure. with an
appendix.

arXiv:1502.06718, 2015



ANOVA
Ω = Ω1 × Ω2, X : Ω→ Ω1, Y : Ω→ Ω2, γ ∈ ∆◦(Ω), X#γ = γ1,
Y#γ = γ2

Definition (ANOVA)

H0(γ) ∼ R γ-mean

H1(γ) =
{
f ◦ X

∣∣f ∈ L1
0(γ1)

}
γ-marginal effect

H2(γ) =
{
f ◦ Y

∣∣f ∈ L1
0(γ2)

}
γ-marginal effects

H12(γ) = (H0(γ) + H1(γ) + H2(γ))⊥ γ-interactions

Theorem (ANOVA)

L2(Ω) = H0(γ)⊕ (H1(γ)⊕ H2(γ))⊕ H12(γ) ,

whith f = f0 + f1 + f2 + f1,2 if, and only if, f0 = Eγ [f ] and

E0 [γ(f − f0)|X ] f1 + E0 [γ(f − f0)f2|X ] = 0 ,

E0 [γ(f − f0)f1|Y ] + E0 [γ(f − f0)|Y ] f2 = 0 ,



ANOVA computation

{∑
y∈Ω2

γ(x , y)f̄ (x , y) = γ1(x)f1(x) +
∑

y∈Ω2
γ(x , y)f2(y), x ∈ Ω1∑

x∈Ω1
γ(x , y)f̄ (x , y) =

∑
x∈Ω1

γ(x , y)f1(x) + γ2(y)f2(y), y ∈ Ω2{∑
y∈Ω2

γ2|1(y |x)f̄ (x , y) = f1(x) +
∑

y∈Ω2
γ2|1(y |x)f2(y), x ∈ Ω1∑

x∈Ω1
γ1|2(x |y)f̄ (x , y) =

∑
x∈Ω1

γ1|2(x |y)f1(x) + f2(y), y ∈ Ω2[
In1 Γ2|1

ΓT
1|2 In2

] [
f1

f2

]
=

[
f2|1
f1|2

]
[
In1 Γ2|1

ΓT
1|2 In2

]+

=

[
(In1 − Γ2|1ΓT

1|2)+ −(In2 − ΓT
1|2Γ2|1)+Γ2|1

−(In1 − Γ2|1ΓT
1|2)+ΓT

1|2 (In2 − ΓT
1|2Γ2|1)+

]

Px1→x2 =
∑
y∈Ω2

γ2|1(y |x2)γ1|2(x2|y) Qy1→y2 = . . .



Tables with fixed marginals

Definition (Plan in ∆◦(Ω))

• µ1 ∈ ∆◦(Ω1), µ2 ∈ ∆◦(Ω2)

• Γ◦(µ1, µ2) = {γ ∈ ∆◦(Ω)|X#γ = µ1,Y#γ = µ2}

Bundle of Γ◦(µ1, µ2)

1. Let t 7→ γ(t) ∈ Γ(µ1, µ2) be a regular curve of S∆◦(Ω) with
γ(0) = γ. Let B = Sγ∆◦(Ω) be the fiber at γ with ANOVA
decomposition B = B1(γ)⊕B2(γ)⊕B12(γ). Then Dγ(0) ∈ B12(γ).

2. Viceversa, given any X ∈ B12(γ), the curve t 7→ γ(t) = (1 + tV )γ
stays in Γ(µ1, µ2) with X = Dγ(0).



Gradient flow to the dissimilarity index

• w : Ω1 × Ω2 → R is a cost, W : ∆◦(Ω) 3 γ 7→ Eγ [w ] is the
expected cost. The function W : Γ◦(µ1, µ2)→ R has statistical
gradient

gradΓ◦(µ1,µ2) W (γ) = (γ,w − Eγ [w ]− w1,γ − w2,γ)

• The gradient flow of W is

Dγ(t) = −
(
w − Eγ(t) [w ]− w1,γ(t) − w2,γ(t)

)
• Should be limt→∞ γ(t) = γ∗ ∈ ∆(Ω) with Eγ∗ [w ] = the Gini’s

dissimilarity between µ1 and µ2.

• The extension of the gradient to ∆(Ω) is should be zero at γ∗,
namely

w = Eγ∗ [w ] + w1,γ∗ + w2,γ∗ on supp γ∗

to be compared with the dual Kantorovich problem.
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Critical points

Theorem

1. If R+ 3 t 7→ p(t) is a solution of the gradient flow of a bounded
f : ∆◦(Ω)→ R, namely, Dp(t) = − grad f (p(t)), t > 0, then
t 7→ f (p(t)) is decreasing and bounded below by −min f .

2. If moreover t 7→ ‖grad f (p(t))‖2
p(t) = ‖Dp(t)‖2

p(t) is uniformly

continuous, then limt→∞ ‖Dp(t)‖p(t) = 0.

3. Assume in addition that p 7→ ‖grad f (p)‖p continuously extend to
L : ∆(Ω) and there exists a level set {p ∈ ∆◦(Ω)|L(p) ≤ a} where L
has an unique zero p̄ ∈ ∆(Ω). Hence, f (p(0)) ≤ α implies
limt→∞ p(t) = p̄.



Transports

Definition (e- and m-transport)

1. The exponential transport, or e-transport, is the family of linear
mappings

eUq
p : Bp 3 U 7→ U − Eq [U] ∈ Bq .

2. The mixture transport, or m-transport, is the family of linear
mappings

mUq
p : Bp 3 U 7→ p

q
U ∈ Bq .

1. Exponential semi-group property: eUr
q
eUq

p = eUr
p.

2. Mixture semi-group property: mUr
q
mUq

p = mUr
p.

3. Duality:
〈
eUq

pU,V
〉
q

=
〈
U,mUp

qV
〉
p
.

4. Conservation of the scalar product:
〈
eUq

pU,
mUq

pV
〉
q

= 〈U,V 〉p.



Hilbert transport

Definition
The Hilbert transport, or h-transport, is the family of linear mappings

0Uq
p : Bp 3 U 7→

√
p

q
U−
(

1 + Eq

[√
p

q

])−1(
1 +

√
p

q

)
Eq

[√
p

q
U

]
∈ Bq

1. Inverse: 0Up
q

0Uq
pu = u.

2. Isometry:
〈

0Uq
pU,

0Uq
pV
〉
q

= 〈U,V 〉p.

• The trasports lead to a proper definition of accelleration and
geodesic

• and of Hessian

• and a Taylor formula


