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Plan

• Affine space, exponential statistical bundle

• ANOVA: simple effect, interaction

• Transportation model

• Natural gradient flow in Optimal Transport
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Affine space
Given a set M and a real finite dimensional vector space V , Hermann
Weyl considers a displacement or difference mapping

M ×M 3 (p, q) 7→ −→pq ∈ V ,

such that

• for each p the mapping sp : M 3 q 7→ −→pq is 1-to-1 and unto, and

• the parallelogram law, −→pq +−→qr = −→pr , holds.

In particular, it follows −→pq +−→qp = −→pp = 0.

Weyl’s affine space

The structure (M,V ,−→·· ) is an affine space. The atlas of charts
sp : M → V , p ∈ M, defines an affine manifold. All transition mappings
of the atlas are vector translations.

sq ◦ s−1
p : v 7→ sq(p) + v

(p1, q1) is parallel to (p2, q2) if sp1 (q1) = sp2 (q2).



Affine space with a parallel transport
In IG, it is more intrinsic and more natural to allow general parallel
transports and rephrase Weyls’s definition. That is, we expand the trivial
bundle M × V into a nontrivial bundle.

Affine space

Let M be a set and Bµ, µ ∈ M, a family of topological vector spaces
(toplinear spaces). Let (Uµν ), ν, µ ∈ M be a family of toplinear
isomorphism Uµν : Bν → Bµ, UνµUµν = I . Define the difference mapping

S : M ×M 3 (ν, µ) 7→ sν(µ) ∈ Bν

so that:

1. For each fixed ν the mapping µ 7→ sν(µ) = S(ν, µ) is injective

2. Parallelogram law: S(µ1, µ2) + Uµ1
µ2
S(µ2, µ3) = S(µ1, µ3)

Parallelogram law with µ1 = µ3 = ν and µ2 = µ becomes

S(ν, µ) + UνµS(µ, ν) = 0 .



Affine manifold

Let us compute, where defined, the change-of-origin map sµ ◦ s−1
ν in an

affine space. At ρ = s−1
ν (w), w ∈ Bν , it holds

sµ ◦ s−1
ν (w) = sµ(ρ) = sµ(ν) + Uµν sν(ρ) = sµ(ν) + Uµνw .

The change-of-origin map extends to an affine map.

The affine space provides a family of charts sν : M → Bν , ν ∈ M, that we
want to use as an atlas.

Affine manifold
Assume that the vector fibers of the affine space (M, (Bµ),S) are Banach
spaces and assume that for each ν, sνM is a neighborhood of 0 in Bµ.
Define Uν = s−1

ν (sν(M)◦). Then (Sν,U, ν) is a chart on M. The charts
are compatible and the resulting manifold is the affine manifold of the
affine space.



Affine bundle

The specific form of the atlas defining the affine manifold allows
the extension of the same atlas to define an affine bundle.

Affine bundle
Given the affine manifold M, consider the set

{(µ, v)|µ ∈ M, v ∈ Bµ} (1)

and, for each ν define the chart

sν(µ, v) = (sν(µ),Uν
µv) ∈ Bν × Bν (2)

to define the manifold SM. Equivalently, we can say that SM is
a linear bundle with trivialization

sν : (µ, v) 7→ (sν(µ),Uν
µv) . (3)



Kinematics

Velocity

In an affine manifold, the velocity of a smooth curve t 7→ γ(t) is
the section t 7→ (γ(t),

?
γ(t)) ∈ SM defined by

?
γ(t) = lim

h→0
h−1(sγ(t)(γ(t + h))− sγ(t)(γ(t))) . (4)

Consider a duality pairing on the fibers of the affine bundle and
define the dual bundle in the standard way.

Gradient
If φ : M → R, the natural gradient gradφ is defined on M with
values in the dual fibers and such that for each smooth curve γ

d

dt
φ(γ(t)) = 〈gradφ(γ(t)),

?
γ(t)〉γ(t)



Exponential affine space
Now M is the convex set of positive probability functions of a finite
sample space. The difference mapping is

S : (p, q) 7→ log
q

p
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]
∈ Bp = L2
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The transports and the dual transports are

eUq
p : u 7→ u − Eq [u] , mUp

q : v 7→ q

p
v
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The inverse charts are

s−1
p : u 7→ eu−Kp(u) , Kp(u) = Ep [eu] .

For each smooth curve t 7→ γ(t) ∈ ∆◦(Ω) the velocity (or score) is
?
γ(t) = d

dt log γ(t).



Evolution equation

In the duality we have

d

dt
Eγ(t) [u] =

〈
u − Eγ(t) [u] ,

?
γ(t)

〉
γ(t)

. (5)

The mapping γ 7→ u −Eγ [u] is the gradient mapping of γ 7→ Eγ [u]. It is
a section of the statistical bundle.

For each section F we define the evolution equation
?
γ = F (γ). By

writing
?
γ = γ̇/γ, we see that the evolution equation in our sense is

equivalent to the Ordinary Differential Equation (ODE) γ̇ = γF (γ).

Given a sub-manifold of ∆◦(Ω), each fiber Sγ of the statistical bundle
splits to define the proper sub-statistical bundle.



Transport model
Given positive probability functions µ1 ∈ ∆◦(Ω1) and µ2 ∈ ∆◦(Ω2), the
transport model with margins µ1 and µ2 is the statistical model

Γ(µ1, µ2) = {γ ∈ ∆(Ω)|γ(·,+) = µ1, γ(+, ·) = µ2} .

Our sub-manifold is the open transport model

Γ◦(µ1, µ2) = {γ ∈ ∆◦(Ω)|γ(·,+) = µ1, γ(+, ·) = µ2} .

Tangent vectors

If t 7→ γ(t) is a smooth curve in the open transport model, then

0 =
d

dt
Eµ1 [f ] =

d

dt
Eγ(t) [f (X )] = 〈f (X ),

?
γ(t)〉γ(t) = 〈f , ?

γ(t)1〉µ1
,

with
?
γ(t)1(X ) = Eγ(t) [

?
γ(t)|X ]. Similarly on the other projection. It

follows that

Eγ(t) [
?
γ(t)|X ] = 0 and Eγ(t) [

?
γ(t)|Y ] = 0



ANOVA: definition

Effects
The linear sub-spaces of L2(γ) which , respectively, express the
γ-grand-mean, the two γ-simple effects, and the γ-interactions, are

B0(γ) ∼ R,
B1(γ) =

{
f ◦ X

∣∣f ∈ L2
0(γ1)

}
,

B2(γ) =
{
f ◦ Y

∣∣f ∈ L2
0(γ2)

}
,

B12(γ) = (B0(γ) + B1(γ) + B2(γ))⊥,

(6)

where the orthogonality is computed in the γ weight, that is in the
inner product of L2(γ), 〈u, v〉γ = Eγ [uv ].

Each element of the space B0(γ) + B1(γ) + B2(γ) has the form
u = u0 + f1(X ) + f2(Y ), where u0 = Eγ [u] and f1, f2 are uniquely
defined.



ANOVA: conditions

Conditions
For each γ ∈ ∆(Ω) there exist a unique orthogonal splitting

L2(γ) = R⊕ (B1(γ) + B2(γ))⊕ B12(γ) .

Namely, each u ∈ L2(γ) can be written uniquely as

u = u0 + (u1 + u2) + u12 ,

where u0 = Eγ [u] and (u1 + u2) is the γ-orthogonal projection of u − u0

unto (B1(γ) + B2(γ)). That is

Eγ(t) [u12|X ] = 0 and Eγ(t) [u12|Y ] = 0



ANOVA splitting of the S-bundle

Let us write the ANOVA decomposition of the statistical bundle as

Sγ∆◦(Ω) = (B1(γ) + B2(γ))⊕ B12(γ) .

Check

1. Let t 7→ γ(t) ∈ Γ◦(µ1, µ2) be a smooth curve with γ(0) = γ. Then
the velocity at γ belongs to the interactions,

?
γ(0) ∈ B12(γ).

2. Given any interaction v ∈ B12(γ), the curve t 7→ γ(t) = (1 + tv)γ
stays in Γ◦(µ1, µ2) for t in a neighborhood of 0 and v =

?
γ(0).



Statistical Bundle of the Transport Model

Transport Model Bundle

• The TMB with margins µ1 and µ2 is the sub-statistical bundle

SΓ◦(µ1, µ2) = {(γ, v)|γ ∈ Γ◦(µ1, µ2),Eγ [v |X ] = Eγ [v |Y ] = 0} .

• The transport mUγ̄γ maps the fiber at γ to the fiber at γ̄.

The sub-manifold of the transport model is flat in the mixture geometry
and there is no simple expression of the exponential coordinate.

The splitting of the statistical bundle suggests a mixed parameterization
of ∆◦(Ω). This is a classical topic in the statistics of contingency tables.



Gradient flow of the OT problem

Let us discuss the Optimal Transport OT problem in the framework of
the transport model bundle. Let c : Ω1 ×Ω2 = Ω→ R be a cost function
and define the expected cost function

C : ∆(Ω) 3 γ 7→ Eγ [c]

Gradient
The function γ 7→ C (γ) restricted to the open transport model
Γ◦(µ1, µ2) has statistical gradient in SΓ◦(µ1, µ2) given by

gradC : γ 7→ c12,γ = c − c0,γ − (c1,γ + c2,γ) ∈ sγΓ◦(µ1, µ2)

Gradient flow
The equation of the gradient flow of C is

?
γ = − (c − c0,γ − (c1,γ + c2,γ)) = −c12,λ



Kantorovitch potential
The gradient mapping gradC (γ) is defined to be the orthogonal
projection of the cost c onto the space of γ-interactions B12(γ).

Assume γ 7→ c12,γ extends to all γ̂ ∈ Γ(µ1, µ2).

Stationary point

If γ̂ is a zero of the extended gradient map, gradC (γ̂) = 0, then it holds

c(x , y) = c0,γ + c1,γ(x) + c2,γ(y) , (x , y) ∈ Supp γ̂ .

We expect any solution t 7→ γ(t) of the gradient flow to converge to a
coupling γ̄ = limt→∞ γ(t) ∈ ∆(Ω) such that Eγ̄ [c] is the value of the
Kantorovich optimal transport problem.

Kantorovitch Theorem
γ̂ is optimal for the cost c in Γ(µ1, µ2) if, and only if, there exists
potentials ui : Ωi → R such that

u1(x) + u2(y) ≤ c(x , y) and c(x , y) = u1(x) + u2(y)

for all (x , y) ∈ Supp γ̂.


