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Abstract I
This talk is based on the conference papers [1,2,3]. It presents an
overview of the topic and some of the current developments.

The exponential manifold [4,5] on the finite-dimensional Gaussian space
[1] has special features namely, the existence of a finite entropy and finite
moments of all orders for all densities in the manifold. Moreover, it is
possible to discuss the continuity of translations, Poincaré inequalities,
and the generalized differentiability for densities. As a consequence, it is
possible to define an exponential manifld for densities belonging to a
given Orlich-Sobolev space with Gaussian weight.

A field of application is the study of the dimensionality reduction for of
evolution equations in the sense of D. Brigo [2] i.e., the projection of the
solutions onto a finite-dimensional exponential family.

The basic exponential representation of densities in the exponential
manifold can be modified by the use of the so-called deformed
exponentials for example, the Nigel Newton exponential [6]. The linear
growth of the deformed exponential allows for a simplified treatment of
the manifold of densities in a Sobolev space with Gaussian weight.
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Scoring rules I

This section is an based on

• A. Hyvärinen. Estimation of non-normalized statistical models by score matching. J. Mach. Learn. Res.,
6:695–709, 2005

• M. Parry, A. P. Dawid, and S. Lauritzen. Proper local scoring rules. Ann. Statist., 40(1):561–592, 2012

It is intended to show an an example my support of my case about the
use of Sobolev-Orlicz exponential manifold as the functional structure for
Information Geometry. Please compare with the critical discussion in

• N. Ay, J. Jost, H. V. Lê, and L. Schwachhöfer. Information Geometry. Springer, 2017

Let M be a statistical model of positive densities on a real space
measure space, (Rn,B, ν), ν an absolutely continuous measure.

A local scoring rule is scoring rule i.e., a mapping from densities to real
random variables,

S : M3 q 7→ S(q) ∈ L(Rn)

S(q) : x 7→ S(x , q) ∈ R ,

which moreover is local.



Scoring rules II
“Local” means that the value of the scoring rule at the sample point x
depends only on (Dq(x) : D ∈ D), D a list of derivation operators. In
this sense we might say that a scoring rule S is local of order 2.

Examples of local scoring rules are

log-score S : q 7→ − log q. Comments: point-wise definition and
want of robustness suggest the model q ∈ C (Rn); it is
local of order 0.

Hyvärinen S : q 7→ ∆ log q + 1
2 |∇ log q|2. Comments: Point-wise

definition and want of robustness suggest q ∈ C 2(Rn); it
is local of order 2.

A local scoring rule is not just a generic local operator.

The risk under a probability measure µ ∈ S ⊃M is d(µ, q) = Eµ [S(q)].
This is well defined if we assume S(q) ∈ C (Rn). S should include the
model and the sample distributions. Moreover, we want S(q) ∈ L1(p) for
all p, q ∈M.

Examples of risk are



Scoring rules III

log-likelihood d(µ, q) = −Eµ [log q]. It requires log q ∈ L1(µ), q ∈M,
µ ∈ S.

Hyvärinen d(µ, q) = Eµ
[
∆ log q + 1

2 |∇ log q|2
]
; it requires some

Sobolev space assumption i.e., integrability of the
derivatives up to the second order for all µ ∈ S.

The scoring rule is proper if q 7→ d(p, q) is minimized at q = p only, that
is, d(p, q) ≥ d(p, p) and d(p, q) = d(p, p) implies q = p. In such a case,
one defines the divergence associated to the proper and local scoring rule
to be D (p ‖q) = d(p, q)− d(p, p).

For example, from the log-score we obtain the KL divergence.
d(p, p) = −Ep [log p] = H (p) is the entropy and

d(p, q)− d(p, p) = Ep [− log q + log p] = Ep

[
log

p

q

]
.



Hyvärinen divergence I

Let us assume now that the sample space is the n-dimensional real space
and each density q in M is strictly positive C 2 and it is such that the
partial derivatives ∂j log q = ∂jq/q are L2(p) all p ∈M.

The Hyvärinen divergence is

DH (p|q) =
1

2

∫
|∇ log p(x)−∇ log q(x)|2 p(x) dx <∞

By expanding the squared norm of the difference, we obtain

1

2

∫
|∇ log p(x)|2 p(x) dx +

1

2

∫
|∇ log q(x)|2 p(x) dx−∫
∇ log p(x) · ∇ log q(x) p(x) dx ,

where the first term does not depend on q.



Hyvärinen divergence II

If ∇ log p = ∇p/p and the border terms in the integration by parts are
zero

−
∫
∇ log p(x) · ∇ log q(x) p(x) dx =

−
∫
∇p(x) · ∇ log q(x) dx =

∫
∆ log q(x) p(x) dx

The Hyvärinen score is

SH(q) = ∆ log q(x) +
1

2
|∇ log q(x)|2 .

Minimization of the expected Hyvärinen score is the same as
minimization of the Hyvärinen divergence.

All assumptions made are satisfied if M is the multivariate Gaussian
model. This provides an example where a statistical method requires a
detailed discussion of the properties of the spatial derivatives of the
statistical model.



Variations on DH (p|q)
On the Gaussian space (Rn, γ) consider the densities of exponential form
p = eu−K(u) · γ. Then, at least formally,

DH (p|q) =
1

2

∫
|∇u −∇v |2 eu−K(u)γ(x) dx

In this case, the ∇ operator could be taken in the sense of the analysis of
the Gaussian space. Regularity of the operator should be discussed?

A variation where the integrability issue does not appear is based on the
replacement the log function with the Nigel Newton balanced chart
logA(t) =

∫ y

1
ds/A(s), with A(t) = s/(1 + s). A possible new definition

could be
1

2

∫
|∇ logA p(x)−∇ logA q(x)|2 A(p(x)) dx

where the cancellation holds and A ◦ p is bounded.

• P. Malliavin. Integration and probability, volume 157 of Graduate Texts in Mathematics. Springer-Verlag,
1995. With the collaboration of Hlne Airault, Leslie Kay and Grard Letac, Edited and translated from the
French by Kay, With a foreword by Mark Pinsky

• N. J. Newton. An infinite-dimensional statistical manifold modelled on Hilbert space. J. Funct. Anal.,
263(6):1661–1681, 2012



IG as the geometry of the statistical bundle

• In a typical set up, we have a set of positive densities M and a set
of random variables B. We need the smoothness of a given map
M× B 3 (q,S) 7→ F (q,S) ∈ R i.e., (q,S) 7→ Eq [S ].

• A natural structure consists of endowing the model M with a
differentiable atlas of charts and take as B a set of linear fibers on
the manifold.

• The statistical bundle on M is

SM = {(p, u) | p ∈M, u ∈ Bp,Ep [u] = 0}

• Moreover, each fiber Bp is to be an expression in the atlas of the
tangent space at p, TpM≡ Bp. This last requirement is not trivial.
For example, in general L2

0(p) 6= L2
0(q).

• P. Gibilisco and G. Pistone. Connections on non-parametric statistical manifolds by Orlicz space geometry.
IDAQP, 1(2):325–347, 1998



Exponential bundle

p ^ q =⇒ E (p) sp // Sp

sq◦s−1
p

��

I // Bp

d(sq◦s−1
p )

��

I// L(cosh−1) (p)

E (q) sq
// Sq

I
// Bq I

// L(cosh−1) (q)

• If p ^ q, then E (p) = E (q) and L(cosh−1) (p) = L(cosh−1) (q).

• Bp =
{
u ∈ L(cosh−1) (p)

∣∣Ep [u] = 0
}

• Sp 6= Sq and sq ◦ s−1
p : Sp → Sq is affine

sq ◦ s−1
p (u) = u − Eq [u] + log

(
p

q

)
− Eq

[
log

(
p

q

)]
• The tangent application is

d(sq ◦ s−1
p )(u)[v ] = v − Eep(u) [v ] = eUep(u)

p v (does not depend on
p).



Gaussian space
• The Gaussian maximal exponential manifold is E (γ) with

γ(x) = (2π)−n/2 exp
(
−|x |2/2

)
, x ∈ Rn

• The relevant Orlicz spaces are the exponential space L(cosh−1) (γ)
and the mixture space L(cosh−1)∗ (γ).

• The mixture space L(cosh−1)∗ (γ) is separable; its dual is the
exponential space L(cosh−1) (γ).

• A positive density f ∈ P> has finite entropy if, and only if, f
belongs to the mixture space

−
∫

f (x) log f (x)γ(x) dx < +∞ ⇔ f ∈ L(cosh−1)∗ (γ) .

• L∞(γ) ↪→ L(cosh−1) (γ) ↪→ La(γ) ↪→ L(cosh−1)∗ (γ) ↪→ L1(γ), a > 1

• Restriction to the ball ΩR : L(cosh−1) (γ)→ La(ΩR), a ≥ 1, and
L(cosh−1)∗ (γ)→ L1(ΩR).

• G. Pistone. Information geometry of the Gaussian space. arXiv:1803.08135, 2018



Notable elements in L(cosh−1) (γ) and L(cosh−1)∗ (γ) I

• The exponential space L(cosh−1) (γ) contains all polynomials with
degree up to 2 and all functions which are bounded by such a
polynomial.

• The mixture space L(cosh−1)∗ (γ) contains all f : Rd → R which are
bounded by a polynomial, in particular, all polynomials.

• Poincaré inequality If u ∈ dom (∇) in the sense of the Gaussian
space i.e., u, ∂ju ∈ L2(γ) then∫ ∣∣∣∣u(x)−

∫
u(y)γ(y) dy

∣∣∣∣2γ(x) dx ≤
∫
‖∇u(x)‖2

γ(x) dx

• f ∈ C 1
p (Rn)∥∥∥∥f − ∫ f (y)γ(y) dy

∥∥∥∥
L(cosh −1)∗ (γ)

≤ const ‖|∇f |‖L(cosh −1)∗ (γ)

In particular, if f is a density of the Gaussian space,



Notable elements in L(cosh−1) (γ) and L(cosh−1)∗ (γ) II

• f ∈ C 1
p (Rn)

‖f − 1‖L(cosh −1)∗ (γ) ≤ const ‖|∇f |‖L(cosh −1)∗ (γ)

This inequality is similar to an bound on the entropy.

• If f , g ∈ C 2
p (Rn) and |x · y | ≤ |x |1 |y |2 then

|Covγ (f , g)| ≤
∣∣∣‖∇f ‖L(cosh −1)∗ (γ)

∣∣∣
1

∣∣∣‖∇g‖(L(cosh −1)∗ (γ))∗

∣∣∣
2
.



Orlicz-Sobolev with Gaussian weight (GOS)
• The GOS spaces with weight M are the vector spaces

W 1,(cosh−1) (γ) =
{
f ∈ L(cosh−1) (γ)

∣∣∣ ∂j f ∈ L(cosh−1) (γ) , j = 1, . . . , n
}

W 1,(cosh−1)∗ (γ) =
{
f ∈ L(cosh−1)∗ (γ)

∣∣∣ ∂j f ∈ L(cosh−1)∗ (γ) , j = 1, . . . , n
}

where ∂j is the derivative in the sense of distributions.

• Both are Banach spaces with the norm of the graph

‖f ‖W 1,(cosh −1)(γ) = ‖f ‖L(cosh −1)(γ) +
n∑

j=1

‖∂j f ‖L(cosh −1)(γ)

‖f ‖W 1,(cosh −1)∗ (γ) = ‖f ‖L(cosh −1)(γ) +
n∑

j=1

‖∂j f ‖L(cosh −1)(γ)

• J. Musielak. Orlicz spaces and modular spaces, volume 1034 of Lecture Notes in Mathematics.
Springer-Verlag, 1983

• B. Lods and G. Pistone. Information geometry formalism for the spatially homogeneous Boltzmann
equation. Entropy, 17(6):4323–4363, 2015



Smoothness of GOS spaces I

• Every u ∈W 1,(cosh−1) (γ) when restricted to an open ball of radius
R > 0 belongs to the Sobolev space W 1,a(ΩR) for all a ≥ 1 i.e.
uR ∈ ∩a≥1W

1,a(ΩR).

• Every f ∈W 1,(cosh−1)∗ (γ) when restricted to an open ball of radius
R > 0 belongs to the dual of the space ∩a≥1W

1,a(ΩR), in particular
to W 1,1(ΩR).

• Sobolev Each u ∈W 1,(cosh−1) (γ) is a.s. continuous and Hölder of
all orders on each ΩR .

• If u ∈W 1,(cosh−1) (γ), then u, ∂ju ∈ La(γ) for all a ≥ 1 i.e.,

e−
1

2a |X |
2

u, e−
1

2a |X |
2

∂ju ∈ La(Rn)

As

∂je
− 1

2a |X |
2

u = −1

a
xje
− 1

2a |X |
2

u + e−
1

2a |X |
2

∂ju

it follows (
e−

1
2a |X |

2

u
)
∈W 1,a(Rn) a ≥ 1



Smoothness of GOS spaces II
• Morrey Because of

W 1,(cosh−1) (γ) 3 u 7→
(
e−

1
2a |X |

2

u
)
∈W 1,a(Rn) a ≥ 1

it holds for each a > n the uniform bound

u ∈W 1,(cosh−1) (γ) ⇒

e−
1

2a |x|
2

|u(x)| ≤ C (n, a)
∥∥∥e− 1

2a |x|
2

u
∥∥∥
W 1,a(Rn)

a.s.

and the RHS is dominated by ‖u‖W 1,(cosh −1)(γ).

• The same assumption implies the global Hölder inequality

e−
1

2a |x|
2

u(x)−e− 1
2a |y |

2

u(y) ≤ C (n.a) |x − y |1−n/a
∥∥∥e 1

2a |X |
2

u
∥∥∥
La(Rn)

≤

C (n.a) |x − y |1−n/a ‖u‖W 1,(cosh −1)(γ)

• R. A. Adams and J. J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics
(Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003

• H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer,
New York, 2011



Exponential family modeled on W 1,(cosh−1) (γ)
• If we restrict the exponential family E (γ) to W 1,(cosh−1) (γ),

Wγ = W 1,(cosh−1) (γ) ∩ Bγ =
{
u ∈W 1,(cosh−1) (γ)

∣∣∣Eγ [u] = 0
}

we obtain the non-parametric exponential family

E1(γ) =
{
eu−K(u) · γ

∣∣∣ u ∈W 1,(cosh−1) (γ) ∩ Sγ
}

• Because of W 1,(cosh−1) (γ) ↪→ L(cosh−1) (γ) the set
W 1,(cosh−1) (γ) ∩ Sγ is open in Wγ and the cumulant functional
K : W 1,(cosh−1) (γ) ∩ Sγ → R is convex and differentiable.

• Many features of the exponential manifold carry over to this case.
In particular, we can define for each f ∈ E1(γ) the space

Wf = W 1,(cosh−1) (γ) ∩ Bγ =
{
u ∈W 1,(cosh−1) (γ)

∣∣∣Ef [u] = 0
}

to be models for the tangent spaces of E1(γ). The e-transport acts
on these spaces, eUg

f : Wf 3 u 7→ u − Eg [u] ∈Wg , so that we can
define the statistical bundle to be

S E1(γ) = {(g , v) | g ∈ E1(γ), v ∈Wf }
and take as charts the restrictions of the charts defined on S E (γ).


