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In this paper we focus on the use of Kriging models for predicting at untried points from the response values at the
tried locations. The underlying Gaussian model requires the modelistration of the covariance structure. In a
previous paper we have discussed to this aim generalities about the use of variograms to parameterize Gaussian
models. In fact, Geostatisticians, pioneers and practitioners of Kriging, strongly support the variogram considering
it more informative of the correlation structure. In particular computations for the case of jointly Gaussian

Y1, ..., Yn with constant variance o2 = Var (Y;), i =1, ..., n are performed. In such a case, the model can be
parameterized by the common variance o2 and the variogram matrix I that carries n(n — 1)/2 degrees of freedom
and is conditionally negative definite. The set of variogram matrices is related with a convex set called elliptope
(ellipsoid+polytope). The discussion of the domain for the variogram matrices is instrumental when viewing the
problem in Bayesian terms. Opposite to the conventional geostatistical Kriging approach that commonly ignores
the effect of the uncertainty in the covariance structure on subsequent predictions, a Bayesian approach will provide
a general methodology for taking into account the uncertainty about parameters on subsequent predictions. Hence
a-priori on the variogram matrices is demanded. We plan to discuss a number of simple typical problems with
parameterized subset of variogram matrices and small dimension.
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Variogram of a normal vector with constant variance

We consider a Gaussian n-vector, n > 2, with mean pu = ul and
variance matrix ¥ = [0]7_; with constant diagonal o;; = 02,
i=1,...,n.

The assumption on the mean and the diagonal terms is intended to
be a weak stationarity assumption.

Hence, Y ~ N,(ul,0%R), where y is a general mean value and
R = [pj]7 ;=1 is a correlation matrix.

The variogram of Y is the n x n matrix [ = [%'j]?,jzl

2y = Var (Y; = Y;) = (e; — &) 0°R(e; — &) =
a® (pii + pij — 2p5) = 20°(1 = py).

In matrix form

M =o%(11 - R).

13



Kriging model and variogram

e In Geostatistics applications each component Y; is associated to a
location x;, i =1,...,nin a given region X and the covariances are
assumed to be a function of the distance between locations:

Yij = C(d(xi, %))

e In this case the diagonal is constant,

Y= C(d(x,x)) = C(0) =2
Moreover it is commonly assumed that the mean is constant, ul.

e First Krige's modeling idea is to assume positive correlation and
assume the variogram to be an increasing function ~ of the
distance, so that to model a variability that increases with the
distance and is bounded by the general variance:

1
0<3 Var (Y; — Y)) =T = v(d(x1, %)) = 0*(1-R(d(x1, x;)) < 202

)
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Semi-variogram function

semivariogram

3,0

2,5

2,0

15

1,0

0,5

0,0

Sill Y=, +9,

Range I,

20 40 60
distance

Nugget effect ¥,

80 100

120

3/13



Krige's prediction

The parameters in the Krige's model are 1, 02, R and are usually
estimated over a suitable parametric model. We do not discuss here
the modelling aspect, but we adopt a general non-parametric
attitude, where p is real number, o2 is a positive real number, R is
a positive definite matrix with unit diagonal.

Second Krige's idea is to predict the value Y}, an untried location
Xo with the conditional expectation based on some estimate of the
parameters: if | ={1,...,n},
o . pu >
Yo—pu="%o X, (Vi —pl)), with ¥= {Z"I 12’0}
’ n,l o

Note that the set of data that give the same prediction is an affine
plane in R".

We are going to discuss how to express the prediction formula
for Yy — p as a function of the variogram I.
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First properties of variogram matrix I

r=o0%11 -R)=0°11" - X

%11/ is the orthogonal projector on the space of constant vectors
Span (1).
I =0if and only if, R =11'.

e x=w+al with w'l=0
xXTx = w'Tw+2aw'T1 +o?1'T1
= —0’w'Rw — 2a0?w'R1 + °(n* — o’1'R1).

e [ is conditionally negative definite (i.e. when oz = 0)

e 1'T1 =0%(n? — 1'R1).



Characterisation

Is a matrix [ a variogram?

A nonzero matrix I is a variogram of some covariance matrix of the form
Y = 02R, with 02 > 0 and R a correlation matrix, if, and only if, the
three following condition hold:

1. T is symmetric, and has zero diagonal;
2. T is conditionally negative definite;

3. sup {x'Tx|x'1 =1} < o2

e Note the lower bound for o2.

e [ carries n(n — 1)/2 degrees of freedom.

6
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Inverse Variogram matrix !

1. If £ = 0?R € S_ is invertible, then 072 — 1'¥ 711 # 0 and
[ = 0?(11" — R) is invertible, with

M=yt (e2-1r 1) x 1yt (1)

2. If £ = 02R €S, is invertible, then I = 02(11" — R) is invertible.
Moreover 1 # ¢?1'T 11, and

e e G U Dt s S U )

e The proof uses the Sherman-Morrison formula and properties of the
matrix R.
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Elliptope

e |n a non parametric approach we want to know the shape of the
bounded set of correlation matrices. This convex set is called
elliptope.

e All principal minors of R are nonnegative, in particular with 3
locations

=1-x*—y?— 224+ 2xyz>0

N = X
= N <

1
det(R) =det | |x
y

e all horizontal section z = const are ellipses

1—x%—y? +2cxy > c?
Same for other sections.

e The volume is computable: uniform apriori. Simulation is feasible.

e R = A’A where the columns of A are unit vectors: an other possible
apriori. Simulation is feasible.



The 3-elliptope
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Cholesky decomposition of a correlation matrix

e For a correlation matrix R = T'T with

t] V31—t -t tio

t13
T=|t| = 0 VI—t ts|, te0'xSt,
] 0 0 1
1 V1 tfz tatio V1—th — tists

R = \/1—1‘ t13t12

tiatis + /1 — ttas
v1-— t t13l'13 t1ot13 + / 1 — t23t23 1

det (R) = (1 — 5, — t33)(1 — t33)
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Projecting on Span (1)*

e The approach with parameters o2, I does not appear promising in
term of ease of computation.

e We now change our point of view to consider the same problem
from a different angle. In fact, we can associate the variogram with
the state space description of the Gaussian vector.

1. The matrix I is a variogram matrix if, and only if, the matrix

1.\ 1.,
So=—(/—-11") T {/—-11 (3)
n n
is symmetric, positive definite and with constant diagonal. In such a
case, the variogram of g is I.
2. If Yo ~ N,(0,%p), then its variogram is " and it is supported by

Span (1)©
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Decomposition of the state vector

-Let Y ~N,y(it,X), 0 = 02R € S, with variogram I = ¢2(11" — R).

- Let Yy = ( — %11’) Y be the projection of Y onto Span (I)J‘ so that
we can write Y = Yy + Y, where each component of Y is the empirical
mean 11'Y.

1. The distribution of Yj is Gaussian and depends on the mean and
the variogram only.

2. The distribution of %I'Y, conditionally to Yy is Gaussian.

12 /13
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Example: Wafer diffusion
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Giovanni Pistone and Grazia Vicario. Kriging prediction from a circular grid: application to wafer diffusion.
Appl. Stochastic Models Bus. Ind., 29(4):350-361, July 2013
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Example: CMM measurements

(a) (b) (c)

Figure 1. The three considered surfaces: (a) milled, (b) grinded, and (c) lapped, and the corresponding
sampled points on uniform rectangular grids. In (c), some points are missing because they were
detected by default as outliers by the CMM software.

Suela Ruffa, Grazia Vicario, and Giovanni Pistone. Analysis of the covariance structure in manufactured parts.

Communications in Statistics - Theory and Methods, 44(21):4540-4551
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(02 T) < (0%, R) < X

. The mapping from ¥ € S_ to the couple (02,T) € R x V factors
as

S_5% s (%Tr():), (i Tr(Z)) T E) = (02 R) 0, o[ xR
and

10,00[xR 3 (0, R) = (0%,0%(11' — R)) =
(6,T) € {(¢*, )|l € V,sup {x'Tx|x'l =1} < ?}.

- Inverse is

{(0®,N)|F € V,sup {x'Tx|x'1 =1} < 0?} 5 (¢°,T) —
0’1l -T =% eS_
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Sherman-Morrison formula

If the matrix A is invertible, then 11’ — A is invertible if, and only if,
1'A 11 Z# 1. In such a case,

det(11' — A) = (—1)"det A(1 — 1'A7'1) |

11 -At=—At-_a-1rA) AT 1IYATL
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Proof of SM formula

det(11' — A) = det (—A) + Z Z —A)

j=1 i=1

=(—1)"detA—(-1)""! Z Al

ij=1

=(—1)"det A— (—1)""'1(adj A)1" .

If det A #£ 0,
det(11’ — A) = (—1)"(det A)(1 —1'A7'1) £ 0
if, and only if,
1-1TA1+#40.
We conclude by checking that

(11 — A)(—A ' —aA M1VA Y =
if, and only if, a = (1 — 1'A"11)~!
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Properties of the correlation matrixR

Let R be a correlation matrix and assume det (R) # 0. Let \; > 0,

Jj=1,...,n, be the eigenvalues of R and u; a set of unit eigenvectors.

1.

TrR=>" A =nanddet(R) =[]_; \; <1, with equality if,
and only if, R=1.

TrR 1= Z};l )\fl > n and det(R)f1 > 1 with equality if, and

only if, R=1.
1'R711 # 1.
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1.

Proof

n=TrR = EJ,":1 Aj. From det R = HJ'-’ZI Aj, as the arithmetic mean is larger than the the geometric
mean,

1

n

PPV

n

1
n

n
1= > (TIx = (detR)n ,
J=1

with equality if, and only if A\; =1 forall j=1,...,n, thatis, R = /.
The geometric mean is larger or equal than the harmonic mean,

1
1 n n n ) -1
(det R)n Hl)\j >n Z;A; ,
J= J=

with equality if, and only if, \; =1, j =1,...,n. It follows 1 ;:1 )\j_l > 1.

n

As R™L = 1 )\1-71Ujuj{ and Z:J'-'zl(l/uj-)2 = 11?2 = r?,

n n
—1 —1 2 2 -1
1=1R 1:§:)\j @'u)?=n">"(A) 7,
j=1 j=1

where 0; = (1’u)?/n?® > 0 and ZJ,":1 0j = 1. From the convexity of A A~ we obtain

—1
n n
2 -1 2
L=n"3 )72 | 3206 )
j=1 j=1
hence the contradiction

12 1 1
1< EZAjajg n—zmax{/\J-lJ:l,...,n} < -

j=1
J 21
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Likelihood

det (X) =

det (0211’ - r) = 2" det (11’ - a—zr) = o2 [det (7a‘zr) 11/ adj (7a—zr) 1] -

det (—T) — o21’ adj (—T) 1

ysly=

y/ (7r—1 _ (0—2 _ l/r—ll)—ll——lu/r—l) y = 7y/|'71y _ (0—2 _ l/l'fll)fl(yll'fll)zA

log p (y|o-2, r) =

n 1 ’ —2 1 —2\—1
—Elog(27r)—5|og(det(ll -0 r))—ﬁy 11" —oc7 M) "y=
1 1 1
~ log(2m) — - log (det(—r) — 0?1 adj (—T) 1) +oy Ty + 2@ =1ty Ty T hy?
2 2 2 2
dy(T — log (det( 1 -0 2I'))) r(o’ 11’ )71H) ;
dy(M = y' (11 — 672" 1y) = 62 Tr ((a 11’ — N~y (o211 — r)*lH) ;

—(0%11 = N7 4 (o211 — )" lyy' (0211’ =) s diagonal .

22
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Cholesky decomposition

A symmetric matrix A is positive definite if there exists an upper
triangular matrix

t tin tip ts
T=|t| =0 tn t3|, t;>0
té 0 0 t33
2
ti ti1tin ti1ti3

A=TT=]t- tj]ij = | ti1t1o t2, + t2, tioti3 + troto3
titis  tiotis + ot th + t + t3

tirtaotss # 0 < T is unique and invertible < A is invertible

A identifiable parametrization for non singular matrices.
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Proof

If T = 02(11’ — R) is a variogram matrix, then from Eq. (3) we have

1 ’ 1
Yo = o2 (/ - 711’) R (/ - 711’) ,
n n

which is indeed positive definite. Let us compute the diagonal elements of ¥g.
1 / 1
(Zo)ii = o’e] (/ - 711’) R (/ - 711’) e
n n
5 1.\’ 1
o° e —-1) Rle — -1
n n
2 / 2 1.
o e Re; — —eR1+ —1'R1
n n?

1
=o? (—I’Rl - 1)
n2

Viceversa, assume X is a covariance matrix. As e; — €; € Span (I)J‘, the variogram of ¥ has elements

(e — &) To(ej — €)) =
1 ' 1
(e — &)’ (/ - 41’) [p) (/ - 711/) (e — &) =
n n
— (e — €)' T(ei — &) = —vii — v + 27vj = 2vjj-

As1’(ej — €j) = 0, then 1/ (/ - %11’)’ (=n) (/ - %11’) 1 = 0, hence the distribution of Y is
supported by the space Span (l)J'.
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