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Abstract
Given a Gaussian space (Rn, γ), consider the set M of positive densities
p which are connected to the unit density by an open Hellinger arc. The
elements of M are precisely the densities of the form eu−K(u) where
Eγ(u) = 0, K (u) is a normalising constant, and u belongs to the
exponential Orlicz space with weight γ. M is a manifold for an affine
atlas of charts. The Gaussian assumption provides the exponential
manifold with special features. Applications include the study of
Boltzmann equation and the study the a gradient flow to the distribution
with minimal Wasserstein distance.

Here, we discuss the manifold of smooth densities by taking as model
space for the exponential manifold the Orlicz-Sobolev space with
Gaussian weight γ. Statistical applications involving smooth densities
are: Hyvärinen divergence and the finite-dimensional projection of
solution of evolution equations for densities.

• G. Pistone. Nonparametric information geometry. In F. Nielsen and F. Barbaresco, editors, Geometric
science of information, volume 8085 of Lecture Notes in Comput. Sci., pages 5–36. Springer, Heidelberg,
2013. First International Conference, GSI 2013 Paris, France, August 28-30, 2013 Proceedings

• B. Lods and G. Pistone. Information geometry formalism for the spatially homogeneous Boltzmann
equation. Entropy, 17(6):4323–4363, 2015

• G. Pistone. Information geometry of the Gaussian space. arXiv:1803.08135, 2018



Example: scoring rule
• On the statistical model M of positive densities on a measure space

(X ,X , µ), a local scoring rule is a mapping S : M3 q 7→ S(·, q)
with values in random variables. The qualification “local” means
that the scoring rule depends on the sample point x only.

• The risk under a positive density p ∈ P is d(p, q) = Ep [S(q)].
Notice that we assume that the expected value is defined for each
couple p, q M.

• The scoring rule is proper is q 7→ d(p, q) is minimized at q = p only
that is, d(p, q) ≥ d(p, p) and d(p, q) = d(p, p) implies q = p.

• There is a sampling version of the objective function,
d̂(q) =

∑N
j=1 S(Xj ,Q) with (Xj) IID p, and q̂ = argmin d̂(q) is an

estimator of p e.g., S(x , q) = − log q(x).

• The divergence associate to S is D(p, q) = d(p, q)− d(p, p) and
minimization of q 7→ D(p, q) is equivalent to the minimization of
q 7→ d(p, q). However, D(p, q) has no sampling version.

• A. Hyvärinen. Estimation of non-normalized statistical models by score matching. J. Mach. Learn. Res.,
6:695–709, 2005

• M. Parry, A. P. Dawid, and S. Lauritzen. Proper local scoring rules. Ann. Statist., 40(1):561–592, 2012



Example: Hyvärinen divergence I

• Let us assume now that the sample space is the n-dimensional real
space and each density q in M is strictly positive and such that
∂j log q = ∂jq/q is square integrable for each p ∈M.

• The Hyvärinen divergence is

DH (p|q) =
1

2

∫
|∇ log p(x)−∇ log q(x)|2 p(x) dx <∞

• By expanding the squared norm of the difference, we obtain

1

2

∫
|∇ log p(x)|2 p(x) dx +

1

2

∫
|∇ log q(x)|2 p(x) dx−∫

∇ log p(x) · ∇ log q(x) p(x) dx ,

where the first term does not depend on q.



Example: Hyvärinen divergence II

• If ∇ log p = ∇p/p and the border terms in the integration by parts
are zero

−
∫
∇ log p(x) · ∇ log q(x) p(x) dx =

−
∫
∇p(x) · ∇ log q(x) dx =

∫
∆ log q(x) p(x) dx

• The Hyvärinen score is

SH(q) = ∆ log q(x) +
1

2
|∇ log q(x)|2 .

• Minimization of the expected Hyvärinen score is the same as
minimization of the Hyvärinen divergence.

• All assumptions made are satisfied if M is the multivariate Gaussian
model. This provides an example where a statistical method
requires a detailed discussion of the properties of the spatial
derivatives of the statistical model.



Example: Hyvärinen divergence III
• On the Gaussian space (Rn, γ), γ(x) = (2π)−n/2e−|x|

2/2, consider
the densities of exponential form p = eu−K(u) · γ. Then, at least
formally,

DH (p|q) =
1

2

∫
|∇u −∇v |2 eu−K(u)γ(x) dx

In this case, the ∇ operator could be taken in the sense of the
analysis of the Gaussian space. But, DH (p|q) <∞?

• A variation where the integrability issue does not appear consistes of
the substitution the log function with the Nigel Newton balanced
chart logA(t) =

∫ y

1
ds/A(s), with A(t) = s/(1 + s). A possible

definition in then

1

2

∫
|∇ logA p(x)−∇ logA q(x)|2 A(p(x)) dx

where the cancellation holds and A ◦ p is bounded.

• P. Malliavin. Integration and probability, volume 157 of Graduate Texts in Mathematics.
Springer-Verlag, 1995. With the collaboration of Hlne Airault, Leslie Kay and Grard Letac, Edited
and translated from the French by Kay, With a foreword by Mark Pinsky

• N. J. Newton. An infinite-dimensional statistical manifold modelled on Hilbert space. J. Funct.
Anal., 263(6):1661–1681, 2012



IG is the geometry of the statistical bundle

• In a typical statistical set up, we have a set of positive densities M
and a set of random variables B. We need the smoothness of a
given map M× B 3 (q,S) 7→ F (q,S) ∈ R.

• A natural structure consists of endowing the model M with a
differentiable atlas of charts and take as B a set of linear fibers on
the manifold.

• Let be given an atlas on M. A statistical bundle on M is

TM = {(p, u)|p ∈M, u ∈ Bp,Ep [u] = 0}

• Moreover, each fiber Bp is to be an expression in the atlas of the
tangent space at p, TpM≡ Bp. This last requirement is not trivial.
For example, in general L2

0(p) 6= L2
0(q).

• P. Gibilisco and G. Pistone. Connections on non-parametric statistical manifolds by Orlicz space geometry.
IDAQP, 1(2):325–347, 1998



Orlicz model space

• If φ(y) = cosh y − 1, the Orlicz Φ-space LΦ(p) is the vector space
of all random variables u such that Ep [Φ(αU)] is finite for some
α > 0.

• u ∈ L(cosh−1) (p) if, and only if, the moment generating function
α 7→ Ep [eαu] is finite in around 0 that is, L(cosh−1) (p) is the space
of sufficient statistics u in the exponential family θ 7→ pθ ∝ eθu · p.

• L(cosh−1) (p) is a Banach space. The set{
u ∈ L(cosh−1) (p)

∣∣∣Ep [(cosh−1)(u)] ≤ 1
}

is the closed unit ball.

• If (cosh−1)∗ is the convex conjugate of (cosh−1) we can define
the Orlicz space L(cosh−1)∗ (p). The exponential space L(cosh−1) (p)
is the dual of the mixture space L(cosh−1)∗ (p) in the duality
(u, f ) 7→ Ep [uf ].



Maximal exponential family

• We define Bp =
{
u ∈ L(cosh−1) (p)

∣∣Ep [u] = 0
}

• For each p ∈ P>, the moment generating functional is the positive
lower-semi-continuous convex function Gp : Bp 3 u 7→ Ep

[
eU
]
.

• The cumulant generating functional is the non-negative
lower-semi-continuous convex function Kp = logGp.

• The interior of the common proper domain
{u|Gp(u) < +∞}◦ = {u|Kp(u) <∞}◦ is an open convex set Sp
containing the open unit ball (for the norm of the Orlicz space Bp).

• For each p ∈ P>, the maximal exponential family at p is

E (p) =
{
eu−Kp(u) · p

∣∣∣u ∈ Sp} .



Portmanteau theorem

If p, q ∈ P> we write p ^ q if p and q are connected by an open
exponential arc. It is an equivalence relation.
The following statements are equivalent:

1. q ∈ E (p);

2. p ^ q;

3. E (p) = E (q);

4. L(cosh−1) (p) = L(cosh−1) (q);

5. log
(

q
p

)
∈ L(cosh−1) (p) ∩ L(cosh−1) (q).

6. q
p ∈ L1+ε(p) and p

q ∈ L1+ε(q) for some ε > 0.

Because of Item 4, all Bq, q ∈ E (p), are isomorphic under the mapping
eUq

pu = u − Eq [u].

• A. Cena and G. Pistone. Exponential statistical manifold. Ann. Inst. Statist. Math., 59(1):27–56, 2007

• M. Santacroce, P. Siri, and B. Trivellato. New results on mixture and exponential models by Orlicz spaces.
Bernoulli, 22(3):1431–1447, 2016



e-charts

• For each p ∈ E , consider the chart sp : E → Bp

sp(q) = log

(
q

p

)
− Ep

[
log

(
q

p

)]
• The inverse of each chart ep is

ep = s−1
p : Sp 3 u 7→ eu−Kp(u) · p

• {sp|p ∈ P>} is an affine atlas on P> that defines the exponential
manifold.

• Each equivalent class of connected densities E is a connected
component of the exponential manifold.

• The information closure of any E (p) is P≥. The reverse information
closure of any E (p) is P>.

• D. Imparato and B. Trivellato. Geometry of extended exponential models. In Algebraic and geometric
methods in statistics, pages 307–326. Cambridge Univ. Press, 2010



Summary

p ^ q =⇒ E (p) sp // Sp

sq◦s−1
p

��

I // Bp

d(sq◦s−1
p )

��

I// L(cosh−1) (p)

E (q) sq
// Sq

I
// Bq I

// L(cosh−1) (q)

• If p ^ q, then E (p) = E (q) and L(cosh−1) (p) = L(cosh−1) (q).

• Bp =
{
u ∈ L(cosh−1) (p)

∣∣Ep [u] = 0
}

• Sp 6= Sq and sq ◦ s−1
p : Sp → Sq is affine

sq ◦ s−1
p (u) = u − Eq [u] + log

(
p

q

)
− Eq

[
log

(
p

q

)]
• The tangent application is

d(sq ◦ s−1
p )(u)[v ] = v − Eep(u) [v ] = eUep(u)

p v (does not depend on
p).



Gaussian space
• The Gaussian maximal exponential manifold is E (γ) with

γ(x) = (2π)−n/2 exp
(
−|x |2/2

)
, x ∈ Rn

• The relevant Orlicz spaces are the exponential space L(cosh−1) (γ)
and the mixture space L(cosh−1)∗ (γ).

• The mixture space L(cosh−1)∗ (γ) is separable; its dual is the
exponential space L(cosh−1) (γ).

• A positive density f ∈ P> has finite entropy if, and only if, f
belongs to the mixture space

−
∫

f (x) log f (x)γ(x) dx < +∞ ⇔ f ∈ L(cosh−1)∗ (γ) .

• L∞(γ) ↪→ L(cosh−1) (γ) ↪→ La(γ) ↪→ L(cosh−1)∗ (γ) ↪→ L1(γ), a > 1

• Restriction to the ball ΩR : L(cosh−1) (γ)→ La(ΩR), a ≥ 1, and
L(cosh−1)∗ (γ)→ L1(ΩR).

• G. Pistone. Information geometry of the Gaussian space. arXiv:1803.08135, 2018



Notable elements in L(cosh−1) (γ) and L(cosh−1)∗ (γ) I

• The exponential space L(cosh−1) (γ) contains all polynomials with
degree up to 2 and all functions which are bounded by such a
polynomial.

• The mixture space L(cosh−1)∗ (γ) contains all f : Rd → R which are
bounded by a polynomial, in particular, all polynomials.

• Poincaré inequality If u ∈ Dom (∇) in the sense of the Gaussian
space i.e., u, ∂ju ∈ L2(γ) then∫ ∣∣∣∣u(x)−

∫
u(y)γ(y) dy

∣∣∣∣2γ(x) dx ≤
∫
‖∇u(x)‖2

γ(x) dx

• f ∈ C 1
p (Rn)∥∥∥∥f − ∫ f (y)γ(y) dy

∥∥∥∥
L(cosh −1)∗ (γ)

≤ const ‖|∇f |‖L(cosh −1)∗ (γ)

In particular, if f is a density of the Gaussian space,



Notable elements in L(cosh−1) (γ) and L(cosh−1)∗ (γ) II
• f ∈ C 1

p (Rn)

‖f − 1‖L(cosh −1)∗ (γ) ≤ const ‖|∇f |‖L(cosh −1)∗ (γ)

This inequality is similar to an bound on the entropy.

• If f , g ∈ C 2
p (Rn) and |x · y | ≤ |x |1 |y |2 then

|Covγ (f , g)| ≤
∣∣∣‖∇f ‖L(cosh −1)∗ (γ)

∣∣∣
1

∣∣∣‖∇g‖(L(cosh −1)∗ (γ))∗

∣∣∣
2
.

If f is a density of the Gaussian space,

Covγ (f , g) =

∫
g(x)f (x)γ(x) dx −

∫
g(x)γ(x) dx .

• I. Nourdin and G. Peccati. Normal approximations with Malliavin calculus, volume 192 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 2012. From Stein’s method to universality

• G. Pistone. Information geometry of the Gaussian space. arXiv:1803.08135, 2018



Velocity and scores
• E (γ) = {q = u ∈ Sγ |⊂} L(cosh−1)∗ (γ)

• The inverse of the chart sγ : q 7→ u is the exponential mapping
eγ = s−1

γ : Sγ → E (γ), that is, eγ(u) = q.

• The exponential mapping eγ is defined on an open set of
L(cosh−1) (γ) and has values in L(cosh−1)∗ (γ). The chart mapping sγ
is not smooth and induces on E (γ) a special topology.

• The mapping eγ : Sγ 3 u 7→ eu−K(u)L(cosh−1)∗ (γ) is continuously
differentiable, with derivative in the direction h ∈ L(cosh−1) (γ)

dheγ(u) = eγ(u)(h − Eeγ(u) [h])

• If θ 7→ u(θ) is a smooth curve in L(cosh−1) (γ), then
θ 7→ p(θ) = eγ(u(θ)) is a smooth curve in L(cosh−1)∗ (γ) and
ṗ(θ) = p(θ)(u̇(θ)− Ep(θ) [u̇(θ)]), that is the expression of the
velocity in the statistical bundle is

Su(θ) = u̇(θ)− Ep(θ) [u̇(θ)] =
u̇(θ)

u(θ)
=

d

dθ
log p(θ) ∈ Bp(θ)

• G. Pistone. Information geometry of the Gaussian space. arXiv:1803.08135, 2018



Natural gradient

• Given a scalar field Φ: E → R the natural gradient is the section of
the statistical bundle grad Φ such that for all smooth curve
θ 7→ p(θ) = eu(θ)−K(u(θ)) it holds

d

dθ
Φ(p(θ) = 〈grad Φ(p(θ)),Sp(θ)〉p(θ)

where 〈f , g〉p = Ep [fg ], f ∈ L(cosh−1)∗ (p) and g ∈ L(cosh−1) (p).

• For example, the natural gradient of the entropy
H(p) = −

∫
p(x) log p(x)γ(x) dx is gradH(p) = − log p − H(p).

• The gradient flow of Φ is the solution of the equation
Sp(θ) = grad Φ(p(θ). For example, the gradient flow of the entropy
is

d

dθ
log p(θ) = − log p(θ) +

∫
p(x) log p(x)γ(x) dx

• S.-I. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, feb 1998



Transport plan, Wasserstein
• Consider the product Gaussian space (R2n, γ ⊗ γ) with projection X

and Y . The marginalization mapping

E (γ ⊗ γ) 3 p 7→ (X#p,Y#p) ∈ E (γ)× E (γ)

has fibers

Γ(p1, p2) = {p ∈ E (γ ⊗ γ)|X#p = p1,Y#p = p2}

which is a sub-manifolds of E (γ ⊗ γ) called transport plan.

• The 2-Wasserstein functional W (p) = Ep

[
|X − Y |2

]
has natural

gradient

gradW (p) = |X − Y |2 − Ep

[
|X − Y |2

]
• The restriction and projection of gradW on the statistical bundle of

the sub-manifold of the transport plan Γ(p1, p2) gives an equation
for the gradient flow. The value of the 2-Wasserstein functional
along the flow converges to the 2-Wasserstein distance between p1

and p2.

• L. Malago, G. Pistone, Talk at ICMS, Edinburgh 2015



Orlicz-Sobolev with Gaussian weight (GOS)
• The GOS spaces with weight M are the vector spaces

W 1,(cosh−1) (γ) =
{
f ∈ L(cosh−1) (γ)

∣∣∣∂j f ∈ L(cosh−1) (γ) , j = 1, . . . , n
}

W 1,(cosh−1)∗ (γ) =
{
f ∈ L(cosh−1)∗ (γ)

∣∣∣∂j f ∈ L(cosh−1)∗ (γ) , j = 1, . . . , n
}

where ∂j is the derivative in the sense of distributions.

• Both are Banach spaces with the norm of the graph

‖f ‖W 1,(cosh −1)(γ) = ‖f ‖L(cosh −1)(γ) +
n∑

j=1

‖∂j f ‖L(cosh −1)(γ)

‖f ‖W 1,(cosh −1)∗ (γ) = ‖f ‖L(cosh −1)(γ) +
n∑

j=1

‖∂j f ‖L(cosh −1)(γ)

• J. Musielak. Orlicz spaces and modular spaces, volume 1034 of Lecture Notes in Mathematics.
Springer-Verlag, 1983

• B. Lods and G. Pistone. Information geometry formalism for the spatially homogeneous Boltzmann
equation. Entropy, 17(6):4323–4363, 2015



Remarks
• As φ ∈ C∞0 (Rn) implies φγ ∈ C∞0 (Rn), for each

f ∈W 1,(cosh−1)∗ (γ) we have

〈∂j f , φ〉γ = 〈∂j f , φγ〉 = −〈f , γ∂jφ− Xjγφ〉 = 〈f , (Xj − ∂j)φ〉γ

• The extension of the Stein operator δj = Xj − ∂j to both
W 1,(cosh−1) (γ) and W 1,(cosh−1)∗ (γ) is of interest.

• Assume f ∈W 1,a(γ) for all a ≥ 1. Then ∂j f ∈ La(γ) and∫
|xj f (x)|aγ(x) dx ≤(∫

|xj |2aγ(x) dx

)1/2(∫
|u(x)|2aγ(x) dx

)1/2

so that δj : ∩a≥1 W
1,a(γ)→ ∩a≥1W

1,a(γ). In particular,
δj : W 1,(cosh−1) (γ)→ ∩a≥1W

1,a(γ).

• P. Malliavin. Stochastic analysis, volume 313 of Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer-Verlag, 1997



Smoothness of GOS spaces I

• Every u ∈W 1,(cosh−1) (γ) when restricted to an open ball of radius
R > 0 belongs to the Sobolev space W 1,a(ΩR) for all a ≥ 1 i.e.
uR ∈ ∩a≥1W

1,a(ΩR).

• Every f ∈W 1,(cosh−1)∗ (γ) when restricted to an open ball of radius
R > 0 belongs to the dual of the space ∩a≥1W

1,a(ΩR), in particular
to W 1,1(ΩR).

• Sobolev Each u ∈W 1,(cosh−1) (γ) is a.s. continuous and Hölder of
all orders on each ΩR .

• If u ∈W 1,(cosh−1) (γ), then u, ∂ju ∈ La(γ) for all a ≥ 1 i.e.,

e−
1

2a |X |
2

u, e−
1

2a |X |
2

∂ju ∈ La(Rn)

As

∂je
− 1

2a |X |
2

u = −1

a
xje
− 1

2a |X |
2

u + e−
1

2a |X |
2

∂ju

it follows (
e−

1
2a |X |

2

u
)
∈W 1,a(Rn) a ≥ 1



Smoothness of GOS spaces II

• Morrey Because of

W 1,(cosh−1) (γ) 3 u 7→
(
e−

1
2a |X |

2

u
)
∈W 1,a(Rn) a ≥ 1

it holds for each a > n the uniform bound

u ∈W 1,(cosh−1) (γ) ⇒

e−
1

2a |x|
2

|u(x)| ≤ C (n, a)
∥∥∥e− 1

2a |x|
2

u
∥∥∥
W 1,a(Rn)

a.s.

and the RHS is dominated by ‖u‖W 1,(cosh −1)(γ).

• The same assumption implies the global Hölder inequality

e−
1

2a |x|
2

u(x)−e− 1
2a |y |

2

u(y) ≤ C (n.a) |x − y |1−n/a
∥∥∥e 1

2a |X |
2

u
∥∥∥
La(Rn)

≤

C (n.a) |x − y |1−n/a ‖u‖W 1,(cosh −1)(γ)

• The previous inequalities are not optimal!



Smoothness of GOS spaces III
• Remark We expect the space W∞,cosh−1(γ) of functions whose

derivatives of all order belong to L(cosh−1) (γ) to have infinitely
differentiable elements. This provides an interesting class of random
variables on the Gaussian space defined only by the differentiability
and the integrability condition.

• If Φ is a diffeomorphism of Rn, then

Φ∗γ(x) = exp

(
−1

2

(∣∣Φ−1(x)
∣∣2 − |x |2)) ∣∣det

(
JΦ−1(x)

)∣∣ γ(x)

and it would be interesting to have

−1

2

(∣∣Φ−1
∣∣2 − |X |2)− log

∣∣det
(
JΦ−1

)∣∣ ∈W∞,cosh−1(γ)

in order to connect with the literature on the geometry of densities
induced by the geometry of the group of diffeomorphisms.

• R. A. Adams and J. J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics
(Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003

• H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer,
New York, 2011



Exponential family modeled on W 1,(cosh−1) (γ)
• If we restrict the exponential family E (γ) to W 1,(cosh−1) (γ),

Wγ = W 1,(cosh−1) (γ) ∩ Bγ =
{
u ∈W 1,(cosh−1) (γ)

∣∣∣Eγ [u] = 0
}

we obtain the non-parametric exponential family

E1(γ) =
{
eu−K(u) · γ

∣∣∣u ∈W 1,(cosh−1) (γ) ∩ Sγ
}

• Because of W 1,(cosh−1) (γ) ↪→ L(cosh−1) (γ) the set
W 1,(cosh−1) (γ) ∩ Sγ is open in Wγ and the cumulant functional
K : W 1,(cosh−1) (γ) ∩ Sγ → R is convex and differentiable.

• Many features of the exponential manifold carry over to this case.
In particular, we can define for each f ∈ E1(γ) the space

Wf = W 1,(cosh−1) (γ) ∩ Bγ =
{
u ∈W 1,(cosh−1) (γ)

∣∣∣Ef [u] = 0
}

to be models for the tangent spaces of E1(γ). The e-transport acts
on these spaces, eUg

f : Wf 3 u 7→ u − Eg [u] ∈Wg , so that we can
define the statistical bundle to be

S E1(γ) = {(g , v)|g ∈ E1(γ), v ∈Wf }
and take as charts the restrictions of the charts defined on S E (γ).



Calculus on W 1,(cosh−1) (γ) — I

• The exponential class, C
(cosh−1)
0 (γ), is the closure of C0 (Rn) in the

exponential space L(cosh−1) (γ). The space C∞0 (Rn) is dense in

C
(cosh−1)
0 (γ).

• Assume f ∈ L(cosh−1) (γ) and write fR(x) = f (x)(|x | > R). The
following conditions are equivalent:

1. The real function ρ 7→
∫

(cosh−1)(ρf (x))γ(x) dx is finite for
all ρ > 0;

2. f ∈ C
(cosh−1)
0 (γ);

3. limR→∞ ‖fR‖L(cosh −1)(γ) = 0.

• Translation by a vector

1. For each h ∈ Rn, the translation mapping
L(cosh−1) (γ) 3 f 7→ τhf is linear and bounded from
L(cosh−1) (γ) to itself. In particular,

‖τhf ‖L(cosh −1)(γ) ≤ 2 ‖f ‖L(cosh −1)(γ) if |h| ≤
√

log 2 .



Calculus on W 1,(cosh−1) (γ) — II
2. For all g ∈ L(cosh−1)∗ (γ) we have

〈τhf , g〉γ = 〈f , τ∗h g〉γ , τ∗h g(x) = e−h·x−
1
2 |h|

2

τ−hg(x) ,

and |h| ≤
√

log 2 implies ‖τ∗h g‖L(cosh −1)(γ))∗ ≤ 2 ‖g‖L(cosh −1)(γ))∗ .

The translation mapping h 7→ τ∗h g is continuous in
L(cosh−1)∗ (γ).

3. If f ∈ C
(cosh−1)
0 (γ) then τhf ∈ C

(cosh−1)
0 (γ), h ∈ Rn, and the

mapping Rn : h 7→ τhf is continuous in L(cosh−1) (γ).

• Continuity and directional derivative

1. For each v ∈W 1,(cosh−1) (γ), each unit vector h, and all
t ∈ R, it holds

v(x + th)− v(x) = t

∫ 1

0

∇v(x + sth) · h ds .

Moreover, |t| ≤
√

2 implies

‖v(x + th)− v(x)‖L(cosh −1)(γ) ≤ 2t ‖∇v‖L(cosh −1)(γ) ,
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especially, limt→0 ‖v(x + th)− v(x)‖L(cosh −1)(γ) = 0 uniformly
in h.

2. For each v ∈W 1,(cosh−1) (γ) the mapping h 7→ τhv is
differentiable from Rn to L∞−0(M) with gradient ∇v at h = 0.

3. For each v ∈W 1,(cosh−1) (γ) and each f ∈ L(cosh−1)∗ (γ), the
mapping h 7→ 〈τhv , f 〉γ is differentiable with derivative
〈τh∇v · h, f 〉γ .

4. If ∂jv ∈ C
(cosh−1)
0 (γ), j = 1, . . . , n, then strong differentiability

in L(cosh−1) (γ) holds.

• Calculus in C
1,(cosh−1)
0 (γ)

1. For each f ∈ C
1,(cosh−1)
0 (γ) the sequence f ∗ ωn, n ∈ N,

belongs to C∞(Rn)∩W 1,(cosh−1) (γ). Precisely, for each n and
j = 1, . . . , n, we have the equality ∂j(f ∗ ωn) = (∂j f ) ∗ ωn; the
sequences f ∗ ωn, respectively ∂j f ∗ ωn, j = 1, . . . , n, converge
to f , respectively ∂j f , j = 1, . . . , n, strongly in L(cosh−1) (γ).

2. Same statement is true if f ∈W 1,(cosh−1)∗ (γ).
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3. Let be given f ∈ C

1,(cosh−1)
0 (γ) and g ∈W 1,(cosh−1)∗ (γ).

Then fg ∈W 1,1(γ) and ∂j(fg) = ∂j fg + f ∂jg .
4. Let be given F ∈ C 1(R) with ‖F ′‖∞ <∞. For each

u ∈ C
1,(cosh−1)
0 (γ), we have F ◦ u,F ′ ◦ u ∂ju ∈ C

(cosh−1)
0 (γ)

and ∂jF ◦ u = F ′ ◦ u ∂ju, in particular F (u) ∈ C
1,(cosh−1)
0 (γ).

• Product

1. If u ∈ Sγ and f1, . . . , fm ∈ L(cosh−1) (γ), then
f1 · · · fmeu−K(u) ∈ Lα(γ) for some α > 1, hence it is in
L(cosh−1)∗ (γ).

2. If u ∈ Sγ ∩ C
1,(cosh−1)
0 (γ) and f ∈ C

1,(cosh−1)
0 (γ), then

f eu−K(u) ∈W 1,(cosh−1)∗ (γ) ∩ C (Rn) ,

and its distributional partial derivatives are (∂j f + f ∂ju)eu−K(u)
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