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Abstract
Given a Gaussian space (R", ), consider the set M of positive densities
p which are connected to the unit density by an open Hellinger arc. The
elements of M are precisely the densities of the form e~K(4) where
E,(u) =0, K(u) is a normalising constant, and u belongs to the
exponential Orlicz space with weight v. M is a manifold for an affine
atlas of charts. The Gaussian assumption provides the exponential
manifold with special features. Applications include the study of
Boltzmann equation and the study the a gradient flow to the distribution
with minimal Wasserstein distance.

Here, we discuss the manifold of smooth densities by taking as model
space for the exponential manifold the Orlicz-Sobolev space with
Gaussian weight . Statistical applications involving smooth densities
are: Hyvarinen divergence and the finite-dimensional projection of
solution of evolution equations for densities.
® G. Pistone. Nonparametric information geometry. In F. Nielsen and F. Barbaresco, editors, Geometric
science of information, volume 8085 of Lecture Notes in Comput. Sci., pages 5-36. Springer, Heidelberg,

2013. First International Conference, GSI 2013 Paris, France, August 28-30, 2013 Proceedings

® B. Lods and G. Pistone. Information geometry formalism for the spatially homogeneous Boltzmann
equation. Entropy, 17(6):4323-4363, 2015

® G. Pistone. Information geometry of the Gaussian space. arXiv:1803.08135, 2018



Example: scoring rule

On the statistical model M of positive densities on a measure space
(X, X, 1), a local scoring rule is a mapping S: M > g — S(-, q)
with values in random variables. The qualification “local” means
that the scoring rule depends on the sample point x only.

The risk under a positive density p € P is d(p, q) = E, [S(q)].
Notice that we assume that the expected value is defined for each
couple p,g M.

The scoring rule is proper is g — d(p, q) is minimized at ¢ = p only
that is, d(p, q) > d(p, p) and d(p, q) = d(p, p) implies g = p.

There is a sampling version of the objective function,
d(q) = Zszl S5(X;, Q) with (X;) IID p, and § = argmin d(q) is an
estimator of p e.g., S(x, q) = — log g(x).

The divergence associate to S is D(p, q) = d(p, q) — d(p, p) and
minimization of g — D(p, q) is equivalent to the minimization of
q — d(p, q). However, D(p, g) has no sampling version.

A. Hyvérinen. Estimation of non-normalized statistical models by score matching. J. Mach. Learn. Res.,
6:695-709, 2005

M. Parry, A. P. Dawid, and S. Lauritzen. Proper local scoring rules. Ann. Statist., 40(1):561-592, 2012



Example: Hyvarinen divergence |

e Let us assume now that the sample space is the n-dimensional real
space and each density g in M is strictly positive and such that
0jlog g = 0;q/q is square integrable for each p € M.

e The Hyvarinen divergence is
DH (pla) = 5 [ V10 p(x) ~ ¥ log q(x)[” p(x) di < ox
e By expanding the squared norm of the difference, we obtain
1 2 1 2
5 [ [Viogp(x)|”p(x) dx + 5 [ [Vlogq(x)[” p(x) dx—
/ Vlog p(x) - Vlog q(x) p(x) dx ,

where the first term does not depend on gq.



Example: Hyvarinen divergence |l

If Vlogp = Vp/p and the border terms in the integration by parts
are zero

- /Vlogp(X)Vlog q(x) p(x) dx =
- / Vp(x) - Vlog g(x) dx = / Alog q(x) p(x) dx
The Hyvarinen score is
Su(q) = Alog q(x) + % |V log q(x)* .

Minimization of the expected Hyvarinen score is the same as
minimization of the Hyvarinen divergence.

All assumptions made are satisfied if M is the multivariate Gaussian
model. This provides an example where a statistical method
requires a detailed discussion of the properties of the spatial
derivatives of the statistical model.



Example: Hyvarinen divergence I]I

e On the Gaussian space (R",7), v(x) = (2r)~"/2e=x"/2, consider
the densities of exponential form p = e~ K(t) .4 Then, at least
formally,

H(pla) = 5 [ 1V Vv e K0 (x) o

In this case, the V operator could be taken in the sense of the
analysis of the Gaussian space. But, DH (p|q) < o0?

A variation where the integrability issue does not appear consistes of
the substitution the log function with the Nigel Newton balanced
chart log(t) = [ ds/A(s), with A(t) =s/(1+s). A possible
definition in then

5 [ 171084 p(x) ~ ¥ loga q(” Alp(x)) ox

where the cancellation holds and Ao p is bounded.

® P. Malliavin. Integration and probability, volume 157 of Graduate Texts in Mathematics.
Springer-Verlag, 1995. With the collaboration of Hine Airault, Leslie Kay and Grard Letac, Edited
and translated from the French by Kay, With a foreword by Mark Pinsky

® N. J. Newton. An infinite-dimensional statistical manifold modelled on Hilbert space. J. Funct.
Anal., 263(6):1661-1681, 2012



|G is the geometry of the statistical bundle

In a typical statistical set up, we have a set of positive densities M
and a set of random variables B. We need the smoothness of a
given map M x B> (q,S) — F(q,S) € R.

A natural structure consists of endowing the model M with a
differentiable atlas of charts and take as B a set of linear fibers on
the manifold.

Let be given an atlas on M. A statistical bundle on M is
TM={(p,u)lpe M,ue B,,E,[u] =0}

Moreover, each fiber B, is to be an expression in the atlas of the
tangent space at p, T, M = B,. This last requirement is not trivial.
For example, in general L3(p) # L3(q).

P. Gibilisco and G. Pistone. Connections on non-parametric statistical manifolds by Orlicz space geometry.
IDAQP, 1(2):325-347, 1998



Orlicz model space

If #(y) = coshy — 1, the Orlicz ®-space L*®(p) is the vector space
of all random variables u such that E, [®(aU)] is finite for some
a > 0.

u € L« =1) (p) if, and only if, the moment generating function
o+ B, [e*!] is finite in around 0 that is, L(<h=1) (p) is the space

of sufficient statistics u in the exponential family § — pg o e - p.

L(«osh=1) (p) is a Banach space. The set
{u e L =) (p)|E, [(cosh —1)(u)] < 1}

is the closed unit ball.

If (cosh —1), is the convex conjugate of (cosh —1) we can define
the Orlicz space L(¢*" =1+ (p). The exponential space L(<h=1) (p)
is the dual of the mixture space L(°h=1)- (p) in the duality

(u, ) — E, [uf].



Maximal exponential family

We define B, = {u € L{«s" =1 (p)|E, [u] = 0}

For each p € P~, the moment generating functional is the positive
lower-semi-continuous convex function G,: B, 3 u+— E, [e!].

The cumulant generating functional is the non-negative
lower-semi-continuous convex function K, = log Gp.

The interior of the common proper domain
{u|Gp(u) < +00}° = {u|K,(u) < 00} is an open convex set S,
containing the open unit ball (for the norm of the Orlicz space B,).

For each p € P~, the maximal exponential family at p is

E(p) = {e”_KP(”) -p‘u € Sp} .



Portmanteau theorem

If p,g € P~ we write p — g if p and g are connected by an open
exponential arc. It is an equivalence relation.
The following statements are equivalent:

g€ &(p);

p—gq

E(p)=¢&(a)

L(cosh -1) (P) _ L(cosh -1) (CI);

5. Iog (%) c L(cosh -1) (P) N L(cosh -1) (q)

o

6. 1€ L1*¢(p) and Le L1*¢(q) for some € > 0.

Because of Item 4, all B, g € £ (p), are isomorphic under the mapping
9y = y —
Ufu=u—Eq[u].

® A. Cena and G. Pistone. Exponential statistical manifold. Ann. Inst. Statist. Math., 59(1):27-56, 2007

® M. Santacroce, P. Siri, and B. Trivellato. New results on mixture and exponential models by Orlicz spaces.
Bernoulli, 22(3):1431-1447, 2016



e-charts

For each p € £, consider the chart s,: € = B,

wae(3) % f(3)

The inverse of each chart e, is

u—Kp(

ep:sp’lepBuHe 9. p

{sp|p € P>} is an affine atlas on P that defines the exponential
manifold.

Each equivalent class of connected densities £ is a connected
component of the exponential manifold.

The information closure of any £ (p) is P>. The reverse information
closure of any £ (p) is P~.

D. Imparato and B. Trivellato. Geometry of extended exponential models. In Algebraic and geometric
methods in statistics, pages 307-326. Cambridge Univ. Press, 2010



Summary

P —q| = | £(p) —=>Sp—=B,— LD (p)

If p— g, then £ (p) = £(q) and L{os" 1) (p) = L(cosh=1) ().
e B, = {ue L& (p)[, [s] = 0}
Sp# Sqand s;0s,': Sp — Sq is affine

5305, () = u— Eq[u] + log (Z) —Eq {'Og <Zﬂ

The tangent application is
d(sq 0 s, ) (u)[v] = v —Eeu[v] = e[U}i"(”)v (does not depend on
p).



Gaussian space

The Gaussian maximal exponential manifold is £ () with

v(x) = (271')_”/2 exp (—|x|2/2) , x € R"

The relevant Orlicz spaces are the exponential space L(cosh —1) (7)

and the mixture space L(€0sh =1« (),
The mixture space L{(osh 1)« (

exponential space L(cosh —1) (

7y) is separable; its dual is the
7)-

A positive density f € P~ has finite entropy if, and only if, f
belongs to the mixture space

—/f(x) log f(x)y(x) dx < +oo <« feLloh=D(y)

Lo(y) = L () o L3(y) o LD () 5 L1 (y), a> 1

Restriction to the ball Qg: L(®" 1) (y) — [?(Qg), a > 1, and
| (cosh —1)., (’7) N Ll(QR).

G. Pistone. Information geometry of the Gaussian space. arXiv:1803.08135, 2018



Notable elements in L(€"—1) (y) and L{csh—1)- () |

e The exponential space L(¢°" =1) (+) contains all polynomials with
degree up to 2 and all functions which are bounded by such a
polynomial.

e The mixture space L(<*h =1 () contains all f: R — R which are
bounded by a polynomial, in particular, all polynomials.

e Poincaré inequality If v € Dom (V) in the sense of the Gaussian
space i.e., u,dju € L2(7y) then

/

o feCl(R"

2

u(x) — / u(y)(y) dy

2(x) dx < / IV () [24(x) dx

Hf—/f(y)v(y) dy

< const |||V F||  cosh — 1)
[ (cosh —1) (’Y) t 1 (’Y)

In particular, if f is a density of the Gaussian space,



Notable elements in L(°h=1) () and L(cosh—1)« () ||
o feC (R

If— 1||1_(cosh—1)*(,y) < const H|Vf‘||1_(cosh—1)*(—y)

This inequality is similar to an bound on the entropy.

o If f,g € C2(R") and |x - y| < |x|; |yl, then

Covs (£,8)] < |1V ll s -1 |, 178 im0 -, -

If f is a density of the Gaussian space,

Cov, (.8) = [ &0 006) dx — [ glx(x) d .

® | Nourdin and G. Peccati. Normal approximations with Malliavin calculus, volume 192 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 2012. From Stein’s method to universality

® G. Pistone. Information geometry of the Gaussian space. arXiv:1803.08135, 2018



Velocity and scores

E() ={a=ue S, |c}Ll"D(v)
The inverse of the chart s, : g — u is the exponential mapping
ey =518, = E(7), that s, e,(u) = q.

The exponential mapping e, is defined on an open set of
L(cosh=1) () and has values in L(€h =1« (v). The chart mapping s,
is not smooth and induces on &£ (y) a special topology.

The mapping e,: S, > u s et~ KW [(cosh=1)- () is continuously
differentiable, with derivative in the direction h € L(e05"=1) ()

dhey(u) = ey(u)(h = Ee () [h])

If @ — u(0) is a smooth curve in L(€"=1) () then

0 +— p(6) = e,(u(f)) is a smooth curve in L(csh =1~ () and
p(0) = p(0)(u(0) — Epoy [0(0)]), that is the expression of the
velocity in the statistical bundle is

Su(6) = 6(6) ~ By [(6)] = ) = 55108 p(6) € By

G. Pistone. Information geometry of the Gaussian space. arXiv:1803.08135, 2018



Natural gradient

Given a scalar field ®: £ — R the natural gradient is the section of
the statistical bundle grad ® such that for all smooth curve
0+ p(h) = e“O=KW®) it holds

d
9 0(p(6) — {erad S(p(6)). o(6))
where (f,g), = E,[fg], f € L(cosh=1)« (p) and g € L{osh=1) (p).

For example the natural gradient of the entropy
= — [ p(x)log p(x)v(x) dx is grad H(p) = — log p — H(p).

The gradlent flow of ® is the solution of the equation
Sp(8) = grad ®(p(#). For example, the gradient flow of the entropy
is

:g log p(¢) = — log p() + / p(x) log p(x)(x) dx

S.-I. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251-276, feb 1998



Transport plan, Wasserstein

e Consider the product Gaussian space (R?", v ® ~) with projection X
and Y. The marginalization mapping

E(v®@7) 3 p—= (Xup, Yyp) € E(7) X E(7)

has fibers

[(p1.p2) = {p € E(v @) Xgp = p1, Yy = po}
which is a sub-manifolds of £ (v ® «y) called transport plan.

e The 2-Wasserstein functional W(p) = E, {|X - Yﬂ has natural
gradient
grad W(p) = X = YI* = E, [IX = Y/?]

o The restriction and projection of grad W on the statistical bundle of
the sub-manifold of the transport plan '(p1, p2) gives an equation
for the gradient flow. The value of the 2-Wasserstein functional
along the flow converges to the 2-Wasserstein distance between p;
and p,.

® | Malago, G. Pistone, Talk at ICMS, Edinburgh 2015



Orlicz-Sobolev with Gaussian weight (GOS)

The GOS spaces with weight M are the vector spaces

Wihi(cosh=1) () — {f e Llcosh=1) (y ]a-f eLlosh=D )y =1, n}

Wl,(cosh —1). ( ) {f c L(cosh ’6 fe L(cosh 1)« (7) =

where 0; is the derivative in the sense of distributions.

Both are Banach spaces with the norm of the graph

i) = s )+ 3 105y

1l o 10 () = I o - 17)+Z||a Fll o~

j=1

J. Musielak. Orlicz spaces and modular spaces, volume 1034 of Lecture Notes in Mathematics.
Springer-Verlag, 1983

B. Lods and G. Pistone. Information geometry formalism for the spatially homogeneous Boltzmann
equation. Entropy, 17(6):4323-4363, 2015



Remarks

As ¢ € C§° (R") implies ¢y € C§° (R"), for each
f € Whlcosh=1) () we have

(Of, 0)., = (Of, ¢7) = = (£,70i¢0 — Xjv¢) = (£, (X; — 9))9),

The extension of the Stein operator J; = X; — J; to both
Wh(cosh =1) (5) and Wh(cosh =1« (~) is of interest.

Assume f € Wh?3(y) for all a > 1. Then 0;f € L?(7y) and

/ G F ()1 (x) dx <

T )1/2 ([ 100730) 0 )1/2

so that &;: Na>1 Wha(y) = Mas>1 WH3(5). In particular,

5j: WL(cosh —1) ('7) — Na>1 WLa(,y).

P. Malliavin. Stochastic analysis, volume 313 of Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer-Verlag, 1997



Smoothness of GOS spaces |

Every u € W'(csh—1) () when restricted to an open ball of radius
R > 0 belongs to the Sobolev space Wl’a(QR) foralla>1ie.
UR € Na>1 Wl’a(QR).

Every f € Wh(cosh=1)- (1) when restricted to an open ball of radius
R > 0 belongs to the dual of the space N,>1 W1?(QRg), in particular
to Wl’l(QR).

Sobolev Each u € Wh(<h=1) (~) is as. continuous and Holder of
all orders on each Q.

If ue Whicosh=1) (1), then u,dju € L3(y) for all a> 1 e,
e*é‘xlzu,e*é‘xlzaju € L*(R")

As )
_1x)? _1x)? _1xP?
e un Xy = —Zxe ul Xy 4 emu X9y
j P j

it follows o
(e—zlx‘ u) e WH(R") a>1



Smoothness of GOS spaces I

e Morrey Because of
W1 (cosh —1) IEN (effla‘xlzu> e WH(R") a>1
it holds for each a > n the uniform bound

ue WL(cosh—l) (’7) =

—%Ix? H —%Ix? ’
e 2 u(x)| < C(n,a)|le” 2™ u a.s.
u(x)| < C(n.a) i
and the RHS is dominated by ||ul| 1o —1)(-)-
e The same assumption implies the global Holder inequality
e B u()—e U uly) < C(na) =y R B NR|<
a Rn

1—n
C(n-a) [x =y~ [l ull yrn -

e The previous inequalities are not optimal!



Smoothness of GOS spaces Il
e Remark We expect the space W>:<°sh—1(~) of functions whose
derivatives of all order belong to L(<h=1) () to have infinitely
differentiable elements. This provides an interesting class of random
variables on the Gaussian space defined only by the differentiability
and the integrability condition.

e |f ® is a diffeomorphism of R”, then

1
.y(x) = exp (—2 (lo2)|* - |x|2)> |det (JO~1(x)) | 7(x)
and it would be interesting to have
—% (1072 = IXI?) — log det (J&1)| € W= (y)

in order to connect with the literature on the geometry of densities
induced by the geometry of the group of diffeomorphisms.

® R. A Adams and J. J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics
(Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003

® H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer,
New York, 2011



Exponential family modeled on W/1(cosh=1) (

e If we restrict the exponential family £ () to Wh(cosh=1) (),

W’y _ WL(cosh -1) (’)/) a B»y = {u c Wl’(COSh -1 (’}/)‘IEFy [U] = 0}

7)

we obtain the non-parametric exponential family

&1(7) = {e" K afu e wre= D ()0 s, |

e Because of Wh(cosh=1) (7)) s [(cosh=1) (1) the set
Wh(cosh=1) (v) 1 Sy is open in W, and the cumulant functional
K : Wh(cosh=1) (1) 1 Sy — R is convex and differentiable.

e Many features of the exponential manifold carry over to this case.
In particular, we can define for each € £1(7y) the space

Wy = Wl,(cosh -1) (’Y) N ny — {U c Wl,(cosh -1) ('Y)‘]Ef [U] — 0}

to be models for the tangent spaces of £1(y). The e-transport acts
on these spaces, “U%: W 5 u+— u—Eg[u] € W,, so that we can
define the statistical bundle to be

5&1(7) = {(g,v)lg € &1(v), v € Wy}
and take as charts the restrictions of the charts defined on S & (7).



Calculus on Whleosh=1) (7)) — |

e The exponential class, G{®" ™% (v), is the closure of Cy (R") in the
exponential space L(<h=1) (4). The space C5° (R") is dense in

cosh —1
G ' (7).

o Assume f € L(€©"=1) () and write fr(x) = f(x)(|x| > R). The
following conditions are equivalent:

1. The real function p — [ (cosh —1)(pf(x))y(x) dx is finite for
all p > 0;
2 fe CéCOSh -1) ("Y);
3. ||mR—>oo HfRHL(cosh—l)(,y) =0.
e Translation by a vector

1. For each h € R", the translation mapping
L(cosh=1) () 5 f s 7,f is linear and bounded from
L(cosh=1) (4) to itself. In particular,

[ 7af|

L(cosh =1) () <2 ||f||/_(cosh—1)(7) if |h| <V log?2 .



Calculus on Wh(eosh=1) (o) — |

2. For all g € L(oh =1 () we have

—h-x—}|h?

<Thfa g>—y = <f77—;:g>»ya ’T;:g(X) =¢e T,hg(X) )

and [h| < V/log2 implies ||T,fg||,_(cosh,1)(7))* < 2|8l peomn —1 () -
The translation mapping h — 7, g is continuous in
| (cosh —1).. (’7)

3. 1F F e GV (4) then 7o € C{" 7V (4), h € R", and the
mapping R": h — 7,f is continuous in L(<sh =1) ().

e Continuity and directional derivative

1. For each v € Whl(cosh—1) (), each unit vector h, and all
t € R, it holds
1
v(x + th) — v(x) = t/ Vv(x + sth) - h ds .
0

Moreover, |t| < V2 implies

[Iv(x + th) = v(X)| o 15y < 28 [V V]l ot 11



Calculus on Wh(eosh=1) (4) — ||

especially, lim¢_o [|v(x + th) — v(x)|[ j(cosn —1)() = O uniformly
in h.
2. For each v € W (cosh 1) (7)) the mapping h +— Tjv is
differentiable from R" to L>°~%(M) with gradient Vv at h = 0.
3. For each v € Wh(coh=1) (4) and each f € L(coh =1 (5), the
mapping h — (Thv, f),y is differentiable with derivative
(Tth . h, f>,y.

4. If Qjv € CéCOShfl) (7), s =1,...,n, then strong differentiability
in L(cosh=1) () holds.

e Calculus in Col"(COShfl) (7)

1. For each f € C (COSh_l)( ) the sequence f *w,, n € N,
belongs to C°°(]R") N W(cosh=1) (7)) Precisely, for each n and
Jj=1,...,n, we have the equality 9;(f * w,) = (9;f) * wn; the
sequences f * w,, respectively 0;f xw,, j = 1,...,n, converge
to f, respectively 0;f, j = 1,...,n, strongly in L(<sh=1) ().

2. Same statement is true if f € /L{cosh -1). )« (7).



Calculus on Wh{eosh=1) () — |V

3. Let be given f € C3 (" ™V (y) and g € Whieosh—1)x ().
Then fg € Wh1(v) and 0;(fg) = 0,fg + fO;g.

4. Let be given F € CY(R) with ||F’||_, < oco. For each
ue C&’(COSh - (7). we have Fou, F'ou Qju € CéCOSh - ()
and OjF o u= F’ o u dju, in particular F(u) € Co'®" Y (4).

e Product

1. IfueS, and fi,...,fp, € LN =1 (4), then
fi - et KW € [%(y) for some o > 1, hence it is in
L(cosh—l)* (,.y)

2 fue 8, NGV (y)and f e ¢V (4), then

feu—K(u) c Wl,(cosh —1). ('7) N C(Rn) ’

and its distributional partial derivatives are (9;f + f0;u)ev~K(¥)

® M. R. Grasselli. Dual connections in nonparametric classical information geometry. Ann. Inst. Statist.
Math., 62(5):873-896, 2010

® B. Lods and G. Pistone. Information geometry formalism for the spatially homogeneous Boltzmann
equation. Entropy, 17(6):4323-4363, 2015

® G. Pistone. Information geometry of the Gaussian space. arXiv:1803.08135, 2018



