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Abstract. Non-parametric Information Geometry according to a series of papers starting with [16]

consists of a manifold on the set of positive densities of a measure space. The manifold is modeled on

the Banach space of exponentially integrable random variables. In a more recent presentation [14] the
relevant structure is described a Banach bundle of couples (p, u) where p is a positive density and u is

a random variable such that Ep(u) = 0. Each connected component of the base manifold, consisting of
densities which are connected by an open exponential family, is fully described in [17]. Other methods for

dealing with the infinite-dimensional geometry of probabilities are available, in particular [3]. The main

limitation of this approach is the inability to deal with properties of the statistical models depending on
the structure of the sample space where the densities are defines e.g., the smoothness. In the framework

of Gaussian spaces [6] it is actually possible to study such properties while retaining the same bundle

structure. Preliminary results have been published in [7, 15] and further research is in progress. An
example of application is the study of Hyvärinen divergence [6].
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1. Gradient of a density

We read from [6, 13]. Given a statistical modelM of positive densities on a measure space (X,X , µ),
a local scoring rule is a mapping S : M with values in random variables x 7→ S(x, q). The “local”
means that the scoring rule depends on the sample point x only. The risk under a positive density
p ∈ P is d(p, q) = Ep(S(q)). We assume that the expected value is defined for each couple p, q M.
The scoring rule is proper is q 7→ d(p, q) is minimized at q = p only that is, d(p, q) ≥ d(p, p) and
d(p, q) = d(p, p) implies q = p. Notice that there is a sampling version of the objective function namely,

d̂(q) =
∑N
j=1 S(Xj , Q) with (Xj) IID p and q̂ = argmin d̂(q) is an estimator of p. The divergence associate

to S is D(p, q) = d(p, p) − d(p, q) and minimization of q 7→ D(p, q) is equivalent to the minimization of
d(p, q). However, D(p, q) has no sampling version.

1.1. Example: log-score. Take S(x, q) = − log q(x). As − log q ≥ 1 − q, the expectation Ep(− log q)
is well defined, possibly +∞, if

∫
q(x)p(x) µ(dx) < +∞ for all p, q ∈M. We have

d(p, q) = −
∫
p(x) log q(x) µ(dx) =

∫
p(x)

q(x)
log

p(x)

q(x)
q(x) µ(dx)−

∫
p(x) log p(x) µ(dx) ≥∫ (

1− p(x)

q(x)

)
q(x) µ(dx) + d(p, p) = d(p, p) .
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The divergence can be translated to the minimum value to get a non-negative divergence,

d(p, q)− d(p, p) =

∫
p(x) log

p(x)

q(x)
µ(dx) =

∫
p(x)

q(x)
log

p(x)

q(x)
q(x) µ(dx) = DKL(p‖q) ,

the Kullback-Leibler divergence. The KL-divergence is always well defined and faithful because, if we
write f(t) = t log t, then f is strictly convex and bounded below, so

DKL(p, q) =

∫
f

(
p(x)

q(x)

)
q(x) µ(dx) ≥ f

(∫
p(x)

q(x)
q(x) µ(dx)

)
= f(1) = 0 .

Notice that the application of the LLN in the sample case requires a further assumption i.e., log q
must be p-integrable for all p, q ∈M.

1.2. Hyvärinen divergence. Here we use unpublished notes by M.P. Rogantin (2018). Let us assume
now that the sample space is the n-dimensional real space and each density q in M is strictly positive
and such that ∂j log q = ∂jq/q is square integrable for each p ∈M. The Hyvärinen divergence is

DH(p, q) =
1

2

∫
|∇ log p(x)−∇ log q(x)|2 p(x) dx .

By expanding the squared norm of the difference, we obtain

DH(p, q) =
1

2

∫
|∇ log p(x)|2 p(x) dx+

1

2

∫
|∇ log q(x)|2 p(x) dx−

∫
∇ log p(x) · ∇ log q(x) p(x) dx .

The first term does not depend on q. Integration by parts in the last term gives

−
∫
∇ log p(x) · ∇ log q(x) p(x) dx = −

∫
∇p(x) · ∇ log q(x) dx =

∫
∆ log q(x) p(x) dx ,

if the second derivatives exist and the border terms vanish. In such a case, we define the Hyvärinen score
to be

SH(q) = ∆ log q(x) +
1

2
|∇ log q(x)|2 .

Minimization of the expected Hyvärinen score is the same as minimization of the Hyvärinen divergence.
All assumptions are satisfied if M is the multivariate Gaussian model. This provides us with an

example where a statistical problem requires a ditailed discussin of the properties of the spatial deriva-
tives. This methodology was originally motivated by the need of a divergence that does not require the
computation of the normalizing constant. That is, if p(x) = f(x)/Z, then log p(x) = log f(x)− logZ and
∇ log p(x) = ∇ log f(x).

Variations on the theme are possible. On the Gaussian space (Rn, γ), γ(x) = (2π)−n/2e−|x|
2/2, we

can define

DGH(p, q) =
1

2

∫
|∇ log p(x)−∇ log q(x)|2 p(x)γ(x) dx .

In this case, the derivation operator is defined in the sense of the analysis of the Gaussian space, see the
next section.

Another option is to substitute the log function with the Nigel Newton deformed logarithm logA(t) =∫
ds/A(s), A(t) = s/(1 + s). See the references to this formalism in [10]. A possible definition in this

case is

DAH(p,q) =
1

2

∫
|∇ logA p(x)−∇ logA q(x)|2A(p(x)) dx .

2. Gaussian space and derivation

Let us first review a few facts about the Gaussian space as it is defined in P. Malliavin textbook
[8, Ch. V]. We restrict ourselves to the finite-dimensional sample space. References for the infinite-
dimensional case are P. Malliavin monograph [9] and I. Nourdin and G. Peccati monograph [12].

We denote by τh the translation operator τhu(x) = u(x− h).

Proposition 1 (Translation). If u ∈ L2(γ) then τhu ∈ L1(γ) and the mapping u 7→ τhu is continuous.
2



Proof. We have

‖u‖L1(γ) =

∫
|u(x− h)|γ(x) dx =∫

|u(y)| γ(y + h) dy =

∫
|u(y)| γ(x+ h)γ−1(y)γ(y) dy ≤(∫
γ2(y + h)γ−1(y) dy

)1/2

‖u‖L2(γ) = e|h|
2

‖u‖L2(γ) ,

where the last equality follows from the computation

γ2(y + h)γ−1(y) = (2π)n/2e
1
2 |y|

2−|y+h|2 = (2π)n/2e|h|
2

e−
1
2 |y−2h|

2

.

�

Compare with the case of Lebesgue spaces where the translation is an isometry from each space into
itself.

2.1. The space D. If f : Rn → R is differentiable define δjf(x) = xjf(x)− ∂
∂xj

f(x) and δα =
∏n
j=1 δ

αj

j ,

α ∈ A = Zn≥, and the Hermite polynomials are defined by Hα(x) = δα1. It is an orthogonal total system

in L2(γ) = L2(Rn,B, γ) with ‖Hα‖2γ =
∫
Hα(x)2γ(x) dx = α! .

Each u ∈ L2(γ) has the Fourier expansion

u =
∑
α∈A

cα(u)
1

α!
Hα , cα(u) = 〈u,Hα〉γ =

∫
u(x)Hα(x)γ(x) dx ,

with ‖u‖2γ =
∑
α∈A c

2
α

1

α!
. Let π be the finite measure on A defined by π(α) = 1/α!. The mapping u↔ c·

is an isometry between L2(γ) and L2(π). In [9] the space (A, π) is called the numerical model of the
Gaussian space.

As ∂jHα = αjHα−ej if αj ≥ 1, zero otherwise, and δjHα = Hα+ej , we can define the operators on

L2(γ)

∂j

(∑
α∈A

cα
1

α!
Hα

)
=
∑
α∈A

cα+ej
1

α!
Hα ,

δj

(∑
α∈A

cα
1

α!
Hα

)
=

∑
α∈A : αj≥1

αjcα−ej
1

α!
Hα ,

δj∂j

(∑
α∈A

cα
1

α!
Hα

)
=
∑
α∈A

αjcα
1

α!
Hα ,

whose domains are, respectively,

Dom (∂j) =

{∑
α∈A

c2α+ej
α!

<∞

}
,

Dom (δj) =

∑
α,6=0

α2
jc

2
α−ej
α!

<∞

 ,

Dom (δj∂j) =

{∑
α∈A

α2
jc

2
α

α!
<∞

}
.

Proposition 2. The operators ∂j, δj, δj∂j are closed.

Proposition 3. If u ∈ Dom (∂j) and v ∈ Dom (δj). then 〈∂ju, v〉γ = 〈u, δjv〉γ .

In particular, if u ∈ Dom (∂j) and φ ∈ C∞0 (Rn) (compact support) then φ, δjφ ∈ L2(γ) and φ ∈
Dom (δj) so that 〈∂ju, φ〉γ = 〈u, δjφ〉γ .

Under the same assumptions, let us consider the ordinary integral and the distributional definition
of partial derivative. The space of infinitely differentiable functions with compact support is denoted
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C∞0 (Rn). Notice that, if B is a ball, the restriction to B is continuous mapping from L2(γ) into L2(B).∫
∂ju(x)φ(x) dx =

∑
α∈A

cα+ej
1

α!

∫
Hα(x)φ(x) dx =

∑
α∈A

cα+ej
1

(α+ ej)!

∫
∂jHα+ej (x)φ(x) dx = −

∫
u(x)∂jφ(x) dx ,

so the operator ∂j coincides with the derivative in the sense of distributions. The following proposition
is a converse statement.

Proposition 4. If u ∈ L2(γ) and u′ is the j-partial derivative in the sense of distributions,∫
u′(x)φ(x) dx = −

∫
u(x)∂jφ(x) dx , φ ∈ C∞0 (Rn) ,

and u′ ∈ L2(γ), then u ∈ Dom (∂j) and ∂j = u′.

If u ∈ Dom (∂j) for all j, the gradient operator ∇ is defined as the vector field whose components are
the ∂ju(x). Its domain is the intersection of the domains Dom (∇) = ∩nj=1 Dom (∂j).

Proposition 5 (Poincaré inequality). If u ∈ Dom (∇) then∫ ∣∣∣∣u(x)−
∫
u(y)γ(y) dy

∣∣∣∣2γ(x) dx ≤
∫
‖∇u(x)‖2γ(x) dx .

Proof. The following proof is given in the numerical model. Other proof are given in the quoted literature.
We have ∂ju =

∑
α cα+ej

1
α!Hα for each j, hence

‖∂ju‖2γ =
∑
α

c2α+ej
α!

=
∑
α

(αj + 1)
c2α+ej

(α+ ej)!
=
∑
αj≥1

αj
c2α
α!
≥
∑
αj≥1

c2α
α!

.

It follows

‖∇u‖2γ =

n∑
j=1

‖∂ju‖2γ =

n∑
j=1

∑
αj≥1

c2α
α!
≥
∑
α 6=0

c2α
α!

.

As c0 =
∫
u(x)γ(x) dx , we have proved the Poincaré inequality, �

Proposition 6 (Gauss-Taylor expansion). If f ∈ C∞(Rn) and ∂αf ∈ L2(γ) for all α ∈ A, then

f =
∑
α

〈f,Hα〉γ
1

α!
Hα =

∑
α∈A

(∫
∂αf(x)γ(x) dx

)
1

α!
Hα

and

‖f‖2γ =
∑
α∈A

(∫
∂αf(x)γ(x) dx

)2
1

α!
.

Definition 7 (The space D). We denote by D the domain of ∇ endowed with the Hilbert norm

‖u‖2D = ‖u‖2γ +

2∑
j=1

‖∂ju‖2γ .

Proposition 8. If u ∈ Dom (∇) and h ∈ Rn, then h 7→ τhu is differentiable as a mapping in L1(γ) with
derivative ∇u · h ∈ L2(γ).

3. Maximal exponential model on the Gaussian space

Here we read from [8, Ch. V], [14], [17].
If γ is the standard n-dimensional Gaussian density, consider a 1-dimensional Gibbs model t 7→

etv/Z(t) · γ, with t ∈ I, I open and 0 ∈ I. The partition function Z(t) =
∫

etv(x) γ(x) dx < +∞, the
“energy”random variable v is subject to a restrictive condition.

More generally, given any positive density p ∈ P≥ of the n-dimensional real space endowed with the
standard Gaussian, the class of possible “energy” random variables is

L(cosh−1) (p) =
{
v ∈ L0(p)

∣∣Ep [cosh(αv)] < +∞ for some α > 0
}
.
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It is the Orlicz space we call exponential space [11]. The closed unit ball is{
v ∈ L(cosh−1) (p)

∣∣∣Eγ [ev] ≤ 1
}
.

It is easy to check that

L∞(p) ⊂ L(cosh−1) (p) ⊂ L∞−0 = ∩α≥1Lα(p)

with continuous injections. We define Bp =
{
v ∈ L(cosh−1) (p)

∣∣Ep [v] = 0
}

. The linear bundle

{(p, v)|p ∈ P≥, v ∈ Bp}

is the natural non-parametric set-up for Information geometry in the sense of [1, 2, 16].
The function

Kp : Bp 3 u 7→ logEp [eu] ∈ [0,+∞]

is convex and lower semi-continuous. The proper domain Dom (Kp) is a convex set and the interior of
the proper domain Sp is an open convex set containing the open unit ball of Bp. For each u ∈ Sp we
define the density

ep(u) = eu−Kp(u) · p ∈ P≥ .

The set of all such densities in the maximal exponential model at p, E (p). If q = ep(u), then u = sp(q) =

log q
p −Ep

[
log q

p

]
. That is, ep : Sp → E (p) with inverse sp : E (p)→ Sp. We define the binary relation ^

on P≥ by saying that p ^ q if p and q are connected by an open exponential arc. It is an equivalence
relation [5].

The global structure as p varies is clarified by the following “Portmanteau theorem,” cf. [17, Th. 4.7].
The following propositions are equivalent:

(1) q ∈ E (p);
(2) p ^ q;
(3) E (p) = E (q);
(4) L(cosh−1) (p) = L(cosh−1) (q);
(5) log q

p ∈ L
(cosh−1) (p) and log q

p ∈ L
(cosh−1) (q);

(6) q
p ∈ L

α(p) and p
q ∈ L

α(q) for some α > 1.

As a consequence, given a ^-class of densities E , the atlas of charts

sp(q) = log
q

p
− Ep

[
log

q

p

]
∈ L(cosh−1) (p) , q ∈ E ,

p ∈ E , defines the exponential affine manifold and the statistical bundle

SE = {(p, u)|p ∈ E , u ∈ Bp}

is the expression of the tangent bundle in the atlas [14].
In the rest of the talk we focus on the Gaussian case that is E = E (1).
Let (cosh−1)∗ the convex conjugate of (cosh−1),

(cosh− 1)∗(y) = sup
x

(xy − (cosh−1)(x)) .

This convex function defines the Orlicz space L(cosh−1)∗ (p) whose dual is L(cosh−1) (p) in the bilinear
form

L(cosh−1) (p)× L(cosh−1)∗ (p) 3 (u, f) 7→
∫
u(x)f(x)γ(x) dx .

We have, for each p ∈ E and a > 1, that

L∞(p) ⊂ L(cosh−1) (p) ⊂ La(p) ⊂ L(cosh−1)∗ (p) ⊂ L1(p) .

with continuous injections.

Remark 1. The Gaussian version of the Hyvärinen divergence can be discussed with the assumption
log p ∈ D to get similar expression for the Hyvärinen score with some partial derivatives replaced by the
operator δ. However, extra assumptions are still necessary to ensure finite values on the integrals and
smoothness of the relevant quantities.
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4. Maximal exponential model modeled on Orlicz-Sobolev spaces with Gaussian weight

It is clear from the preceding discussion that we need to introduce a class of random variables that
ensures both the existence of the exponential manifold and the existence of derivatives. This is accom-
plished by the following definitions taken from [15].

Definition 9. The exponential and the mixture Orlicz-Sobolev-Gauss (OSG) spaces are, respectively,

W 1,(cosh−1) (M) =
{
f ∈ L(cosh−1) (M)

∣∣∣∂jf ∈ L(cosh−1) (M)
}
,(1)

W 1,(cosh−1)∗ (M) =
{
f ∈ L(cosh−1)∗ (M)

∣∣∣∂jf ∈ L(cosh−1)∗ (M)
}
,(2)

where ∂j , j = 1, . . . , n, is the partial derivative in the sense of distributions.

As φ ∈ C∞0 (Rn) implies φM ∈ C∞0 (Rn), for each f ∈ W 1,(cosh−1)∗ (M) we have, in the sense of
distributions, that

〈∂jf, φ〉M = 〈∂jf, φM〉 = −〈f, ∂j(φM)〉 = 〈f,M(Xj − ∂j)φ〉 = 〈f, δjφ〉M ,

with δjφ = (Xj − ∂j)φ. The Stein operator δi acts on C∞0 (Rn).
The meaning of both operators ∂j and δj = (Xj − ∂j) when acting on square-integrable random

variables of the Gaussian space is well known, but here we are interested in the action on OSG-spaces. Let
us denote by C∞p (Rn) the space of infinitely differentiable functions with polynomial growth. Polynomial

growth implies the existence of all M -moments of all derivatives, hence C∞p (Rn) ⊂ W 1,(cosh−1)∗ (M).
If f ∈ C∞p (Rn), then the distributional derivative and the ordinary derivative are equal and moreover
δjf ∈ C∞p (Rn). For each φ ∈ C∞0 (Rn) we have 〈φ, δjf〉M = 〈∂jφ, f〉M .

The OSG spaces W 1
cosh−1(M) and W 1

(cosh−1)∗(M) are both Banach spaces. In fact, both the product

functions (u, x) 7→ (cosh−1)(u)M(x) and (u, x) 7→ (cosh−1)∗(u)M(x) are φ-functions according the
Musielak’s definition. The norm on the OSG-spaces are the graph norms,

(3) ‖f‖W 1
(cosh−1)

(M) = ‖f‖L(cosh−1)(M) +

n∑
j=1

‖∂jf‖L(cosh−1)(M)

and

(4) ‖f‖W 1
(cosh−1)∗

(M) = ‖f‖L(cosh−1)(M) +

n∑
j=1

‖∂jf‖L(cosh−1)(M) .

We review some relations between OSG-spaces and ordinary Sobolev spaces. For all R > 0

(2π)−
n
2 ≥M(x) ≥M(x)(|x| < R) ≥ (2π)−

n
2 e−

R2

2 (|x| < R), x ∈ Rn.

Proposition 10. Let R > 0 and let ΩR denote the open sphere of radius R.

(1) We have the continuous mappings

W 1,(cosh−1) (Rn) ⊂W 1,(cosh−1) (M)→W 1,p(ΩR), p ≥ 1.

(2) We have the continuous mappings

W 1,p(Rn) ⊂W 1,(cosh−1)∗ (Rn) ⊂W 1,(cosh−1)∗ (M)→W 1,1(ΩR), p > 1.

(3) Each u ∈ W 1,(cosh−1) (M) is a.s. Hölder of all orders on each ΩR and hence a.s. continuous.
The restriction W 1,(cosh−1) (M)→ C(ΩR) is compact.

Proof of Item 3. See [4]. �

4.1. Hyvärinen divergence in the Gaussian space. The Hyvärinen divergence between q and p in
E is

DH(p, q) =
1

2

∫
|∇ log q(x)−∇ log p(x)|2 p(x)γ(x) dx .

As log q = v − K1(v) and log p = u − K1(v) we assume u, v ∈ B1 to be differentiable in the sense of
distributions with derivatives in L(cosh−1) (1). It follows that the expression of the GH-divergence in the
chart at 1 is

DH(u, v) =
1

2

∫
|∇v −∇u|2 eu(x)−K1(u)γ(x) dx .
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We proceed as in Hyvärinen computation by parts. First, decompose the squred norm of the difference
to get

DH(u, v) =
1

2

∫
|∇v(x)|2 eu(x)−K1(u)γ(x) dx −

∫
∇v(x) · ∇u(x)eu(x)−K1(u)γ(x) dx +

1

2

∫
|∇u(x)|2 eu(x)−K1(u)γ(x) dx .

The last term does not depend on v. If we write ∇uey−K1(u) = ∇eu−K1(u) and assume the equality
∂∗j = δj is correct, the middle term is

−
∫
∇v(x) · ∇u(x)eu(x)−K1(u)γ(x) dx = −

∫
∇v(x) · ∇eu(x)−K1(u)γ(x) dx =

−
∫
δ · ∇v(x)eu(x)−K1(u)γ(x) dx = −Ep [δ∇v] ,

where

δ · ∇v(x) =

n∑
j=1

δj∂jv(x) = −x · ∇v(x)−∆v(x) .

The formal derivative of v 7→ J(v) = Ep
[
1
2 |∇v|

2 − δ · ∇v
]

in the direction h is

dhJ(v) = Ep [∇h · ∇v − δ · ∇h] .
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