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My four parts

1. Amari’s Information Geometry when the state
space is not finite and the model is not
parametric

2. An example: computing the Wasserstein’s
distance

3. Gauss-Orlicz-Sobolev model spaces

4. Second order geometry

Cette conversation est dédiée à Michel Metivier,
mon maitre à Rennes (1973-75)



Part I
Amari’s Information Geometry when
the state space is not finite and the
model in not parametric



In IG the velocity is the score

• θ 7→ pθ is a curve

• The score θ 7→ d
dθ log pθ is an estimating function because

Eθ
[

d
dθ log pθ

]
= 0

• Fisher-Rao computation:

d

dθ
Eθ [U] =

∫
U(x)

d

dθ
p(x ; θ) µ(dx) p(x ; θ) > 0

=

∫
U(x)

d

dθ
log p(x ; θ) p(x ; θ) µ(dx) =

=

〈
U − Eθ [U] ,

d

dθ
log pθ

〉
θ

• U − Eθ [U] is the statistical gradient of θ 7→ Eθ [U].

• Cf recent work by Ay, Jost, Lê, Schwachhöfer on measure models



IG is the geometry of the statistical bundle

• P is a set of probabilities on a given sample space (Ω,F)

• For each p ∈ P, Bp ↪→ L1
0(p)

• A statistical bundle is

TP = {(p,U)|p ∈ P,U ∈ Bp}

• We expect the fibers Bp to be isomorphic and express a tangent
space at p ∈ P

• A chart at p σp : (q,V ) 7→ (sp(q), ṡp(V )) ∈ Bp × Bp

• S.-i. Amari and M. Kumon. Estimation in the presence of infinitely many nuisance parameters—geometry
of estimating functions.

Ann. Statist., 16(3):1044–1068, 1988

• P. Gibilisco and G. Pistone. Connections on non-parametric statistical manifolds by Orlicz space geometry.

IDAQP, 1(2):325–347, 1998

• Cf Otto, cf Lê



Fibers: Bp = L(cosh−1) (p)

• The exponential space L(cosh−1) (p) and the mixture space
L(cosh−1)∗ (p) are the Orlicz spaces respectively defined by the
conjugate Young functions

(cosh−1)(x) = cosh x − 1

• with
xy 6 (cosh−1)(x) + (cosh−1)∗(y)

• The closed unit balls of the exponential and mixture space are,
respectively,{

f
∣∣∣‖f ‖L(cosh−1)(p) 6 1

}
=

{
f

∣∣∣∣∫ (cosh−1)(f (x)) p(x)dx 6 1

}
{
g
∣∣∣‖6‖L(cosh−1)∗ (p) 1

}
=

{
g

∣∣∣∣∫ (cosh−1)∗(g(x)) p(x)dx 6 1

}
.

• Bp =
{
U ∈ L(cosh−1) (p)

∣∣Ep [U] = 0
}

is the dual of
∗Bp =

{
V ∈ L(cosh−1)∗ (p)

∣∣Ep [V ] = 0
}



Bp is the space of scores
Bp is exactly the space of scores of Gibbs model through p

Theorem

1. U ∈ Bp iff Ep [U] = 0 and Ep [(cosh−1)(ρU)] <∞ for some ρ > 0

2. U ∈ Bp iff Ep [U] = 0 and the moment generating function
α 7→ Ep

[
eθU
]

is finite in a neighbourhood of 0

3. The Gibbs model θ 7→ eθU

Ep [eθU ]
is defined in a neighborhood of 0 and

d
dθEp

[
eθU
]∣∣
θ=0

= 0.

4. The score of the Gibbs model at 0 is d
dθ log pθ

∣∣
θ=0

= U

This set-up applies to the set P> of strictly positive densities.

• G. Pistone and C. Sempi. An infinite-dimensional geometric structure on the space of all the probability
measures equivalent to a given one.

Ann. Statist., 23(5):1543–1561, October 1995



Isomorphism of the L(cosh−1) (p) spaces

Theorem
L(cosh−1) (p) = L(cosh−1) (q) as Banach spaces if θ 7→

∫
p1−θqθ dµ is

finite on an open neighbourhood I of [0, 1], i.e. It is an equivalence
relation p ^ q and we denote by E (p) the class containing p.

Proof.
Assume U ∈ L(cosh−1) (p) and consider the restrictions to the axes of the
convex function

(s, θ) 7→
∫

esUp1−θqθ dµ =

∫
exp

(
sU + θ log

q

p

)
p dµ

• G. Pistone and C. Sempi. An infinite-dimensional geometric structure on the space of all the probability
measures equivalent to a given one.

Ann. Statist., 23(5):1543–1561, October 1995

• A. Cena. Geometric structures on the non-parametric statistical manifold.

PhD thesis, Dottorato in Matematica, Università di Milano, 2002



Portmanteau theorem

Theorem
The following statements are equivalent for p, q ∈ P>:

• q ∈ E (p);

• p ^ q;

• E (p) = E (q);

• L(cosh−1) (p) = L(cosh−1) (q);

• log
(

q
p

)
∈ Lcosh−1(p) ∩ Lcosh−1(q).

• q
p ∈ L1+ε(p) and p

q ∈ L1+ε(q) for some ε > 0.

• A. Cena and G. Pistone. Exponential statistical manifold.

Ann. Inst. Statist. Math., 59(1):27–56, 2007

• M. Santacroce, P. Siri, and B. Trivellato. New results on mixture and exponential models by Orlicz spaces.

Bernoulli, 22(3):1431–1447, 2016



Maximal exponential family

• For each p ∈ P>, the moment generating functional is the positive
lower-semi-continuous convex function Gp : Bp 3 U 7→ Ep

[
eU
]

and

• the cumulant generating functional is the non-negative lower
semicontinuous convex function Kp = logGp.

• The interior of the proper domain

Sp =
{
U ∈ L(cosh−1) (p)

∣∣∣Gp(U) < +∞
}◦

is an open convex set containing the open unit ball of L(cosh−1) (p).

• For each p ∈ P>, the maximal exponential family at p is

E (p) =
{
eu−Kp(u) · p

∣∣∣u ∈ Sp} .
From now on the maximal exponential family of interest is the family of
the Maxwell density on Rn, E (M)



e-chart at p ∈ E (M)
• For each p ∈ E (M) we define a chart sp : E (M)→ Sp ⊂ Bp.

• The chart is defined by

sp(q) 7→ log

(
q

p

)
+ D(p‖q) = log

(
q

p

)
− Ep

[
log

(
q

p

)]
• The inverse of the chart e−1

p = sp : Sp → E (M) is

ep(U) = exp (U − Kp(U)) · p

• {sp|p ∈ E (M)} is an affine atlas on E (M) that defines the
exponential manifold

• The information closure of any E (M) is P>. The reverse
information closure of any E (M) is P>.

• I. Csiszár and F. Matúš. Information projections revisited.

IEEE Trans. Inform. Theory, 49(6):1474–1490, 2003

• D. Imparato and B. Trivellato. Geometry of extended exponential models.

In Algebraic and geometric methods in statistics, pages 307–326. Cambridge Univ. Press, Cambridge, 2010



e-chart at (p,U) ∈ TE (M)
• A curve t 7→ p(t), p(0) = p in the exponential manifold E (M) is

expressed in the chart sp as p(t) = eU(t)−Kp(U(t)) · p.

• The expression of the velocity at t = 0 is U̇(0) = d
dt log p(t)

∣∣
t=0

• It follows that the exponential bundle

TE (M) = {(p,U)|p ∈ E (M) ,U ∈ Bp}

is the expression of the tangent bundle of the exponential manifold

• The transition map sp2 ◦ ep1 : Sp1 → Sp2 is affine with derivative
eUp2

p1
: Bp1 → Bp2 given by eUp2

p1
U = U − Ep2 [U]

• We define an atlas of charts on TE (M) by

σp(q,V ) =
(
sp(q), eUp

qV
)

• G. Pistone. Nonparametric information geometry.

In F. Nielsen and F. Barbaresco, editors, Geometric science of information, volume 8085 of Lecture Notes
in Comput. Sci., pages 5–36. Springer, Heidelberg, 2013.

First International Conference, GSI 2013 Paris, France, August 28-30, 2013 Proceedings



Cumulant functional

• The r-divergence q 7→ D (p ‖q) is represented in the chart centered
at p by D (p ‖ep(U)) = Kp(U) = logEp

[
eU
]
.

• Kp : Bp → R> ∪ {+∞} is convex and its proper domain contains
the open unit ball of Bp. It is infinitely Gâteaux-differentiable on the
interior Sp of its proper domain and analytic on the unit ball of Bp.

• For all V ,V1,V2,V3 ∈ Bp the first derivatives are:

dKp(U)[V ] = Eq [V ]

d2 Kp(U)[V1,V2] = Covq (V1,V2)

d3 Kp(U)[V1,V2,V3] = Covq(V1,V2,V3)

• G. Pistone and M. Rogantin. The exponential statistical manifold: mean parameters, orthogonality and
space transformations.

Bernoulli, 5(4):721–760, August 1999

• A. Cena and G. Pistone. Exponential statistical manifold.

Ann. Inst. Statist. Math., 59(1):27–56, 2007



Pre-dual statistical bundle

• Recall L(cosh−1)∗ (M) is the pre-dual of L(cosh−1) (M)

• Define the pre-dual statistical bundle with fibers
∗Bp =

{
V ∈ L(cosh−1)∗ (M)

∣∣Ep [V ] = 0
}

.

• Compute the adjoint of the transport eUq
p. For U ∈ Bp and

V ∈ ∗Bq,〈
eUq

pU,V
〉
q

= 〈U − Eq [U] ,V 〉q = Eq [UV ]

= Ep

[
q

p
UV

]
=

〈
U,

q

p
V

〉
p

=
〈
U,mUp

qV
〉
p

• Define the charts on ∗TE (M) by

σ∗p(q,W ) =
(
sp(q),mUp

qW
)



Statistical gradient
• The score of the curve t 7→ p(t) is a curve in the statistical bundle

t 7→ (p(t),Dp(t)) ∈ TE (M) such that for all X ∈ L(cosh−1)∗ (M) it
holds

d

dt
Ep(t) [X ] =

〈
X − Ep(t) [X ] ,Dp(t)

〉
p(t)

• Dp(t) is the expression in the exponential atlas of the velocity

Dp(t) =
ṗ(t)

p(t)
=

d

dt
log p(t)

• The statistical gradient of F : E (M)→ R is a section of the
pre-dual statistical bundle ∗TE (M), p 7→ (p, gradF (p)) ∈ ∗TE (p)
such that for each regular curve

d

dt
F (p(t)) = 〈gradF (p(t)),Dp(t)〉p(t)

• L. Malagò, M. Matteucci, and G. Pistone. Towards the geometry of estimation of distribution algorithms
based on the exponential family.

In Proceedings of the 11th workshop on Foundations of genetic algorithms, FOGA ’11, pages 230–242,
New York, NY, USA, 2011. ACM

• G. Pistone. Examples of the application of nonparametric information geometry to statistical physics.

Entropy, 15(10):4042–4065, 2013



Part II
An example: computing the
Wasserstein distance

• This is an example of the use of the formalism. There is considerable literature, e.g. F. Otto

• Unpublished talk at the workshop Computational information geometry for image and signal processing Sep
21st25th, 2015 at ICMS, Edinburgh. Finite state space.

• Unpublished work in progress with Luigi Malagò.



Transport plan
(R2n,M2n) = (Rn,Mn)⊗ (Rn,Mn) with projection X and Y

• The marginalization mapping

E (M2n) 3 γ 7→ (γ1, γ2) ∈ E (Mn)× E (M)n

has fibers

Γ(µ1, µ2) = {γ ∈ E (M2n)|X#γ = µ1,Y#γ = µ2}

which are convex subsets

• If t 7→ γ(t) ∈ Γ(µ1, µ2), then

0 =
d

dt
Eγ(t) [f ◦ X ] = 〈f ◦ X − Eµ1 [f ] ,Dγ(t)〉γ(t) =〈

f ◦ X − Eµ1 [f ] ,Eγ(t) (Dγ(t)|X )
〉
γ(t)

•

Eγ(t) (Dγ(t)|X ) = 0, Eγ(t) (Dγ(t)|Y ) = 0, Dγ(t) ∈ Bγ(t)



Splitting of TΓ(µ1, µ2)

• Consider subspaces of the ANOVA

Bγ,1 = {f ◦ X |f ∈ Bγ1} ,

Bγ,2 = {f ◦ Y |f ∈ Bγ2} ,
∗Bγ,12 = (Bγ,0 + Bγ,1 + Bγ,2)⊥

• For U ∈ Bγ , let U = U1 + U2 + U12 be a splitting. Then

Eγ (U − (U1 + U2)|X ) = 0

Eγ (U − (U1 + U2)|Y ) = 0

• or in terms of transport

EM2n

(
mUM2n

γ U
∣∣X)− EM2n

(
γ

M2n

∣∣∣∣X)U1 + EM2n

(
mUM2n

γ U2

∣∣X) = 0

EM2n

(
mUM2n

γ U
∣∣X)− EM2n

(
mUM2n

γ U1

∣∣X)+ EM2n

(
γ

M2n

∣∣∣∣X)U2 = 0



Gradient flow

• Given a cost function w : Rn × Rn → R, the expected cost function
is W : E (M2n) 3 γ 7→ Eγ [w ]. Then the function W restricted to
the open plan Γ(µ1, µ2) ∩ E (M2n) has statistical gradient obtained
by the projection of the unconstrained gradient w − Eγ [w ] onto the
the space of interactions Bγ,12

gradW (γ) : γ 7→ w − Eγ [w ]− w1,γ − w2,γ

• The gradient flow equation is

Dγ(t) = − (w − Eγ [w ]− w1,γ − w2,γ) .

• Any solution t 7→ γ(t) of the gradient flow converges to a measure
γ∗ = limt→∞ γ(t), in Γ(µ1, µ2) (but not in E (M2n)) such that

Eγ∗ [w ] = min {Eγ [w ]|γ ∈ Γ(µ1, µ2)}



Part III
Gauss-Orlicz-Sobolev model
spaces
• M. R. Grasselli. Dual connections in nonparametric classical information geometry.

Ann. Inst. Statist. Math., 62(5):873–896, 2010

• B. Lods and G. Pistone. Information geometry formalism for the spatially homogeneous Boltzmann
equation.
Entropy, 17(6):4323–4363, 2015

• D. Brigo and G. Pistone. Projection based dimensionality reduction for measure valued evolution equations
in statistical manifolds.
arXiv:1601.04189, 2016

• D. Brigo and G. Pistone. Eigenfunctions based maximum likelihood estimation of the fokker planck
equation and hellinger projection.
submitted, 2016

• Luigi Montrucchio and GP. Unpublished working paper (2016) based on N. Newton deformed logarithm



Inclusions

1. If 1 < a <∞,

L∞(M) ⊂ L(cosh−1) (M) ⊂ La(M) ⊂ L(cosh−1)∗ (M) ⊂ L1(M)

2. Local inclusions hold, if 1 6 a <∞, ΩR = {x ∈ Rn||x | < R},

L(cosh−1) (M) ↪→ La(ΩR), L(cosh−1)∗ (M) ↪→ L1(ΩR)

3. The Orlicz space L(cosh−1) (M) contains all functions f ∈ C 2(Rn;R)
whose Hessian is uniformely bounded in operator’s norm. In
particular, it contains all polynomials with degree up to 2 and,
moreover, all functions which are bounded by such a polynomial.

4. The Orlicz space L(cosh−1)∗ (M) contains all random variables
f : Rd → R which are bounded by a polynomial, in particular, all
polynomials.



Pointwise density

The space L(cosh−1) (M) is not separable nor reflexive. However, we have
the following monotone class theorem

• For each f ∈ L(cosh−1) (M) there exist a nonnegative function
h ∈ L(cosh−1) (M) and a sequence fn ∈ C0(Rn) with |fn| 6 h,
n = 1, 2, . . . , such that limn→∞ fn = f a.s..

• The space C0(Rn) is strongly dense in L(cosh−1)∗(M) and it is
weakly∗-dense in L(cosh−1)(M).

• For each f ∈ L(cosh−1) (M) there exist a nonnegative function
h ∈ L(cosh−1) (M) and a sequence φn ∈ C∞0 (Rn) with |fn| 6 h,
n = 1, 2, . . . , such that limn→∞ φn = f a.s..

• The space C∞0 (Rn) is strongly dense in L(cosh−1)∗(M) and it is
weakly∗-dense in L(cosh−1)(M).



Orlicz class

Definition
We define the exponential (Orlicz) class, C

(cosh−1)
0 (M), to be the closure

of C0 (Rn) in the exponential (Orlicz) space L(cosh−1) (M).

Theorem
Assume f ∈ L(cosh−1) (M) and write fR(x) = f (x)(|x | > R). The
following conditions are equivalent:

1. The real function ρ 7→
∫

(cosh−1)(ρf (x)) M(x)dx is finite for all
ρ > 0.

2. f ∈ C cosh−1(M).

3. limR→∞ ‖fR‖L(cosh−1)(M) = 0.

For example (x 7→ ‖x‖2) ∈ L(cosh−1) (M) \ C (cosh−1)
0 (M)



Translation models

• We look for statistical models induced by the gromrtry of the state
space. E.g. the n-dimensional model defined by the translation of
p = eU−KM (U) ·M ∈ E (M)

p(x ; h) = p(x − h) = eU(x−h)−KM (U)eh·x−
|h|2

2 ·M

•

EM [U(X − h) + h · X ] =

∫
U(x − h)M(x) dx =∫

U(x)e−h·x−
|h|2

2 M(x)dx = EM

[
Ue−h·X

|h|2
2

]
•

p(x ; h) = p(x − h) = exp (Uh − KM(Uh)) ·M

with Uh = τhU + h · X − EM [τhU] ∈ BM and

KM(τhU) = KM(U)− 1
2 |h|

2



Translations in L(cosh−1) (M)

• For each h ∈ Rn, the mapping f 7→ τhf is linear and bounded from
L(cosh−1) (M) to itself and ‖τhf ‖L(cosh−1)(M) 6 2 ‖f ‖L(cosh−1)(M) if

|h| 6
√

log 2.

• For each f ∈ L(cosh−1) (M) and h ∈ Rn we have
τhf ∈ L(cosh−1) (M). For all g ∈ L(cosh−1)∗ (M) we have

〈τhf , g〉M = 〈f , τ∗h g〉M , τ∗h g(x) = e−h·x−
|h|2

2 τ−hg(x) ,

and |h| 6
√

2 implies ‖τ∗h g‖L(cosh−1)∗ (M) 6 4 ‖g‖L(cosh−1)∗ (M).

Moreover, h 7→ τ∗h g is continuous in L(cosh−1)∗ (M).

• If f ∈ C
(cosh−1)
0 (M) then τhf ∈ C

(cosh−1)
0 (M), h ∈ Rn and the

mapping Rn : h 7→ τhf is continous in L(cosh−1) (M).



Translation by a probability

• Let

τµf (x) =

∫
f (x − y) µ(dy) = f ∗ µ(x)

for µ ∈ Pe, namely EM

[
e

1
2 |h|

2
]
<∞.

• The mapping f 7→ τµf is linear and bounded from L(cosh−1) (M) to

itself. If, moreover,
∫
e|h|

2/2 µ(dh) 6
√

2, then its norm is bounded
by 2.

• If f ∈ C
(cosh−1)
0 (M) then τµf ∈ C

(cosh−1)
0 (M). The mapping

P : µ 7→ τµf is continous at δ0 from the weak convergence to the
L(cosh−1) (M) norm.



Mollifiers

• Let be given a family of mollifiers ωλ ∈ C∞0 (Rn). Let

f ∈ C
(cosh−1)
0 (M). For each λ > 0 the function

τωλ
f (x) =

∫
f (x − y)λ−nω(λ−1y) dy = f ∗ ωλ(x)

belongs to C∞(Rn) and limλ→0 f ∗ ωλ = f in L(cosh−1) (M)

• For each f ∈ L(cosh−1) (M) there exists a sequence fn, in C∞0 (Rn),
n ∈ N, and a bound h ∈ L(cosh−1) (M) such that |fn(x)| 6 h(x) and
limn→∞ fn(x) = f (x) for all x .

• For each f ∈ C
(cosh−1)
0 (M) there exists a sequence fn, in C∞0 (Rn),

n ∈ N, with limn→∞ ‖fn − f ‖L(cosh−1)(M) = 0.



Differentiable densities

Definition
The Orlicz-Sobolev (O-S) spaces with weight M are

W 1,(cosh−1) (M) =
{
f ∈ L(cosh−1) (M)

∣∣∣∂j f ∈ L(cosh−1) (M) , j = 1, . . . , n
}

W 1,(cosh−1)∗ (M) =
{
f ∈ L(cosh−1)∗ (M)

∣∣∣∂j f ∈ L(cosh−1)∗ (M) , j = 1, . . . , n
}

where ∂j is the derivative in the sense of distributions. The spaces
W 1,(cosh−1) (M) and W 1,(cosh−1)∗ (M) are both Banach spaces for the
graph norms.

•
〈∂j f , φM〉 = −〈f , ∂jφM − XjφM〉 = 〈f , (Xj − ∂j)φM〉

〈∂j f , φ〉M = 〈f , δjφ〉M δjφ = (Xj − ∂j)φ

• Cf Malliavin Calculus



Inclusions

Theorem
Let R > 0 and let ΩR denote the open sphere of radius R.

1. We have the embeddings

W 1,(cosh−1)(Rn) ⊂W 1,(cosh−1) (M) ⊂
W 1,(cosh−1)(ΩR) ⊂W 1,p(ΩR), p > 1.

2. We have the embeddings

W 1,p(Rn) ⊂W 1,(cosh−1)∗(Rn) ⊂W 1,(cosh−1)∗ (M) ⊂
W 1,(cosh−1)∗(ΩR) ⊂W 1,1(ΩR), p > 1.

3. Each u ∈W 1,(cosh−1) (M) is a.s. continuous and Hölder of all
orders on each ΩR .



Directional derivative
Theorem

• For each f ∈W 1,(cosh−1) (M), each unit vector h ∈ Sn, and all
t ∈ R, it holds

f (x + th)− f (x) = t

∫ 1

0

n∑
j=1

∂j f (x + sth)hj ds .

Moreover, |t| 6
√

2 implies

‖f (x + th)− f (x)‖L(cosh−1)(M) 6 2t ‖∇f ‖L(cosh−1)(M) ,

especially, limt→0 ‖f (x + th)− f (x)‖L(cosh−1)(M) = 0 uniformely in h.

• For each f ∈W 1,(cosh−1) (M) and each g ∈ L(cosh−1)∗ (M), the
mapping h 7→ 〈τhf , g〉M is differentiable. Viceversa, if
f ∈ L(cosh−1) (M) and h 7→ τhf is weakly differentiable, then
f ∈W 1,(cosh−1) (M)

• If ∂j f ∈ C
(cosh−1)
0 (M), j = 1, . . . , n, then strong differentiability in

L(cosh−1) (M) holds.



Orlicz-Sobolev class
Definition
The Orlicz-Sobolev-Gauss exponential class is

C
1,(cosh−1)
0 (M) ={

f ∈W 1,(cosh−1) (M)
∣∣∣f , ∂j f ∈ C

(cosh−1)
0 (M) , j = 1, . . . , n

}

• The translation model is qualified as

ph = τhp, p = eU−KM (U) ·M, U ∈ SM ∩ C
1,(cosh−1)
0 (M)

• The score in the direction j is (xj − tej)− ∂jU(x − tej):

d
dt

p(x − tej )

p(x − tej )
=

d
dt

e
U(x−tej )−KM (U)

M(x − tej )

p(x − tej )
=

−∂jU(x − tej )e
U(x−tej )−KM (U)

M(x − tej ) + (xj − tej )e
U(x−tej )−KM (U)

M(x − tej )

p(x − tej )
=

(xj − tej ) − ∂jU(x − tej )



Calculus in C
1,(cosh−1)
0 (M)

Theorem

• For each f ∈ C
1,(cosh−1)
0 (M) the sequence f ∗ ωn, n ∈ N, belongs to

C∞(Rn) ∩W 1,(cosh−1) (M). Precisely, for each n and j = 1, . . . , n,
we have the equality ∂j(f ∗ ωn) = (∂j f ) ∗ ωn; the sequences f ∗ ωn,
respectively ∂j f ∗ ωn, j = 1, . . . , n, converge to f , respectively ∂j f ,
j = 1, . . . , n, strongly in W 1,(cosh−1)∗ (M).

• Same statement is true if f ∈W 1,(cosh−1)∗ (M).

• Let be given f ∈ C
(cosh−1)
0 (M) and g ∈W 1,(cosh−1)∗ (M). Then

fg ∈W 1,1(M) and ∂j(fg) = ∂j fg + f ∂jg.

• Let be given F ∈ C 1(R) with ‖F ′‖∞ <∞. For each

U ∈ C
(cosh−1)
0 (M), we have F ◦ U,F ′ ◦ U∂jU ∈ C

(cosh−1)
0 (M) and

∂jF ◦ U = F ′ ◦ U∂jU, in particular F (U) ∈ C
1,(cosh−1)
0 (M).



Exponential family modeled on C
1,(cosh−1)
0 (M)

• Restrict the exponential family E (M) to C
1,(cosh−1)
0 (M),

E1(M) =
{
eU−KM (U) ·M

∣∣∣U ∈ C
1,(cosh−1)
0 (M) ∩ SM

}
• Because of C

1,(cosh−1)
0 (M) ↪→ Lcosh−1(M) the domain

C
1,(cosh−1)
0 (M) ∩ SM is open and the cumulant functional

KM : C
1,(cosh−1)
0 (M) ∩ SM → R remains convex and differentiable.

• Every feature of the exponential manifold carries over to this case.

Define B1(p) = Bp ∩ C
1,(cosh−1)
0 (M) to be models for the tangent

spaces of E1(M). The e-transport acts on these spaces

eUg
f : B1(f ) 3 U 7→ U − Eg [U] ∈ B1(g) ,

so that we can define the statistical bundle to be

TE1(M) = {(g ,V )|g ∈ E1(M),V ∈ B1(g)}

and take as charts the restrictions of the charts defined on TE (M).



Application: Hyvärinen divergence

• For each f , g ∈ E1(M) the Hyvärinen divergence is

DH (g |f ) = Eg

[
|∇ log f −∇ log g |2

]
.

• The expression in the chart centered at M is

DHM (v |u) = DH (eM(v)|eM(u)) = EM

[
|∇u −∇v |2 ev−KM (v)

]
,

where f = eM(u), g = eM(v).

• grad(f 7→ DH (g |f )) = −2∇ log g ·∇ log f
g − 2∆ log f

g

• grad(g 7→ DH (f |g)) = 2∇ log g ·∇ log f
g + 2∆ log f

g + DH (f |g)



Example: Elliptic operator
• Elliptic operator as section of the tangent bundle is

Ap(x) = p(x)−1
d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
p(x)

)
, x ∈ Rd .

• The expression in the statistical bundle is

U 7→ ÂM(U) = eU−KM (U)A(eU−KM (U) ·M) =

eU−KM (U)

eU−KM (U) ·M
A(eU−KM (U) ·M) = M−1L∗(eU−KM (U) ·M)

• Computation gives

M−1L∗(eU−KM (U) ·M) =

eU−KM (U)
d∑

i,j=1

∂

∂xi

[
aij(x)

(
∂

∂xj
U(x)− xj

)]
p(x)+

eU−KM (U)
d∑

i,j=1

aij(x)

(
∂

∂xi
U(x)− xi

)(
∂

∂xj
U(x)− xj

)
p(x).



Part IV
Second order geometry

• L. Malagò and G. Pistone. Combinatorial optimization with information geometry: Newton method.
Entropy, 16:4260–4289, 2014

• L. Malagò and G. Pistone. Second-order optimization over the multivariate Gaussian distribution.
In F. Barbaresco and F. Nielsen, editors, Geometric Science of Information, number 9389 in LNCS, pages
349–358. Springer, 2015



Parallel transport

• e-transport:
eUq

p : Bp 3 U 7→ U − Eq [U] ∈ Bq .

• m-transport: for each V ∈ ∗Bq

mUp
q : ∗Bq 3 V 7→ q

p
V ∈ ∗Bp

Properties

•
〈
U,mUp

qV
〉
p

=
〈

eUq
pU,V

〉
q

• eUr
q

eUq
p = eUr

p

• mUr
q

mUq
p = mUr

p

•
〈

eUq
pU,

mUq
pV
〉
q

= 〈U,V 〉p

• d2Kp(q)[U,V ] =
〈

eUq
pU,

eUq
pV
〉
q

=
〈

mUp
q

eUq
pU,V

〉
p
.



Statistical exponential manifold and bundles
• The exponential manifold is the maximal exponential family E with

the affine atlas of global charts (sp : p ∈ E),

sp(q) = log
q

p
− Ep

[
log

q

p

]
.

• The statistical exponential bundle TE (M) is the manifold defined
on the set

{(p,V )|p ∈ E ,V ∈ Bp}

by the affine atlas of global charts

σp : (q,V ) 7→
(
sp(q), eUp

qV
)
∈ Bp × Bp, p ∈ E

• The statistical predual bundle ∗TE (M) is the manifold defined on
the set

{(p,W )|p ∈ E ,W ∈ ∗Bp}

by the affine atlas of global charts

∗σp : (q,W ) 7→
(
sp(q),mUp

qW
)
∈ Bp × ∗Bp, p ∈ E



Score and statistical gradient

Definition
t 7→ p(t) is a curve in E (p) and F : E (p)→ R.

• The score of the curve t 7→ p(t) is a curve in the statistical bundle
t 7→ (p(t),Dp(t)) ∈ SE (p) such that for all X ∈ L(cosh−1)∗ (p) it
holds

d

dt
Ep(t) [X ] =

〈
X − Ep(t) [X ] ,Dp(t)

〉
p(t)

• The statistical gradient of F is a section of the statistical bundle,
p 7→ (p, grad f (p)) ∈ eTofp such that for each regular curve
t 7→ p(t), it holds

d

dt
f (p(t)) = 〈grad f (p(t)),Dp(t)〉p(t)

Everithing applies if the tangent space is in C
1,(cosh−1)
0 (p), but technical

detail have to be checked, e.d. mUq
p



Taylor formula in the Statistical Bundle

• For a curve t 7→ p(t) ∈ E (M) connecting p = p(0) to q = p(1) and
a function F : E (M)→ R the Taylor formula is

F (q) = F (p) +
d

dt
F (p(t))

∣∣∣∣
t=0

+
1

2

d2

dt2
F (p(t))

∣∣∣∣
t=0

+ R2(f , p(·))

with R2(f , p(·)) =
∫ 1

0
(1− t)

(
d2

dt2 F (p(t))− d2

dt2 F (p(t))
∣∣∣
t=o

)
dt

• The first derivative is computed with the statistical gradient and the
score

F (q) = F (p) + 〈gradF (p(0)),Dp(0)〉p +

1

2

d

dt
〈gradF (p(t)),Dp(t)〉p(t)

∣∣∣∣
t=o

+ R2(f , p(·)) ,

• where d
dt 〈gradF (p(t)),Dp(t)〉p(t)

∣∣∣
t=o

depends on p(·)



Accellerations

• p(t) = eU(t)−Kp(U(t)) · p, U ∈ Bp.

• Let us define the acceleration at t of a curve t 7→ p(t) ∈ E (M).
The velocity is defined to be
t 7→ (p(t),Dp(t)) =

(
p(t), d

dt log (p(t))
)
∈ TE (M)

• The exponential acceleration is t 7→ (p(t), eD2p(t)) ∈ TE (M) with

eD2p(t) =
d

ds
eUp(t)

p(s)Dp(s)

∣∣∣∣
s=t

= Ü(t)− Ep(t)

[
Ü(t)

]
• The mixture acceleration is

mD2p(t) =
d

ds
mUp(t)

p(s)Dp(s)

∣∣∣∣
s=t

=
p̈(t)

p(t)



Computation

mD2p(t) =
d

ds
mUp(t)

p(s)Dp(s)

∣∣∣∣
s=t

=
d

ds
mUp(t)

p(s)

d

ds
(U(s)− Kp(U(s)))

∣∣∣∣
s=t

=
d

ds
mUp(t)

p(s)(U̇(s)− dKp(U(s))U̇(s))

∣∣∣∣
s=t

=
d

ds

p(s)

p(t)
(U̇(s)− Ep(t)

[
U̇(s)

]
)

∣∣∣∣
s=t

=
ṗ(s)

p(t)
(U̇(s)− Ep(t)

[
U̇(s)

]
) +

p(s)

p(t)
(Ü(s)− Ep(t)

[
Ü(s)

]
)

∣∣∣∣
s=t

=
ṗ(t)

p(t)
(U̇(t)− Ep(t)

[
U̇(t)

]
) +

p(t)

p(t)
(Ü(t)− Ep(t)

[
Ü(t)

]
)

= (U̇(t)− Ep(t)

[
U̇(t)

]
)2 + (Ü(t)− Ep(t)

[
Ü(t)

]
)

=
p̈(t)

p(t)



Autoparallel curves

• The exponential accelleration is

eD2p(t) = Ü(t)− Ep(t)

[
Ü(t)

]
• The e-accelleration of a 1d-exponential family t 7→ etU−KM (tU) ·M is

zero, ¨tU = 0.

• The mixture acceleration is

mD2p(t) =
p̈(t)

p(t)

• The m-accelleration of a 1d-mixture family
t 7→ p(0) + t(p(1)− p(0)) is zero,

¨p(0) + t(p(1)− p(0))

p(0) + t(p(1)− p(0))
= 0



Taylor’s formulæ

The computation of d
dt 〈gradF (p(t)),Dp(t)〉p(t)

∣∣∣
t=o

reduces to one term

by chosing an autoparallel segment connecting p and q

• If t 7→ p(t) is the mixture geodesic connecting p = p(0) to
q = p(1),

F (q) = F (p) + 〈gradF (p),Dp(0)〉p +

1

2

〈
eHessDp(0)F (p),Dp(0)

〉
p

+ R+
2 (p, q)

• If t 7→ p(t) is the exponential geodesic connecting p = p(0) to
q = p(1),

F (q) = F (p) + 〈gradF (p),Dp(0)〉p +

1

2

〈
mHessDp(0)F (p),Dp(0)

〉
p

+ R−2 (p, q)


